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Autonomous search for a diffusive source in an
unknown environment
Branko Ristic, Alex Skvortsov, Andrew Walker†

Abstract—The paper presents an approach to olfactory search
for a diffusive emitting source of tracer (e.g. aerosol, gas) in
an environment with unknown map of randomly placed and
shaped obstacles. The measurements of tracer concentration are
sporadic, noisy and without directional information. The search
domain is discretised and modelled by a finite two-dimensional
lattice. The links is the lattice represent the traversablepaths
for emitted particles and for the searcher. A missing link in the
lattice indicates a blocked paths, due to the walls or obstacles. The
searcher must simultaneously estimate the source parameters,
the map of the search domain and its own location within
the map. The solution is formulated in the sequential Bayesian
framework and implemented as a Rao-Blackwellised particle
filter with information-driven motion control. The numeric al
results demonstrate the concept and its performance.

Index Terms—Olfactory search, Bayesian inference, mapping
and localisation, Rao-Blackwellised particle filter, observer con-
trol, information gain.

I. I NTRODUCTION

The search for an emitting source of particles, chemicals,
odour, or radiation, based on sporadic clues or intermittent
measurements, has attracted a great deal of interest lately. The
topic is important for search and rescue operations with the
goal to localise dangerous pollutants, such as chemical leaks
and radioactive sources. In biology, the search is studied to
model animal bahaviour in search for food or mates [1]–[3].
Bio-inspired search for underwater sources of pollution have
been studied in [4]–[6]. A robot for gas/odour plume tracking
guided by the increase in the concentration gradient has been
proposed in [7]. “Infotaxis” [8] is a search strategy based on
entropy-reduction maximisation which has been developed in
the context of finding a weak source in a turbulent flow (e.g.
drug or leak emitting chemicals, for a comprehensive review
see [9]). Information-gain driven search for radioactive point
sources has been studied in [10]. In all these applications the
search domain is either open (without obstacles) or a precise
map of the search domain (with obstacles) is available.

In this paper we focus on autonomous olfactory search
for a diffusive emitting source of tracer (e.g. aerosol, gas,
heat, moisture) in a domain with randomly placed and shaped
obstacles (forbidden areas), whose structure (the map) is
unknown. The problem is of importance for example in
localisation of dangerous leaks in collapsed buildings, inside
tunnels or mines. The searcher senses in a probabilistic manner
both the structure of the search domain (e.g. the presence or
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absence of obstacles, walls, blocked passages) and the level of
concentration of tracer particles. The objective of the search is
to localise and report the coordinates of the source in a shortest
possible time. This is not a trivial task for several reasons.
First, the emission rate of the source is typically unknown.
Furthermore, the measurements of tracer particle concentration
are sporadic, noisy and without directional information. Since
the structure (map) of the search domain is unknown, the
searcher needs to explore the domain and create its map. The
searcher motion is fully autonomous: it senses the environment
and after processing this uncertain information sequentially
makes decisions on where to move next in order to collect
new measurements. Its motion control, however, is not fully
reliable as it may occasionally fail to execute correctly. The
probabilistic model of searcher motion is assumed known.

In the paper we restrict to the search in a two-dimensional
domain. The coordinates of the searcher initial position, as
well as the border of the search area (relative to the initial
position) are given as input parameters. In order to fulfil
its mission, the searcher has to find the source and report
its coordinates relative to its initial position. This in turn
requires simultaneous estimation at three levels: (1) estimation
of source parameters (its location in 2D and its release
rate); (2) estimation of the map of the search area and (3)
estimation of the searcher position within the estimated map.
Estimation at levels (2) and (3) has been studied extensively in
robotics under the term grid-basedsimultaneous localisation
and mapping(SLAM) [11]. The primary mission in all SLAM
publications is an accurate mapping of the area. The primary
mission of our searcher, however, is to localise the source,
while SLAM is only a necessary component of the solution.

The only related work which deals with olfactory search in
an unknown structured environment is [12]. While this paper
presents a plethora of experimental results, the algorithms are
based on heuristics. Our approach, however, is theoretically
sound in the sense that its mathematical models are precisely
defined, estimation is carried out in the sequential Bayesian
framework and the searcher motion control is driven by
information gain.

