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Autonomous search for a diffusive source in an
unknown environment
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Abstract—The paper presents an approach to olfactory search absence of obstacles, walls, blocked passages) and thefeve

for a diffusive emitting source of tracer (e.g. aerosol, g3gsin

an environment with unknown map of randomly placed and
shaped obstacles. The measurements of tracer concentrati@re

sporadic, noisy and without directional information. The search

domain is discretised and modelled by a finite two-dimensical

lattice. The links is the lattice represent the traversablepaths

for emitted particles and for the searcher. A missing link in the

lattice indicates a blocked paths, due to the walls or obstdes. The
searcher must simultaneously estimate the source paramete

the map of the search domain and its own location within
the map. The solution is formulated in the sequential Bayean

framework and implemented as a Rao-Blackwellised particle
filter with information-driven motion control. The numeric al

results demonstrate the concept and its performance.

Index Terms—Olfactory search, Bayesian inference, mapping
and localisation, Rao-Blackwellised particle filter, obsever con-

concentration of tracer particles. The objective of thede#s

to localise and report the coordinates of the source in aestor
possible time. This is not a trivial task for several reasons
First, the emission rate of the source is typically unknown.
Furthermore, the measurements of tracer particle coratémr
are sporadic, noisy and without directional informatioimcg

the structure (map) of the search domain is unknown, the
searcher needs to explore the domain and create its map. The
searcher motion is fully autonomous: it senses the envissrim
and after processing this uncertain information sequintia
makes decisions on where to move next in order to collect
new measurements. Its motion control, however, is not fully
reliable as it may occasionally fail to execute correctlijeT
probabilistic model of searcher motion is assumed known.

trol, information gain. In the paper we restrict to the search in a two-dimensional

domain. The coordinates of the searcher initial positia, a
well as the border of the search area (relative to the initial
|. INTRODUCTION position) are given as input parameters. In order to fulfil
The search for an emitting source of particles, chemicaits mission, the searcher has to find the source and report
odour, or radiation, based on sporadic clues or intermitteifs coordinates relative to its initial position. This inrtu
measurements, has attracted a great deal of interest lakaly requires simultaneous estimation at three levels: (1nestdn
topic is important for search and rescue operations with thé source parameters (its location in 2D and its release
goal to localise dangerous pollutants, such as chemicks le4ate); (2) estimation of the map of the search area and (3)
and radioactive sources. In biology, the search is studied&stimation of the searcher position within the estimategh.ma
model animal bahaviour in search for food or mafés [1]-[3Estimation at levels (2) and (3) has been studied extensivel
Bio-inspired search for underwater sources of pollutiomehafObOtiCS under the term grid-bassdnultaneous localisation
been studied inJ4}5[6]. A robot for gas/odour plume tragkinand mappindSLAM) [L1]. The primary mission in all SLAM
guided by the increase in the concentration gradient has bgglblications is an accurate mapping of the area. The primary
proposed in[[7]. “Infotaxis”[[8] is a search strategy based onission of our searcher, however, is to localise the source,
entropy-reduction maximisation which has been developedwhile SLAM is only a necessary component of the solution.
the context of finding a weak source in a turbulent flow (e.g. The only related work which deals with olfactory search in
drug or leak emitting chemicals, for a comprehensive revie@n unknown structured environmentis|[12]. While this paper
see [9]). Information-gain driven search for radioactianp presents a plethora of experimental results, the algositara
sources has been studied in[10]. In all these applicatioas ased on heuristics. Our approach, however, is theorgtical
search domain is either open (without obstacles) or a precgpund in the sense that its mathematical models are prgcisel
map of the search domain (with obstacles) is available. ~ defined, estimation is carried out in the sequential Bayesia
In this paper we focus on autonomous olfactory searfimmework and the searcher motion control is driven by
for a diffusive emitting source of tracer (e.g. aerosol,,gaformation gain.
heat, moisture) in a domain with randomly placed and shapedlhe search domain is discretised, as for examplglin [4], and
obstacles (forbidden areas), whose structure (the map)medelled by a finite two-dimensional lattice. With sufficiign
unknown. The problem is of importance for example ifine resolution of the lattice, the emitting source can be
localisation of dangerous leaks in collapsed buildingsidie considered to be in one of the nodes of the lattice. The links
tunnels or mines. The searcher senses in a probabilistinenar(bonds, edges) of the lattice represent the traversabifis part
both the structure of the search domain (e.g. the presenceegiitted particles (tracer) and for the searcher. Missinkslin
the lattice indicate blocked paths due to the walls or olssac
_The authors are with Defence Science and Technology OwmanisThjs js a very general model applicable to searches at \&@riou
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lattice is assumed to be above the percolation thresppl
(for the adopted lattice structuge. = 1/2 [13], [14]) so that
long-range connectivity is satisfied |13]. Using the absayb 8t
Markov chains technique [15], we can compute exactly
mean concentration level in any node of the lattice, that i
any point of the search domain with obstacles. 4r

Since the structure (map) of the search domain is unknc ol
the searcher must rely on a theoretical model of conceatre

10

measurement which is independent of the this map. Suc > 0

model is derived in the paper in the analytic form and usec ‘ -2t

the search. _
The search itself consist of algorithms for sequential-e - |

mation and motion control. We adopt the framework of ¢ -6

timal sequential Bayesian estimation with information+en sl

motion control. Implementation is carried out using a R

Blackwellised patrticle filter. 1% = ) = 10
The paper is organised as follows. Mathematical model X

measurements and searcher motion are described ih]Sec.ll.