The search domain is discretised, as for example in [4], and
modelled by a finite two-dimensional lattice. With sufficiently
fine resolution of the lattice, the emitting source can be
considered to be in one of the nodes of the lattice. The links
(bonds, edges) of the lattice represent the traversable paths for
emitted particles (tracer) and for the searcher. Missing links in
the lattice indicate blocked paths due to the walls or obstacles.
This is a very general model applicable to searches at various
scales, from inside buildings and tunnels, to within cells of
living organisms [2]. The percentage of missing links in the
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lattice is assumed to be above the percolation thresholdpc
(for the adopted lattice structurepc = 1/2 [13], [14]) so that
long-range connectivity is satisfied [13]. Using the absorbing
Markov chains technique [15], we can compute exactly the
mean concentration level in any node of the lattice, that is at
any point of the search domain with obstacles.

Since the structure (map) of the search domain is unknown,
the searcher must rely on a theoretical model of concentration
measurement which is independent of the this map. Such a
model is derived in the paper in the analytic form and used in
the search.

The search itself consist of algorithms for sequential esti-
mation and motion control. We adopt the framework of op-
timal sequential Bayesian estimation with information-driven
motion control. Implementation is carried out using a Rao-
Blackwellised particle filter.

The paper is organised as follows. Mathematical models of
measurements and searcher motion are described in Sec.II.
The olfactory search problem is formulated and its concep-
tual solution provided in Sec.III. Full technical details of
the proposed search algorithm are presented in Sec.IV, with
numerical results given in Sec.V. Finally, conclusions of this
study are summarised in Sec. VI.

II. M ODELLING

A. Model of environment

The concentration of a tracer at any point of the search
domain is governed by the diffusive equation, which in the
steady state reduces to the Laplace equation [16]:

D0 ∆θ = A0 δ(x −X,y − Y ). (1)

Here D0 is the diffusion coefficient of tracer in the envi-
ronment,∆ is the Laplace operator,θ is the mean (time-
averaged) tracer concentration,δ is the Dirac delta function,
A0 is the release-rate of the tracer source, andX,Y are
the coordinates of the source in a two-dimensional Cartesian
coordinate system. For convenience we adopt a circular search
domain of radiusR0, centred at the origin of the coordi-
nate system, that is for every point inside the search area,
r =

√

x2 + y2 ≤ R0. Assuming that the tracer source is
undetectable outside the search domain, we can impose the
absorbing boundary conditionθ(r = R0) = 0. The traditional
approach to the computation of the tracer concentrationθ at
every point of the search domain, is via analytical or numerical
solution of (1). This, however, is a non-trivial task when the
search domain is a structure of complex topology (due to
obstacles, compartments walls, random openings, etc).

We therefore adopt an alternative approach, where the
continuous model of the tracer diffusion process is replaced
with a random walk on a square lattice, adopted as a discrete
model of the search area. Discretisation is illustrated in Fig.1
for a search area centred at the origin of the coordinate system,
with the radiusR0 = 9. The length of each link (edge, bond)
in the lattice determines the resolution of discretisation, and in
this example is adopted as a unit length. The source, assumed
to be located at one of the nodes of the lattice, is emitting
particles which travel through the lattice according to the
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Figure 1. Search area discretisation: the complete grid, with the length of
each link equal1. The centre of the search area is in(0, 0), its radius is
R0 = 9.

random walk model [17]. The obstacles in the search domain
(the regions through which the tracer cannot pass) are simply
modelled as missing links (or clusters of missing links) in the
square lattice. Fig.2 shows an example of such a model: this
incomplete lattice is obtained by removing fractionp = 0.35
of the links in the complete lattice shown in Fig.1. Note
that all nodes in the incomplete lattice (grid) are connected.
On average this will be the case if the fraction of missing
links in the incomplete grid of Fig.2 is below the percolation
thresholdpc; above the percolation threshold (p > pc) the
lattice becomes fragmented. The framework of percolation
theory enables analytical description of statistical properties
of such a lattice [13], [14].
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Figure 2. A model of search area with obstacles: the missing links of the
complete graph of Fig.1 represent blocked passages (due to the walls, closed
doors, etc) for moving particles. This incomplete grid is obtained by removing
fraction p = 0.35 of the links from the complete graph.
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B. Model of tracer distribution

This section explains how to compute the mean concen-
tration of tracer particles in each node of the incomplete grid
(such as the one shown in Fig.2) which represents a discretised
model of the search area with obstacles.

For a given incomplete grid, the mean concentration can be
computed using the absorbing Markov chain technique [15].
Neglecting the spatial approximation of the search domain
(due to discretisation) and under the assumption that the
distribution of particles has reached the steady state, the
absorbing Markov chain technique provides an exact solution
for the quantity of source material at each location.

We can regard the random walk of tracer particles through
the incomplete grid (e.g. Fig.2) as a Markov chain whose
states are the nodes of the grid. The Markov chain is specified
by the transition matrixT; each element of this matrix is
the probability of transition from statesi to statesj (i.e. a
particle move from nodei to nodej): Tij = P{sj|si}. How
to constructT given the incomplete grid? First note that we
distinguish two types of states in this Markov chain: absorbing
states (corresponding to the nodes on the boundary of the grid)
and transient states. For an absorbing statesi, Tii = 1 and
Tij = 0, if j 6= i. Suppose a transient statesi corresponds to
nodei in the incomplete grid, which has connections (links)
with nodesj1, . . . , jm, where for a square gridm ≤ 4. Then
Tij1 = · · · = Tijm = 1/m andTij = 0 for j /∈ {j1, . . . , jm}.

Suppose there arer absorbing states andt transient states.
If we order the states so that the absorbing states come first
(before the transient states), then the transition matrix takes
the canonical form:

T =

[

I 0

R Q

]

, (2)

whereI is r × r identity matrix,Q is the t × t matrix that
describes transitions between transient states,R is a t × r
matrix that describes the transitions from transient to absorbing
states and0 is anr×t matrix of zeros. The fundamental matrix
of the absorbing Markov chain [15],

F = (I−Q)−1, (3)

represents the expected number of visits to a transient state
sj starting from a transient statesi (before being absorbed).
This matrix will be used in simulations to compute the mean
particle concentration in any node of the incomplete grid.
Suppose an emitting source is placed at nodei, which is
not on the boundary. The source is releasing tracer particles
at a constant rateA0. Then the expected concentration of
tracer particles in any other nodej of the incomplete grid
(which is not on the boundary) is given byθj = A0 · Fij .
The concentration scales linearly with the release rateA0 as
a direct consequence of the linearity of Laplace equation (1).

Fig.3 shows the mean concentration of tracer particles for
the search area modelled by incomplete grid of Fig.2, with the
source placed at(X,Y ) = (0, 7) and withA0 = 12. Notice
how the concentration depends on the distance from the source
and the structure of the grid, plotted in Fig.2.
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Figure 3. Mean concentration of tracer particles for the search area modelled
by incomplete graph of Fig.2 with source placed at(X, Y ) = (0, 7) with
A0 = 12 (darker cells indicate higher concentration)

C. Sensor models and motion model

Two types of measurements are collected by the searcher.
Sensor 1 measures the concentration of tracer particles as a
count of particles received during the sampling time. Assum-
ing the so-called ’dilution’ limit (limit of low concentrations)
the tracer fluctuations follow the Poisson distribution [8], that
is a concentration measurement at nodej of the grid is a
random sample drawn from

n ∼ P(n;λ) = λn

n!
e−λ (4)

whereλ = θj = A0 ·Fij . The Poisson distribution mimics the
intermittency of concentration measurements [8].

The searcher sequentially estimates the source parameters
without knowing the map of the search area. Hence the mea-
surement model based on the mean concentrationλ = A0 ·Fij

cannot be used in estimation (recall that matrixF is formed
based on the structure of the incomplete grid). Assuming that
the fraction of missing links in the incomplete grid is smaller
than the percolation thresholdpc, the expected concentration
of tracer particles in any nodej of the incomplete grid can
be computed approximately using the property of conformal
invariance of the Laplace equation (see Appendix for details).
Suppose the source of release rateA0 is placed at a node of the
grid, positioned at coordinates(X,Y ). Then the mean (time
and ensemble averaged) concentration at nodej, positioned at
(xj , yj) can be approximated as:

〈θ〉j ≈ −
A

2
log(R2) (5)

whereA = A0/fc, (fc is a constant,0 < fc < 1, which
depends on the fraction of missing links in the incomplete
grid, see Appendix), and

R2 = R2
0

(xj −X)2 + (yj − Y )2

(xjY − yjX)2 + (R2
0 − xjX − yjY )2

. (6)

Note that this model is independent of the structure of the
incomplete grid. In summary, estimation will be carried out
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using Sensor 1 measurement model based on (4), where mean
λ = 〈θ〉j is approximated by (5), (6). The actual concentration
measurements will be simulated according to (4), but with
λ = θj = A0 ·Fij .

The searcher moves and explores the search domain in
order to find the source. The source parameter estimation is
carried out using the map-independent measurement model
(5), which does not require discretisation of the search domain
on a square lattice (as in Fig.1). Nevertheless, we keep
discretisation for the searcher in order to model its motion
paths and to facilitate its grid-based SLAM functionality.Thus
we assume that the searcher travels within the search area
along the paths represented by the links of the incomplete grid
as in Fig.2. As it travels, it stops at the nodes along its path
to sense the environment, i.e. to collect measurements. Sensor
2 is a simple binary detector of the presence or absence of
the links (paths) visible from the node in which the searcher
is currently placed. It reports on the presence/absence of the
primary andsecondaryneighbouring links.