The olfactory search problem is formulated and its concepgure 1. Search area discretisation: the complete grith thie length of
tual solution provided in Séclil. Full technical detail$ oe€ach link equall. The centre of the search area is (i, 0), its radius is
the proposed search algorithm are presented if_Sec.IV, with =2

numerical results given in SEd.V. Finally, conclusions hift

study are summarised in Séc.l V1. random walk model[17]. The obstacles in the search domain

(the regions through which the tracer cannot pass) are gimpl
Il. MODELLING modelled as missing links (or clusters of missing links)he t
A. Model of environment square lattice. Figl2 shows an example of such a model: this
gr‘?complete lattice is obtained by removing fractipn= 0.35
the links in the complete lattice shown in Fig.1. Note
at all nodes in the incomplete lattice (grid) are conngcte
On average this will be the case if the fraction of missing
Dy A0 =Apd(z—Xy-Y). (1) links in the incomplete grid of Figl2 is below the percolatio
. e . . . thresholdp.; above the percolation thresholg & p.) the
Here D, is the diffusion coefficient of tracer in the €MV attice becomes fragmented. The framework of percolation

ronment, A is the Laplace .op(_aratoﬂ IS the mean (tlme- theory enables analytical description of statistical ertips
averaged) tracer concentratianjs the Dirac delta function, of such a latticel[13][14]

Ay is the release-rate of the tracer source, andy” are

the coordinates of the source in a two-dimensional Care -
coordinate system. For convenience we adopt a circulaclse 10 ‘
domain of radiusRy, centred at the origin of the coord ]
nate system, that is for every point inside the search ¢
r = /2?2 +y? < Ry. Assuming that the tracer source 6f T [ -
undetectable outside the search domain, we can impos: |
absorbing boundary conditial(r = Ry) = 0. The traditional ealls
approach to the computation of the tracer concentradie 2r T \ 1] 1
every point of the search domain, is via analytical or nuoar - ol L \
solution of [1). This, however, is a non-trivial task wher 1 | ‘

The concentration of a tracer at any point of the sear
domain is governed by the diffusive equation, which in tht%
steady state reduces to the Laplace equatioh [16]:

search domain is a structure of complex topology (due 2 ‘ N

obstacles, compartments walls, random openings, etc). -4t o g
We therefore adopt an alternative approach, where 1] \

continuous model of the tracer diffusion process is repla ° L] —

with a random walk on a square lattice, adopted as a dist -8t ‘ T

model of the search area. Discretisation is illustratedig{IF 10 ‘ ‘ ‘

for a search area centred at the origin of the coordinatesys -10 -5 0 5 10

with the radiusRy = 9. The length of each link (edge, bon
in the lattice determines the resolution of discretisataomd in 5 A model of o ih obstacles: the missirig lof th

H H : { e <. model of search area with obstacles: the miss of the
this example IS adopted as a untt Iength. The S_Olm?e’ aS_Su_Iﬁ lete graph of Figll represent blocked passages (dine tedlls, closed
to be located at one of the nodes of the lattice, is emittingors, etc) for moving particles. This incomplete grid isasbed by removing
particles which travel through the lattice according to thigaction p = 0.35 of the links from the complete graph.



B. Model of tracer distribution

This section explains how to compute the mean conce 0
tration of tracer particles in each node of the incompletd gr ]
(such as the one shown in iy.2) which represents a disedeti: 25

model of the search area with obstacles.

For a given incomplete grid, the mean concentration can
computed using the absorbing Markov chain technique [1!
Neglecting the spatial approximation of the search dome
(due to discretisation) and under the assumption that t
distribution of particles has reached the steady state, i
absorbing Markov chain technique provides an exact saluti 5
for the quantity of source material at each location. o

We can regard the random walk of tracer particles throug -10 -5 0 5
the incomplete grid (e.g. FId.2) as a Markov chain whos
states are the nodes of the grid. The Markov chain is specified
by the transition matrixT; each element of this matrix is Figure 3. Mean concentration of tracer particles for theciearea modelled
the probability of transition from state; to states; (i.e. a by incomplete graph of Figl2 with source placed(at,Y’) = (0,7) with

. . . Ao = 12 (darker cells indicate higher concentration)
particle move from nodé to nodej): T;; = P{s;|s;}. How
to constructT given the incomplete grid? First note that we
distinguish two types of states in this Markov chain: absarb C

states (corresponding to the nodes on the boundary of ttig gri
and transient states. For an absorbing stajéT;; = 1 and Two types of measurements are collected by the searcher.
T;; = 0, if j # . Suppose a transient state corresponds to Sensor 1 measures the concentration of tracer particles as a

nodei in the incomplete grid, which has connections (links§ount of particles received during the sampling time. Assum

with nodesjy . .., jm, where for a square gridh < 4. Then 1Ng the so-called ‘dilution” limit (limit of low concentréins)

Ty, = =Ty, =1/mandTy = 0forj ¢ {ji....,jm} _the tracer fluctu_anons follow the P0|sson dlstrlbutlo_n, ﬂ_iBn]at
Suppose there areabsorbing states andtransient states. is a concentration measurement at nodef the grid is a

If we order the states so that the absorbing states come fifgidom sample drawn from

(before the transient states), then the transition matdves A

20
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. Sensor models and motion model

) — -\
the canonical form: n~Pn;A) = € )
I 0 where) = 6; = Ay -F;;. The Poisson distribution mimics the
T = { R Q } ) ) intermittency of concentration measurementis [8].

The searcher sequentially estimates the source parameters
wherel is r x r identity matrix, Q is the¢ x ¢t matrix that withoutknowing the map of the search area. Hence the mea-
describes transitions between transient staRess at x » surement model based on the mean concentratiend, - F';;
matrix that describes the transitions from transient tmdting cannot be used in estimation (recall that maffixs formed
states an@ is anr xt matrix of zeros. The fundamental matrixbased on the structure of the incomplete grid). Assuming tha

of the absorbing Markov chain [15], the fraction of missing links in the incomplete grid is sraall
than the percolation threshold, the expected concentration
F=(I1-Q), (3) of tracer particles in any nodg of the incomplete grid can

be computed approximately using the property of conformal
represents the expected number of visits to a transiere stg{/ariance of the Laplace equation (see Appendix for dgtail
s; starting from a transient state (before being absorbed). suppose the source of release raeis placed at a node of the
This matrix will be used in simulations to compute the meagyid, positioned at coordinatgst, Y). Then the mean (time

particle concentration in any node of the incomplete gridnd ensemble averaged) concentration at fogesitioned at
Suppose an emitting source is placed at nedevhich is (z;,y;) can be approximated as:

not on the boundary. The source is releasing tracer pasticle
at a constant rately,. Then the expected concentration of (6); ~ —élog(Rz) (5)
tracer particles in any other nodeof the incomplete grid 2
(which is not on the boundary) is given f = Ay - F;;. where A = Ay/f., (f. is a constantp) < f. < 1, which
The concentration scales linearly with the release rijeas depends on the fraction of missing links in the incomplete
a direct consequence of the linearity of Laplace equafidn (3rid, see Appendix), and