A link in a grid of Fig.2, is defined by a quadruple
(x1, y1, x2, y2), where(x1, y2) and(x2, y2) are the coordinates
of the nodes it connects. In order to explain what we mean
by primary and secondary links, consider for example the
node at location(−3,−4) indicated by ’o’ in Fig.2. The
primary observable links from this node are the connecting
links towards East, West, up and down from(−3,−4), i.e.
ℓ1 = (−3,−4,−2,−4), ℓ2 = (−3,−4,−4,−4), ℓ3 =
(−3,−4,−3,−3), andℓ4 = (−3,−4,−3,−5), i.e. . The sta-
tus of link ℓ, m(ℓ), takes values from{0, 1}, wherem(ℓ) = 1
means that linkℓ exists andm(ℓ) = 0 is the opposite.
According to Fig.2,m(ℓ1) = 1, m(ℓ2) = 1, m(ℓ3) = 0,
m(ℓ4) = 1. The secondary observable links from the node
at (−3,−4) in Fig.2 represent second neighbouring links in
direction of East, West, up and down from(−1,−1), that
is ℓ5 = (−2,−4,−1,−4), ℓ6 = (−4,−4,−5,−4), ℓ7 =
(−3,−3,−3,−2), andℓ8 = (−3,−5,−3,−6). According to
Fig.2,m(ℓ5) = 1, m(ℓ6) = 0, m(ℓ7) = 0, m(ℓ8) = 1.

Let an observation (supplied by sensor 2) about the presence
or absence of a linkℓ, be a binary valuez(ℓ) ∈ {0, 1},
wherez(ℓ) = 0 means linkℓ is absent andz(ℓ) = 1 is the
opposite. The performance od sensor 2 can be described by
two detection matrices, one for the primary links, the other
for secondary links. Each detection matrixΠ has a form

Π =

[

P (z = 0|m = 0) P (z = 0|m = 1)
P (z = 1|m = 0) P (z = 1|m = 1)

]

. (7)

whereP (z = 1|m = 1) = pd andP (z = 1|m = 0) = pfa are
the probability of correct detection and the probability offalse
detectionpfa, respectively. The columns of matrixΠ add up
to 1, and hence (7) can be written as:

Π =

[

1− pfa 1− pd
pfa pd

]

. (8)

Suppose the searcher is in nodei at discrete-timek − 1.
Let the set of admissible controls vectors for the next move
be defined asUk = {·, ↑,→, ↓,←}, meaning that the searcher
can stay where it is, or move one unit length up, right, down
or left. After processing measurements from its sensors, the

searcher decides to choose controlu∗
k ∈ Uk and hence to be at

time k at nodej. This control, however, is executed correctly
only with probability1−pe. Due to control noise or unmodeled
exogenous effects [11], with probabilitype the searcher will
actually execute controlu′k ∈ Uk \ {u∗

k}.

III. T HE PROBLEM AND ITS CONCEPTUAL SOLUTION

The searcher has at its disposal the probabilistic models of
sensor measurements and dynamic models. Prior knowledge
also includes: (1) the coordinates of its initial position;(2) the
length of each link in the square lattice; (3) the boundary of
the circular search area (defined by its centre and radius). The
described prior translates into knowledge of the complete grid
such as the one shown in Fig.1. The searcher cannot move
outside the complete grid.

The objective of the searcher is to estimate in the shortest
possible time the coordinates of the emitting source, as well
as the partial map describing the path from its starting (entry)
point to the estimated location of the source. This partial map
is important, for example, in order to guide the rescue team
to the source or if the searcher has to retreat to its starting
position.

A. Sequential Bayesian estimation

The described problem can be cast in the sequential
Bayesian estimation framework as a nonlinear filtering prob-
lem. Let us first define the state vector, which consists of three
parts:

1) The coordinates of the searcher position at discrete-time
k = 1, 2, . . . are denoted bypk = [xk yk]

⊺.
2) The status (presence/absence) of each link in the com-

plete grid (such as the one shown in Fig.1). The status of
link ℓj, wherej = 1, . . . , L, andL is the total number
of links in the complete grid, ism(ℓj) = mj ∈ {0, 1}.
The notationP (mj = 1) refers to the probability that
the link is present. The map at timek is fully specified
by vectormk = [m1,k, . . . ,mL,k]

⊺. The time index is
introduced because we allow the map of the search area
to occasionally change, e.g. an open door can close. The
assumption is that the statuses of links are mutually
independent, i.e.mj,k is independent frommi,k for
i 6= j.