Fig[3 shows the mean concentration of tracer particles for (2, — X2+ (y; — V)2
the search area modelled by incomplete grid of(Frig.2, wiéh th R?* = R} J 5 2‘% 5
source placed atX,Y) = (0,7) and with Ay = 12. Notice (Y =y, X)2 + (g — 2 X — ;1)
how the concentration depends on the distance from thesouote that this model is independent of the structure of the
and the structure of the grid, plotted in Fig.2. incomplete grid. In summary, estimation will be carried out

(6)



using Sensor 1 measurement model basedlon (4), where mezarcher decides to choose contiple U/, and hence to be at
A = (0), is approximated by {5)[16). The actual concentratiotime & at nodej. This control, however, is executed correctly
measurements will be simulated according [id (4), but wittnly with probabilityl —p.. Due to control noise or unmodeled
A=0;=A-Fi. exogenous effects [11], with probability. the searcher will

The searcher moves and explores the search domainagtually execute contral, € Uy \ {u}}.
order to find the source. The source parameter estimation is
carried out using the map-independent measurement modelll. THE PROBLEM AND ITS CONCEPTUAL SOLUTION
(5), which does not require discretisation of the searchaldbm  The searcher has at its disposal the probabilistic models of
on a square lattice (as in Hig.1). Nevertheless, we keg@nsor measurements and dynamic models. Prior knowledge
discretisation for the searcher in order to model its motiof)sg includes: (1) the coordinates of its initial positi¢2) the
paths and to facilitate its grid-based SLAM functionallfius  |ength of each link in the square lattice; (3) the boundary of
we assume that the searcher travels within the search a#eacircular search area (defined by its centre and raditng. T
along the paths represented by the links of the incompléde ggescribed prior translates into knowledge of the compleits g
as in Fid.2. As it travels, it stops at the nodes along its pafjych as the one shown in Fily.1. The searcher cannot move
to sense the environment, i.e. to collect measurementsoBerytside the complete grid.
2 is a simple binary detector of the presence or absence offhe gpjective of the searcher is to estimate in the shortest
the links (paths) visible from the node in which the searchgpssible time the coordinates of the emitting source, a$ wel
is currently placed. It reports on the presence/absencheof ks the partial map describing the path from its startingrggnt
primary and secondaryneighbouring links. point to the estimated location of the source. This partiapm

A link in a grid of Fig[2, is defined by a quadruplejs important, for example, in order to guide the rescue team

(%1, 41,22, y2), where(zy, y2) and(z, y») are the coordinates 1o the source or if the searcher has to retreat to its starting
of the nodes it connects. In order to explain what we megpsition.

by primary and secondary links, consider for example the

node at location(—3,—4) indicated by 'o’ in Fid.2. The A. Sequential Bayesian estimation

primary observable links from this node are the connecting ) ) )
The described problem can be cast in the sequential

links towards East, West, up and down from3, —4), i.e. . e . o
0 = (=3,-4,-2,-4), by = (-3,—4,—4,—4), b5 = Bayesian estimation framework as a nonlinear filtering prob

(—3,-4,-3,-3), andly = (-3, -4, —3,-5), i.e. . The sta- lem. Let us first define the state vector, which consists @fehr

tus of link ¢, m(¢), takes values frond0, 1}, wherem(¢) = 1 parts:

means that link¢ exists andm(¢) = 0 is the opposite. 1) The coordinates of the searcher position at discrete-tim
According to Fig2,m(¢;) = 1, m(s) = 1, m(fs) = 0, k=1,2,... are denoted byy, = [z yx]™.

m(fs) = 1. The secondary observable links from the node 2) The status (presence/absence) of each link in the com-
at (—3,—4) in Figl2 represent second neighbouring links in  Plete grid (such as the one shown in Eig.1). The status of

direction of East, West, up and down frofa-1,—1), that link £;, wherej =1,..., L, and L is the total number
is 05 = (—=2,—4,—1,—4), lg = (—4,—4,-5,—4), by = of links in the complete grid, isn(¢;) = m; € {0,1}.
(-3,—3,-3,-2), andls = (—3,—5, —3, —6). According to The notationP(m; = 1) refers to the probability that
Figl, m(ls) = 1, m(lg) = 0, m(f7) = 0, m(fs) = 1. the link is present. The map at tinkeis fully specified

Let an observation (supplied by sensor 2) about the presence Py vectormy. = [my x,...,mz x|T. The time index is
or absence of a link/, be a binary valuez(¢) € {0,1}, introduced because we allow the map of the search area
where z(¢) = 0 means link/ is absent anc:(¢) = 1 is the to occasionally change, e.g. an open door can close. The

opposite. The performance od sensor 2 can be described by assumption is that the statuses of links are mutually
two detection matrices, one for the primary links, the other ~ independent, i.em;; is independent fromm;  for

for secondary links. Each detection matfixhas a form i#J
3) The parameter vector of the source is denoted by
_|[P(z=0/m=0) P(z=0m=1) X Y Al
"= 1pe=tm=0) Pe=1m=1)] O
F= M= F=Am= The complete state vector is then defined as

whereP(z = 1jm = 1) = pg andP(z = 1jm = 0) = py, are
the probability of correct detection and the probabilityfalse
detectionp ,, respectively. The columns of matrIX add up Dynamics of the statg, is described by two transitional

yr = [p}, mf sT|T.

to 1, and hencel{7) can be written as: densitiesp(my|my_1) specifies the evolution of the map over
l—ne 1— time, while p(py|px—1,ux) characterises the searcher motion
1= { » Pfa » pd} . (8) model. The observation models of the searcher are specified
fa d

by two likelihood functions:g; (n|px, my,s) characterises
Suppose the searcher is in nodat discrete-timek — 1. sensor 1, which provides the count of partictgsat p;, from
Let the set of admissible controls vectors for the next motke source in state through the mapmyg; g2(zx|pk, mx)
be defined a&f, = {-,1, —, |, +}, meaning that the searcherefers to sensor 2 and describes the observaijaf the status
can stay where it is, or move one unit length up, right, dowaf the links in m,, visible from the searcher in locatiopy.
or left. After processing measurements from its sensoss, thet us denote observations and controls at tiniey a vector



¢, = [nx 2]]7. Finally, the prior probability density function therefore process count observationg using the likeli-
(PDF) of the state is denoted hyyy). hood function which is independent afi;, and denoted by
The goal in the sequential Bayesian framework is to e§:(ng|pk,s), rather thang; (ng|px, mg,s). We indicate this
timate any subset or property of the sequence of stafest by drawing the arrow frommy, to ny, in Fig[4 by a dashed
yvor = (¥o,.-.,yx) given observation sequeneg., := line.
(¢4,---,¢;) and the control sequenae. := (uy,...,ux), The computation of the posterior PDF for a structured com-
which is completely specified by the joint posterior digirib plex system such as the one shown in[Big.4 can be factorised
tion p(yo:x|¢1.5, u1:k). This posterior satisfies the followingand consequently made computationally and statisticatiyem
recursion: efficient. Technical details will be given in SeclIV.

P(yo:k|Crip, Urik) o
9(Celyre)P(Yelye—1, u)p(Yo:k—1/C1.6—1, W1:k—1)  (9) B. Information driven motion control

where After processing the measurements received at fimel,
the searcher needs to select the next control vectpr
P(YkYr—1, ) = p(mg[me—1) p(Pr[pr—1,ur)  (10)  \yhich wil change its position t@; ~ p(pk|pr_1,ux). The
is the transitional density, and problem of selectingu;, can be formulated as a partially-
observed Markov decision process |[20], whose elements
9(Cxlyr) = 91(nk[pr, mi,s) g2(zx[pr, mr)  (11) are: (1) the set of admissible control vectdds; (2) the
is the measurement likelihood function. current information state, expressed by the predicted PDF

In general it is impossible to solve analytically the reP(Y&lCix—1; k-1, k), wherew, € Uy; (3) the reward
cursive equation[{9). Instead we will formulate a numeric&#inction associated with each contrgl € ¢4y In the paper we
approximation using the sequential Monte Carlo method.[18dOPt motion control based on a single step ahead strategy; t
Before going into details, notice that factorization exgsel MYOPiC approach is suboptimal in the presence of randomly
by (1I0) and [(Il) imposes a structure which can be conV®iSsing links, but is computatlonglly easier to implememd a
niently represented by a dynamic Bayesian network (DB,{gster to run. The control vector is then selected as:

19] shown in Fid.#. The circles in FId.4 represent random
\[/argables: white gi%les are hidden var!ables;pgray ciaee  F T MEIEN E{D(v, p(yr|Crp—1 Wrn-1,v), G (V))}
observed variables. Arrows indicate dependencies. Tlosvarr (12)
indicated by dashed lines are explained next. whereD(u, p, ¢) is the reward function. Note that the reward
depends on future measuremeént= [n;, z}]T, which would

be acquired after contrai € U had been applied. Since the
decision has to be made before the actual control is applied,
K K+l the expectatiorE is taken in [IR) with respect to the prior
measurements PDF.

Considering that the primary mission of the search is
source localisation (map estimation is of secondary impor-
tance), the reward function at timé is adopted as the
information gain between: (1) the predicted PDF over the
state subspaces, pr) and (2) the updated PDF ovés, py.),
using the count measuremeny. The two distributions are
denotedno (s, px|uk) = p(s|nix—1, urk)p(Pr|Pr—1, 1) and
71(S, Pr|nk, Ur) = € J1(nk|Pr,s) mo(s, pr|uk), respectively,
where¢ is a normalisation constant. The information gain be-
tween the two distributions is measured using the Bhattgeha
distance([21]. The reward function is thus adopted as:

Time

D(uy) = —210g/ Vm1(8, Prlnk, uk) - mo (s, Prlug) ds dpy,
(13)

Figure 4. ~The dynamic Bayesian network representing theertéency \where we dropped unnecessary arguments in notatio for
between the random variables which feature in the describéztence

problem
IV. THE SEARCH ALGORITHM
Count measurement; depends on the mam,, hence

the likelihood of count measurement is formulated as The proposed search algorithm, formulated as a DBN with
g91(nk|pk, mg, s). The searcher, however, does not know thebserver control, can be implemented efficiently as a Rao-
map (it estimates it only partially as it travels through th8lackwellised particle filter (RBPF)_[22] with sensor caitr
search area) and hence we have introduced the approxinidie idea of the RBPF is as follows. Suppose it is possible to
measurement model expressed by [4)-(6). The searcher willide the components of the hidden state vegtprinto two



groups,a;; and3,,, such that the following two conditions arewhere

satisfied: '
p(mk|zl:k—laﬂézifl) =
C-1: p(yelyr—1.uk) = par!Br_1.k: k1) P(BelBr—1, ur) Z p(mk|mk_1)p(mk_1|z1;k_1,ﬁéf3€71) (20)
C-2: the conditional posterior distribution e . : .
p(cr] Bos Cor, urw) is analytically tractable. The update of probability vectoq, is then carried out

as follows. Recall from[{15) that particlﬁ,(j) specifies the

Then we need only to estimate the posteridpcation of the searcher at timg py) = [z y\]7. Each
p(Bo.5/¢1.1, u1.1), Meaning that we reduced the dimensiofomponent of vectoe,, is then an observation of existence
of the space in which Monte Carlo estimation needs to & a primary or a secondary link from |ocati0p,(j). Let
carried out, from dinfy) to dim(3,). As argued in[[22], this ¢; -1 be a component of vectey;,;, denoting the posterior
potentially improves computational and statistical edficy probability that link /; exists at timek — 1, i.e. gj k-1 =
of the particle filter. p(mm_l|z1;k_1,ﬁéf3€71). Recall also that since the link sta-