3) The parameter vector of the source is denoted bys =
[X Y A]⊺.

The complete state vector is then defined as

yk = [p⊺

k m
⊺

k s⊺]⊺.

Dynamics of the stateyk is described by two transitional
densities:p(mk|mk−1) specifies the evolution of the map over
time, whilep(pk|pk−1,uk) characterises the searcher motion
model. The observation models of the searcher are specified
by two likelihood functions:g1(nk|pk,mk, s) characterises
sensor 1, which provides the count of particlesnk at pk from
the source in states through the mapmk; g2(zk|pk,mk)
refers to sensor 2 and describes the observationzk of the status
of the links inmk visible from the searcher in locationpk.
Let us denote observations and controls at timek by a vector
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ζk = [nk z
⊺

k ]
⊺. Finally, the prior probability density function

(PDF) of the state is denoted byp(y0).
The goal in the sequential Bayesian framework is to es-

timate any subset or property of the sequence of states
y0:k := (y0, . . . ,yk) given observation sequenceζ1:k :=
(ζ1, . . . , ζk) and the control sequenceu1:k := (u1, . . . ,uk),
which is completely specified by the joint posterior distribu-
tion p(y0:k|ζ1:k,u1:k). This posterior satisfies the following
recursion:

p(y0:k|ζ1:k,u1:k) ∝
g(ζk|yk)p(yk|yk−1,uk)p(y0:k−1|ζ1:k−1,u1:k−1) (9)

where

p(yk|yk−1,uk) = p(mk|mk−1) p(pk|pk−1,uk) (10)

is the transitional density, and

g(ζk|yk) = g1(nk|pk,mk, s) g2(zk|pk,mk) (11)

is the measurement likelihood function.
In general it is impossible to solve analytically the re-

cursive equation (9). Instead we will formulate a numerical
approximation using the sequential Monte Carlo method [18].
Before going into details, notice that factorization expressed
by (10) and (11) imposes a structure which can be conve-
niently represented by a dynamic Bayesian network (DBN)
[19] shown in Fig.4. The circles in Fig.4 represent random
variables: white circles are hidden variables; gray circles are
observed variables. Arrows indicate dependencies. The arrows
indicated by dashed lines are explained next.
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Figure 4. The dynamic Bayesian network representing the dependency
between the random variables which feature in the describedinference
problem

Count measurementnk depends on the mapmk, hence
the likelihood of count measurement is formulated as
g1(nk|pk,mk, s). The searcher, however, does not know the
map (it estimates it only partially as it travels through the
search area) and hence we have introduced the approximate
measurement model expressed by (4)-(6). The searcher will

therefore process count observationsnk using the likeli-
hood function which is independent ofmk, and denoted by
g̃1(nk|pk, s), rather thang1(nk|pk,mk, s). We indicate this
fact by drawing the arrow frommk to nk in Fig.4 by a dashed
line.

The computation of the posterior PDF for a structured com-
plex system such as the one shown in Fig.4 can be factorised
and consequently made computationally and statistically more
efficient. Technical details will be given in Sec.IV.

B. Information driven motion control

After processing the measurements received at timek − 1,
the searcher needs to select the next control vectoruk

which will change its position topk ∼ p(pk|pk−1,uk). The
problem of selectinguk can be formulated as a partially-
observed Markov decision process [20], whose elements
are: (1) the set of admissible control vectorsUk; (2) the
current information state, expressed by the predicted PDF
p(yk|ζ1:k−1,u1:k−1,uk), where uk ∈ Uk; (3) the reward
function associated with each controluk ∈ Uk. In the paper we
adopt motion control based on a single step ahead strategy; this
myopic approach is suboptimal in the presence of randomly
missing links, but is computationally easier to implement and
faster to run. The control vector is then selected as:

uk = arg max
v∈Uk

E{D(v, p(yk |ζ1:k−1,u1:k−1,v), ζk(v))}
(12)

whereD(u, p, ζ) is the reward function. Note that the reward
depends on future measurementζk = [nk z

⊺

k]
⊺, which would

be acquired after controlu ∈ Uk had been applied. Since the
decision has to be made before the actual control is applied,
the expectationE is taken in (12) with respect to the prior
measurements PDF.

Considering that the primary mission of the search is
source localisation (map estimation is of secondary impor-
tance), the reward function at timek is adopted as the
information gain between: (1) the predicted PDF over the
state subspace(s,pk) and (2) the updated PDF over(s,pk),
using the count measurementnk. The two distributions are
denotedπ0(s,pk|uk) = p(s|n1:k−1,u1:k)p(pk|pk−1,uk) and
π1(s,pk|nk,uk) = ξ g̃1(nk|pk, s)π0(s,pk|uk), respectively,
whereξ is a normalisation constant. The information gain be-
tween the two distributions is measured using the Bhattacharya
distance [21]. The reward function is thus adopted as:

D(uk) = −2 log
∫

√

π1(s,pk|nk,uk) · π0(s,pk|uk) ds dpk

(13)
where we dropped unnecessary arguments in notation forD.

IV. T HE SEARCH ALGORITHM

The proposed search algorithm, formulated as a DBN with
observer control, can be implemented efficiently as a Rao-
Blackwellised particle filter (RBPF) [22] with sensor control.
The idea of the RBPF is as follows. Suppose it is possible to
divide the components of the hidden state vectoryk into two
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groups,αk andβk, such that the following two conditions are
satisfied:

C-1: p(yk|yk−1,uk) = p(αk|βk−1:k,αk−1)·p(βk|βk−1,uk)

C-2: the conditional posterior distribution
p(αk| β0:k, ζ1:k, u1:k) is analytically tractable.

Then we need only to estimate the posterior
p(β0:k|ζ1:k,u1:k), meaning that we reduced the dimension
of the space in which Monte Carlo estimation needs to be
carried out, from dim(yk) to dim(βk). As argued in [22], this
potentially improves computational and statistical efficiency
of the particle filter.

In the described DBN, shown in Fig,4, in order to satisfy
conditions C-1 and C-2, the state vectoryk can be partitioned
as follows:

αk = [m⊺

k A]⊺ (14)

βk = [p⊺

k X Y ]⊺. (15)

We are interested only in the filtering posterior density, which
can now be factorised as follows:

p(αk,β0:k|ζ1:k,u1:k) =

p(αk|β0:k, ζ1:k,u1:k) · p(β0:k|ζ1:k,u1:k) (16)

The PDF p(β0:k|ζ1:k,u1:k) is approximated by a random
sample{β(i)

0:k}Ni=1. Subsequently one can compute analytically
(for each sampleβ(i)

0:k):

p(αk|β(i)
0:k, n1:k, z1:k,u1:k) =

p(mk|z1:k,β(i)
0:k) · p(A|n1:k,β

(i)
0:k), (17)

where

• p(mk|z1:k,β(i)
0:k) = qk is a vector of probabilities of

existence for each link in the random grid and
• p(A|n1:k,β

(i)
0:k) is approximated by a Gamma distribution

with shape parameterηk and scale parameterθk, i.e.
G (A; ηk, θk).

Hence each particle corresponds to a set:
(

β
(i)
1:k,qk, ηk, θk

)

(18)

where qk, ηk, θk are the sufficient statistics of
p(αk|β(i)

0:k, n1:k, z1:k,u1:k). Keep in mind thatqk, ηk, θk
depend on a particular sequence (particle)β

(i)
0:k.

A. Recursive formulae for sufficient statistics

Let us first discuss the analytic recursive formula for the
computation ofqk, following the ideas of the grid-based
SLAM [11]. Note that

qk =p(mk|z1:k,β(i)
0:k) =

g2(zk|mk,β
(i)
k ) p(mk|z1:k−1,β

(i)
0:k−1)

∑

mk
g2(zk|mk,β

(i)
k ) p(mk|z1:k−1,β

(i)
0:k−1)

(19)

where

p(mk|z1:k−1,β
(i)
0:k−1) =

∑

mk−1

p(mk|mk−1) p(mk−1|z1:k−1,β
(i)
0:k−1) (20)

The update of probability vectorqk is then carried out
as follows. Recall from (15) that particleβ(i)

k specifies the
location of the searcher at timek, p(i)

k = [x
(i)
k y

(i)
k ]⊺. Each

component of vectorzk is then an observation of existence
of a primary or a secondary link from locationp(i)

k . Let
qj,k−1 be a component of vectorqk−1, denoting the posterior
probability that link ℓj exists at timek − 1, i.e. qj,k−1 =

p(mj,k−1|z1:k−1,β
(i)
0:k−1). Recall also that since the link sta-

tuses are assumed independent, thenqk−1 =
∏L

j=1 qj,k−1.
According to (20), linkj existence probability is predicted as:

qj,k|k−1 = p(mj,k = 1|mj,k−1 = 0)(1− qj,k−1)+

p(mj,k = 1|mj.k−1 = 1)qj,k−1 (21)