In the described DBN, shown in Fig,4, in order to satisfyuses are assumed independent, thgn; = Hleqg‘,k—l-

conditions C-1 and C-2, the state vecjor can be partitioned According to [2D), linkj existence probability is predicted as:
as follows:
@ klk—1 = P(mgj g = 1mjp—1 = 0)(1 — qjr—1)+

ay = [m] A" (14) p(mik = 1mip1=1ge1 (1)
_ T

B, =[pl X Y. (15 Let > be a component of vectar, which refers to link;,
We are interested only in the filtering posterior densityjamh according to the current position of the searcf]éf?t Then
can now be factorised as follows: Pased onLLIe) we update fhe lipiexistence probabily &

Pd 95,k|k—1 if z=1

P Bl me) = Pd @, klk—1FTPfa (1G5 k|k—1)

p(ak|/30:kaC1:k7ul:k) 'p(/GO:kK.l:k’ul:k) (16) ok = - ] (22)

(1=Pd) 4j,ell—1 if z=0

The PDF p(By.1|¢1.1 ui:x) is approximated by a random (1=pa) @jkik—1+1=Pra) 1= djhik—1)

sample{B./) }X . Subsequently one can compute analyticalljnerépa andpy,, introduced in[(B), are the elements of the
‘ (i) y. appropriate detectiofl matrix (primary or secondary) of(8).
(for each samplgd,., ): ' .
' Equations[(IP)E(22) can be summarised as:

POkl B s, 71, k) = ar = ¥(ar-1, 8}, zi) (23)
(1) (1)
p(my|z1.x, By.y) - P(AIn1k, By (17) Let us describe next the analytic recursion for the update of

the parameters, and6, of (I18). At timek — 1, the posterior
of emission rated is modeled by a gamma distribution:

where
. p(mk|z1:k,ﬁff;3€) = qp is a vector of probabilities of _
existence for each link in the random grid and A|n1:k—1,ﬂfﬂ,1 ~ G (Ang—1,0k-1)) - (24)

(i) \ . . .
y p(ﬁ\'”lhkvﬁo:k) IS apptroxmat;d byla Gammag;;'tr'pUt'o%ensor 1 provides at time a count measurement,, which
with Shape parameten, and scale parametefy, 1.e. plays the key role in the update of parametegs; and

G (As 9’“)'_ f1—1. Recall that the likelihood function of this measurement,
Hence each particle corresponds to a set: g1 (nk|,6',(gl),A) is a Poisson distribution with parameter (mean)
(i) 9 18 A", rather thanA. Fortunately,\\” | is linearly related to
(Blzk’q’“n’“ ’“) (18)  amission rated, that is
where qg,ni, 0, are the sufficient statistics  of /\EC” —A. C(@Eﬁ)

p(ak|ﬁéf3€,n1;k,z1;k,ulzk). Keep in mlnd thatqk,nk,ﬁk

ONE .. .
depend on a particular sequence (partiqﬂgi. where the constant(3,’) is always positive and given by

; 1
C/(C) = —5(2 10gR0+

A. Recursive formulae for sufficient statistics (IS) _ x4 (y,(j) —y )2

. . . . lo _ - - . .
Let us first discuss the analytic recursive formula for the'°® Dy () — @ x ()2 2 Dy O )
. . . ! i) _ N2 4+ (R2 — X6 — Y ()2
computation ofqy, following the ideas of the grid-based (= Y P (Ro — o Y )(25)
SLAM [11]. Note that

with X andY (), according to[(15), being the components

ax :p(mk|Z1:k,ﬁ((;3€) = of particleﬁ,(f).
g2(2x|my, B,(;))p(mklm:kfh éz}g_l) In the proposed algorithm for the update of parameigrs

0 0 (19) and #,_, we use the following two properties of Gamma
2y, 92(21 [y, By7) p(mag|z1—1, By, 1) distribution:



1) Scaling property [23]: ifX ~ G(n, 0) then foranyc > 0, The components of vectey 1, i.€. g; »x—1, were specified
cX ~ G(n,ch). by (21). The integral which features ih_{34) can also be
2) Gamma distribution is the conjugate prior of Poissocomputed analytically. This integral equals:
distributions [24]: if A ~ G(n,0) is a prior distribution
and n is a sample from the Poisson distribution with Z = /gl(nk|Aa5k)p(A|n1:k717/60:k71)dA (35)
parameter\, then the posterior is
— [ Pluwsr = c(By) - ) G i1, b11)aA - (36)
A~Gm+n,0/(1+80)).

_ _ whereP(n; \) is the Poisson distribution introduced inl (4).
Giveng,” we can compute constarff’ of (Z8) and express Recall the explanation presented in Sec.IV-A about the tgpda
the prior distribution ofA}” | as: of the parameters of the Gamma distribution, summarised by

_ _ _ (269)-(28). Effectively we have shown there that:
)\,(ﬁllnl:k—l,,5'83C ~G ()\;nk—l, C;(f) '9k—1) (26)

O
i : - G| Aoy + g, —— | =
Using measurement;, and the conjugate prior property, the 1+ 0121)91@71

posterior distribution is: P Mo = c(By) - A) G(A; -1, 01 @7)
. . (g, J P A = c(By) - A) G(A;mp—1,0k—1)dA
)\(1)| (7) ~ g \: 4 Ck ok 1 (27) . . i
k 1Tky Pog $Mk—1 + Tk, 1499 where the integral in the denominatorZs see [(36). Hence,
k Ukl the integral can be expressed as:
Since we are after the updated parameters of Gamma distribu- Pnglhe = c(By) - A) G(A; 9
. 7 . . . _ - 777 —1y —
tion of A (rather than\\”), again using the scaling property ~ Z = (A = c(By) - A) G{Ai 151, 64-1) (38)

G(Asm—1 + 1, O—1/(1 + c(By,)0k—1))
and is computed for an arbitrary chosen valuelof 0. Based

on (33), let us summarise the expression for an unnormalised
importance weight as:

we have:

; O
NMMB&NQ<&W1+nm——%L—> (28)

1+ C Or_1
We summarise froni{24) an@ (28) the analytic expressions for W = (B A1, -1, 01, Tk, 2 ) (39)
the update ofy, andé, : Importance weights determine in a probabilistic manneiciwhi
particles will survive (and possibly multiply) during thesam-
M = nk—19+ U (29) pling step of the RBPF.
O = —5— (30) N
14¢. 0k C. Information gain
Suppose the posterior distribution at timé — 1,
B. Importance weights P(yr-1/€1.p_1, u1:k—1), is @approximated by a set of particles:
Recursive estimation 0 (Bo.1:1C 1.5 U1:k) is |mplemented Veoy = {( l(ﬁpqulv??;(;ip@;(ﬁl)}_ 7 (40)
using a patrticle filter. If we use the transitional prior ag th _ =
proposal distribution. i.e. where random samplg'” | consists of the searcher position
q(Bo.lCrpurk—1) = p;ﬁl = [Il(;ll yl(czll].r and the position of the source

W — (x® yo The weights of the particl
. . e 31) Ps = (X |7, see [(1b). The weig s of the particles
PB1Bk—1 05 PBopr |1 M) (31) in V1 are equal, because sensor control is carried out after

the importance weights can be computed recursively asislloresampling, i.ew,(jll =1/N,i=1,...,N.
[22]: The question is how to compute the information gain| (13)
wr < p(Crl¢re 1 Bor) (32) for eachu € U}, based on particley),—,. We adopt thedeal
measuremendpproximation for this, that is, in hypothesizing
For our problem expressiof (32) can be evaluated as: the future count measurement (resulting from actign we
assume: (1) actiom will be carried out correctly, that is the
wp X /p(CkaakKl:kflvﬁO:k)dak (33) transitional density(px|pr_1,ux) will be replaced by deter-
ministic mappingpx = px—1 + ux, and (2) the measurement
= /§1(nk|A,ﬁk)p(A|n1:k_1,ﬁ0:k_l)dA X count will be equal to the mean @f (nx|A, 3;), that is A

(rounded off to the nearest integer).
> ga(zi|my, pi) p(mg|z1k-1,804-1) (34)  Since we are after the expected value of the gain, that

my, is E{D(u)}, we will create an ensemble of “future ideal
where p(Alnis-1,B0_,) IS given by [28) and measurements{n,(j)}_jf‘il. Expectation is then approximated
p(mg|z1:5—1, Bo.e—1) = Arjr—1 bY (20), ie. by a sample mean, i.e.

M
Ak[k—1 = Z p(mgmy_1) qr—1. E{D(u)} ~ % ZD(j)(u)
j=1

mpyg_ 1



whereD@) (u) was computed usmg Algorithm 1 The searcher algorithm

The ensemble of “future ideal measuremer{te‘”)} L Input: Vi1

created as follows. For each actian choose at random a 2 Run Algorithm[2 to select the control vecter,
3: Apply control u, and collect measurements, n

set of M particle indicesi; € {1,....,N}, j = 1,...,.M. 4,5 Z¢ y, =
Action u is then expected to move the searcher to locatios: for s =1,..., N do
p( 7 p; )1+u Then a “future ideal measurement”n%’) 6: Drawp!' ) ~ p(pr|p” 17u,€)

(i5)

|AG) . ()], wherec%) as a function ofp!?), p') was 7 @) = (B a1 021w, )

defined by [[25),4%) ~ G(A;nx_1,0,_1), and |-] denotes 8 ()—1/)(01;2)1, oz
the nearest integer function. o =nl +m _ _
It remains to explain how to compute the galn?) (u) 10 Compute constam<') as a function ot@l(j) using [25)
based onn?. Distribution mo(s, px|ux), which features in 11 6;” = 0, /(1+ ()9() 1)
(@3), can be approximated using the particle 3%t; as 12 Vi =Y U{(BY,q ,nk) 0.0)}
follows: 13: end for )
' 14w =@/ SN @ fori=1,...,N
N ) () (Z 15:forz:1,...,]\fdo .
To(S, Pk, u) ~ G(A;ni—1,0k-1) Z 16(Ps ps ,Pr—P;’) 16:  Select indexj’ € {1 , N} with probability w;@
i=1 (41) 17: Vi = Ve U{(B¢ (Ji) 7q§€h 777’(;1) eli]i))}
(1) (1) S 18: end for
wherep,.’ ~ p(px|p;_,,u). The updated distribution is 19: Output: Yy

71(s, px|u, n(7))

gl(nk )|pka Ps, A)ﬂ-o(sv pk|u)

. 42
[ & n,(j)|pk,ps,A)wo(s,pk|u)dsdpk (42) the algorithm anticipateg = 1, ..., M future measurements
I . . J (line 9) and accordingly computes a sample of the reward
Substitution of [211) and (32) |nt¢:(113) Ieade to: D(J>( ) (line 14). The expected reward is then a sample mean
. SN w? T (line 16). Finally the optimal one-step ahead control iestld
DY (u) ~ ~2log i (43) inline 18
N @ 7@y (O] '
[Z':l w2 IO (ny; )} PR ;
¢ It has been observed in simulations that one step ahead
whereZ(® (n;) is computed via[{38) and control can sometimes lead to situations where the observer
‘ ‘ 12 position switches eternally between two or three nodes ef th
T (ny,) = / {P(nk; AW — c(ﬁ(l))A)} x lattice. In order to overcome this problem, we adopt a héaris
as follows: if a node has been visited in the last 10 search
G(A; nk 1,9,(5 1)dA (44) steps more than 3 times, the next motion control vector is

selected at random. While a multi-step ahead searcheratontr
would be preferable than adopted heuristic, it would also be
computationally more demanding. Multi-step ahead searche

D. Implementation
control remains to be explored in future work.
The pseudo-code of one cycle of the search algorithm is

presented in Algorithnd]l1. The input consists of the particle
set)y_1, defined by[(4D). Selection of the control vecigy  Algorithm 2 Selection of control vector
(line 2 of Algorithm[1) is described in Algorithin] 2. 1 Input: Y1
Explanation of the steps in Algorithid 1 are described first2: Create the set of admissible contrdls = {-, 1, —, |, +}
Estimation of the state vector via the RBPF is carried out ir$: for everyu € U do

Integral [44) can be evaluated numerically.

4.  for j=1,...,M do
Ilrzgs 4 1?) Accor((jllng td {35), random Vect@i; 1 COZ;]SIS(tf of : (thoose at random particle indeéxe {1,..., N}
P 1 andY . Since the source locatioX ), Y(®), . p) = pl) | y;
is static, only the componeptsz1 is propagated to future time 7. Computec( h) us,ngp% andpl’ via (28)
k inline 6. In line 7, equatior (39) is applied to compute theg. Adopt AG) = ") . 9}&1
unnormalised weights of each particle. The map, repredentg, n) = | A .C(z‘j)w
by the probability of existence of each link, is updated ireli ¢ for i — 1,.. .,deo

8, based on the expressidn](23). The parameters of Gamma ComputeZ® (n\?) via (38)

distribution are update in lines 9-11. The weights assigned:
to each quadrupl@@k ,qk ,77,(;),0(Z ) are normalised in line 13:
4:
15:
particles for source p05|t|opS are not restricted to the grid 4.
17:
18:

14. Resampling of partlcles |s carried out in lines 15-18e Tht

nodes and after the resampling step, their diversity is awgad
by regularisation [25]. Finally, the output is the partis&t)s..

Compute7 ¥ (n\?)) via @)
end for
ComputeD) (u) using [43)
end for
EstimateE{D(u)} as a sample mean 4D (u)},
end for
Select control vectony, € Uy, using [12)

The selection of a control vector, described by Algorifim Z,
starts with postulating the séf. in line 2. For everyu € U,



Table |
V. NUMERICAL RESULTS THE AVERAGE PERFORMANCE OF THE SEARCH ALGORITHMDIFFERENT

. . SOURCE LOCATIONS Ag = 12
A. An illustrative run 40

We applied the described search algorithm to the search area Source Shortest Number of  Success
modelled by the random grid shown in Fig.2. Prior knowledge location _ path length _ search steps _ rate [%)]
available to the searcher is illustrated by [Fig.1: the radifi (0,7) 20 42.1 94
the search area I8, = 9; the centre isc = (0,0) and the (g?’_lg) 184 ;’g:g gg

total number of potential links in the complete grid modwli
the search area i§ = 572. The parameters of the emitting
source to be estimated ar&¥: =0, Y = 7 and Ag = 12. The
searcher initial position ipg = (9, —4). are sporadic, especially in the beginning, when the digtanc

Dynamic modep(my|m;_1) is is a2 x 2 transitional prob- between the searcher and the source is large: among the first
ability matrix with diagonal and off-diagonal elemerit999 ten count measurements, only three indicated a non-zerertra
and0.001, respectively. Dynamic modep(py|px_1,us) can concentration.
be expressed as: An avi video file, illustrating a single run of the algorithm,

is supplied with the submission of this paper.
P(Pk|Pr—1,ux) =(1 = pe)d(Pr — Pr—1 + ug)+

DPe
Z |75(Pk —Pr-1+V) (45) B. Monte Carlo runs

Ui —1
Vel The average performance of the search algorithm in the

where in simulations we used the valpg= 0.04. described scenario has been assessed via Monte Carlofruns. |
The parameters of detection matrices, which define tllge search on a particular run was successful, its correlspgn

likelihood functiongs (zx|px, mg), are as follows: for primary search time is used in averaging. A run is declared unsuccess

observable linkspp; = 1 and ps, = 0; for secondary ful if the source has not been found after= 100 discrete-

observable linkpy = 0.8 andpys, = 0.1. time steps. We also keep the statistics on the success rate of
The RBPF usedv = 4000 particles withM = 400 samples the search. The results obtained via averaging over 100éMont

used in the averaging of information gain. The particle)et Carlo runs are presented in Table | for three different iocat

at initial time is created as followsp(” = po, for all i = of the source, i.e(X,Y) = (0,7),(0,1), (2, —5). The three

1,..., N particles; the source location vector is drawn from cations correspond to the shortest path distances (fhem t

uniform distribution over a circle with centeeand radiusk,, —searcher initial positiop, = (9, —4) to the source) 020, 14

ie. p@ ~ Ucircie(c, ro) (Ps); link existence probabilities are setand8 unit lengths, respectively. All other parameters were the

to g0 = 0.5, forall j = 1,..., L links; finally, the parameters same as described above for the illustrative run. As exgecte
of initial Gamma distributionG(A;no,6,) were selected as the results in Tablél | indicate that the search is quicker and
no = 15 andfy = 1. more reliable (i.e. with a higher success rate) for a source

We terminate the search algorithm when the searcher st&g#ch is closer to the searcher initial position.
on the source. At this point we compare the true sourceTable[ll presents the results for a source at locafitr)
location with the current estimate of the posterior disttin ~ but with three different values of the source release-iiae,
of the searcher position, approximated by partiq‘lpé”}f\’:l. Ag = 8,12, 16. The results indicate that the search is quicker

If the true source position is contained in the support definéor a source characterised by a higher release rate. Tha-expl
by {p(i) N the search is considered successful. nation of this trend is as follows. Initially, when the sdsecis