Let z be a component of vectorzk which refers to linkℓj,
according to the current position of the searcher,p

(i)
k . Then

based on (19) we update the linkj existence probability as:

qj,k =















pd qj,k|k−1

pd qj,k|k−1+pfa(1−qj,k|k−1)
if z = 1

(1−pd) qj,k|k−1

(1−pd) qj,k|k−1+(1−pfa)(1−qj,k|k−1)
if z = 0

(22)

wherepd andpfa, introduced in (8), are the elements of the
appropriate detectionΠ matrix (primary or secondary) of (8).
Equations (19)-(22) can be summarised as:

qk = ψ(qk−1,β
(i)
k , zk) (23)

Let us describe next the analytic recursion for the update of
the parametersηk andθk of (18). At timek− 1, the posterior
of emission rateA is modeled by a gamma distribution:

A|n1:k−1,β
(i)
0:k−1 ∼ G (A; ηk−1, θk−1)) . (24)

Sensor 1 provides at timek a count measurementnk, which
plays the key role in the update of parametersηk−1 and
θk−1. Recall that the likelihood function of this measurement,
g̃1(nk|β(i)

k , A) is a Poisson distribution with parameter (mean)
λ
(i)
k−1, rather thanA. Fortunately,λ(i)k−1 is linearly related to

emission rateA, that is

λ
(i)
k = A · c(β(i)

k )

where the constantc(β(i)
k ) is always positive and given by

c
(i)
k = −1

2

(

2 logR0+

log
(x

(i)
k −X(i))2 + (y

(i)
k − Y (i))2

(x
(i)
k Y (i) − y(i)k X(i))2 + (R2

0 − x
(i)
k X(i) − y(i)k Y (i))2

)

.

(25)

with X(i) andY (i), according to (15), being the components
of particleβ(i)

k .
In the proposed algorithm for the update of parametersηk−1

and θk−1 we use the following two properties of Gamma
distribution:
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1) Scaling property [23]: ifX ∼ G(η, θ) then for anyc > 0,
cX ∼ G(η, cθ).

2) Gamma distribution is the conjugate prior of Poisson
distributions [24]: ifλ ∼ G(η, θ) is a prior distribution
and n is a sample from the Poisson distribution with
parameterλ, then the posterior is

λ ∼ G(η + n, θ/(1 + θ)).

Givenβ(i)
k we can compute constantc(i)k of (25) and express

the prior distribution ofλ(i)k−1 as:

λ
(i)
k−1|n1:k−1,β

(i)
0:k ∼ G

(

λ; ηk−1, c
(i)
k · θk−1

)

(26)

Using measurementnk and the conjugate prior property, the
posterior distribution is:

λ
(i)
k |n1:k,β

(i)
0:k ∼ G

(

λ; ηk−1 + nk,
c
(i)
k θk−1

1 + c
(i)
k θk−1

)

(27)

Since we are after the updated parameters of Gamma distribu-
tion of A (rather thanλ(i)k ), again using the scaling property
we have:

A|n1:k,β
(i)
0:k ∼ G

(

A; ηk−1 + nk,
θk−1

1 + c
(i)
k θk−1

)

(28)

We summarise from (24) and (28) the analytic expressions for
the update ofηk andθk :

ηk = ηk−1 + nk (29)

θk =
θk−1

1 + c
(i)
k θk−1

(30)

B. Importance weights

Recursive estimation ofp(β0:k|ζ1:k,u1:k) is implemented
using a particle filter. If we use the transitional prior as the
proposal distribution. i.e.

q(β0:k|ζ1:k,u1:k−1) =

p(βk|βk−1,uk) p(β0:k−1|ζ1:k−1,u1:k−1) (31)

the importance weights can be computed recursively as follows
[22]:

wk ∝ p(ζk|ζ1:k−1,β0:k) (32)

For our problem expression (32) can be evaluated as:

wk ∝
∫

p(ζk,αk|ζ1:k−1,β0:k) dαk (33)

=

∫

g̃1(nk|A,βk) p(A|n1:k−1,β0:k−1) dA×
∑

mk

g2(zk|mk,pk) p(mk|z1:k−1,β0:k−1) (34)

where p(A|n1:k−1,β0:k−1) is given by (24) and
p(mk|z1:k−1,β0:k−1) = qk|k−1 by (20), i.e.

qk|k−1 =
∑

mk−1

p(mk|mk−1)qk−1.