Fig.kIE illlulstrates a typical run of the search algorithm. Thi@" from the source, its measurements of tracer conceotrati
true path of the searcher on this run is shown in[Fig.5.(a).af€ very small, typically zero, hence uninformative. Dgrihis
took the searche¥3 time steps to reach the source. During thBhase of the search, the searcher effectively moves acgprdi
search, the motion control vector failed to execute colyest {0 @ ‘diffusive’ (or random walk) model, which is slower that
two occasions. The final estimate of the map (i.e of existirf§ So-called "ballistic’ movement associated with infation
links of the square lattice) is shown in Fiby.5.(b). This figurdriven search([2]. The random walk phase is longer for a
shows only the links whose probability of existence is highdveaker source, which contributes to the overall longerciear
than 0.6. The blue circles in Figl5.(b) indicate the posterioiMme in this case. As a specific numerical example, we have
distribution of the searcher final position. Its true pasiti @/S0 validated that a purely random search never manages
which is the same as the source position, is included @ find the source af0,7) in the given time-frame ofi00
the support of this posterior, meaning that the search wdiscrete-time steps.
successful. Moreover, on this occasion, the MAP estimate of
the searcher final position coincides with the truth. [Fig)5. VI. SUMMARY

shows the measured values of the count numberalong  The paper considers a very difficult problem of autonomous
the path. As we discussed in introduction, the measuremegis, ch, for a diffusive point source of tracer in an environine
N _ whose structure is unknown. Sequential estimation andamoti
The structure of the search domain must be stable (recalltieacount | ied in hiahl L ih
measurement model is valid for a steady-state), hence thegels in the control are Cam_e OUt. n .|g y l_mcerta'n circumstances w
statuses of links are very rare. the state space including, in addition to the source paenset
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Figure 5. An illustration of a single run of the search altfon: (a) The true
path of the searcher (blue circles); (b) The final estimatthefmap (existing
links) and the searcher position; (c) measured countover time
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Table Il
THE AVERAGE PERFORMANCE OF THE SEARCH ALGORITHMDIFFERENT
SOURCE RELEASERATES, SOURCE LOCATIONO, 7)

Release Number of Success
rate A  search steps rate [%]
8 49.5 78
12 42.1 94
16 38.2 93

the map of the search area and the searcher position within
the map. The paper develops mathematical models of mea-
surements, it formulates the sequential Bayesian solytion
the form of a Rao-Blackwellised particle filter) and propose
an information driven motion control of the searcher. The
numerical results demonstrate the concept, indicatindh hig
success-rates in comparison with random walk.

There are many areas for further research and improvements
of the concepts introduces in this paper. One direction is to
explore the potential benefits of analytical results atdéa
from the percolation theory in carrying out olfactory sdmarc
Another is to investigate more efficient particle filters for
source parameter estimation (being a deterministic pattief
state space). Finally, the search strategies based onpiaulti
steps ahead (rather than myopic search) are expected to
improve the performance in a domain with obstacles.

APPENDIX

An approximate model of mean concentration, independent
of the grid structure, was introduced in $ec.]I-C. This mode
is a solution of the Laplace equatidd (1) for a circular skarc
area in the absence of obstacles, with a boundary condition
O(r = Ry) = 0, but using different values of parameters.
More specifically, the obstacles in the search area are-incor
porated in this model vilomogenizatior{volume/ensemble
averaging) of the diffusion equation (similar to the effeet
media approach [26][]27]), so thafl (1) is replaced with

D A(#) = Apd(x — X,y —Y), (46)

where D is the re-scaled diffusivity that accounts for such a
homogenization, an¢y) is the time/ensemble averaged tracer
concentration. The new (often called effective) diffusiv is
related to 'unobstructed’ diffusivityD, of () via the formula

D = f.Dy. The scaling parametey < f. < 1 (known

as tortuosity [[14], [[28]) describes the effect of obstacles
(their shape and packing density [14], [27]). According to
(44), the decrease of the effective diffusivity of the tmace
due to the presence of obstacles has the same effect as an
appropriate increase of source release-rate fi.es Ao/ f.),

with unchanged diffusivity in[(46) (i.eD = D), where pa-
rametersDg, Ay correspond to their values in an unobstructed
space, se€_[1). We arrive at a conclusion that the effect of
obstacles can be approximately incorporated with impi@tis
(overestimation) of the source release-rate, without dfece

on the source position. Since the main goal of the search
algorithm is to find the source, then such inaccuracy in sglea
rate estimation becomes irrelevant for the performance of
the algorithm. This means that as the first approximation for



adopted measurements model we can still uske (46) with knowel

diffusivity D = D, and some unknowrd. Estimation of

Ay (if required) can be implemented retrospectively based O
a theoretical model forf. [28]). For the lattice models an

expression forf,. can be derived analytically by employing the
framework of percolation theory, resulting in the expressi

fe = (1 —p/p.)*, wherep. = 1/2 (percolation threshold

(8]

on square lattice)p is the fraction of missing links in the [

incomplete square lattice and = 1.30 [13], [14]. If the

number of missing links is small, we can adopt approximatiqro]

fer1landA =~ Ay.

In line with the above comments we will use [46) as @y
foundation for the measurements model that is independent o
the structure of the search domain. The solutior_ of (46) forl¥]

tracer source located at the center of circe £ Y = 0), is
given by [29]:
A * 2
(0) = 3 logl(=2")/ Ry, (47)

wherez = x + iy is the complex coordinate and" is its

[13]

[14]
[15]

[16]

complex-conjugate. To find the solution for configurationﬁﬂ

other than the circular domain with the source in the cemiee,

employ the property of conformal invariance of the Laplace
equation [[29]. We illustrate this method with a source piacd!®l
inside the circular domain, but away from its centre (that igg)

at coordinate$X,Y) s.t. VX2 +Y? < Ry). If we can find a
conformal transformatiow(z) that maps an arbitrary position
of the source X, Y") back to the center of the circular domain,

then we can still use the solutidn {47), but with the substitu

[20]

z — w(z). Therefore, for an arbitrary position of the source, |

inside the search aredX?2 + Y2 < R, we can write

(0) = (r5/2) log[(ww*)/ Rg]. (48)

[22]

The required conformal transformation is the well-known

Mobius map (se€ [29])

w(z) - Ro(z — Z)

- ZZ* - R¥’ (49)

(23]
[24]

[25]

where Z = X + Y. After straightforward calculations we

arrive at the solution given byl(5) and (6).

[26]

We point out that the model is not restricted to a circulgsy,

search area. According to the theory of analytical fundj@n
conformal mapping to the circle always exists for arbitra

r
simply connected domain, and therefore can be compué

analytically or numerically[[29].
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