The components of vectorqk|k−1, i.e. qj,k|k−1, were specified
by (21). The integral which features in (34) can also be
computed analytically. This integral equals:

I =

∫

g̃1(nk|A,βk) p(A|n1:k−1,β0:k−1) dA (35)

=

∫

P(nk;λk = c(βk) · A) G(A; ηk−1, θk−1)dA (36)

whereP(n;λ) is the Poisson distribution introduced in (4).
Recall the explanation presented in Sec.IV-A about the update
of the parameters of the Gamma distribution, summarised by
(26)-(28). Effectively we have shown there that:

G
(

A; ηk−1 + nk,
θk−1

1 + c
(i)
k θk−1

)

=

P(nk;λk = c(βk) ·A) G(A; ηk−1, θk−1)
∫

P(nk;λk = c(βk) ·A) G(A; ηk−1, θk−1)dA
(37)

where the integral in the denominator isI, see (36). Hence,
the integral can be expressed as:

I =
P(nk|λk = c(βk) ·A) G(A; ηk−1, θk−1)

G(A; ηk−1 + nk, θk−1/(1 + c(βk)θk−1))
(38)

and is computed for an arbitrary chosen value ofA > 0. Based
on (34), let us summarise the expression for an unnormalised
importance weight as:

w̃k = ϕ(βk,qk−1, ηk−1, θk−1, nk, zk) (39)

Importance weights determine in a probabilistic manner which
particles will survive (and possibly multiply) during the resam-
pling step of the RBPF.

C. Information gain

Suppose the posterior distribution at timek − 1,
p(yk−1|ζ1:k−1,u1:k−1), is approximated by a set of particles:

Yk−1 =
{(

β
(i)
k−1,q

(i)
k−1, η

(i)
k−1, θ

(i)
k−1

)}N

i=1
, (40)

where random sampleβ(i)
k−1 consists of the searcher position

p
(i)
k−1 = [x

(i)
k−1 y

(i)
k−1]

⊺ and the position of the source

p
(i)
s = [X(i) Y (i)]⊺, see (15). The weights of the particles

in Yk−1 are equal, because sensor control is carried out after
resampling, i.e.w(i)

k−1 = 1/N , i = 1, . . . , N .
The question is how to compute the information gain (13)

for eachu ∈ Uk, based on particlesYk−1. We adopt theideal
measurementapproximation for this, that is, in hypothesizing
the future count measurement (resulting from actionu), we
assume: (1) actionu will be carried out correctly, that is the
transitional densityp(pk|pk−1,uk) will be replaced by deter-
ministic mapping:pk = pk−1 +uk, and (2) the measurement
count will be equal to the mean of̃g1(nk|A,βk), that isλk
(rounded off to the nearest integer).

Since we are after the expected value of the gain, that
is E{D(u)}, we will create an ensemble of “future ideal
measurements”{n(j)

k }Mj=1. Expectation is then approximated
by a sample mean, i.e.

E{D(u)} ≈ 1

M

M
∑

j=1

D(j)(u)
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whereD(j)(u) was computed usingn(j)
k .

The ensemble of “future ideal measurements”{n(j)
k }Mj=1 is

created as follows. For each actionu, choose at random a
set ofM particle indicesij ∈ {1, . . . , N}, j = 1, . . . ,M .
Action u is then expected to move the searcher to location
p
(ij)
k = p

(ij)
k−1+u. Then a “future ideal measurement” isn(j)

k =

⌊A(ij) · c(ij)⌉, where c(ij) as a function ofp(ij)
k ,p

(ij)
s was

defined by (25),A(ij) ∼ G(A; ηk−1, θk−1), and ⌊·⌉ denotes
the nearest integer function.

It remains to explain how to compute the gainD(j)(u)

based onn(j)
k . Distribution π0(s,pk|uk), which features in

(13), can be approximated using the particle setYk−1 as
follows:

πo(s,pk,u) ≈ G(A; ηk−1, θk−1)

N
∑

i=1

w
(i)
k−1δ(ps−p(i)

s ,pk−p(i)
k )

(41)
wherep(i)

k ∼ p(pk|p(i)
k−1,u). The updated distribution is

π1(s,pk|u, n(j)
k ) =

g̃1(n
(j)
k |pk,ps, A)πo(s,pk|u)

∫

g̃1(n
(j)
k |pk,ps, A)πo(s,pk|u)dsdpk

. (42)

Substitution of (41) and (42) into (13) leads to:

D(j)(u) ≈ −2 log
∑N

i=1 w
(i)
k−1J (i)(n

(j)
k )

[

∑N
i=1 w

(i)
k−1I(i)(n

(j)
k )
]1/2

(43)

whereI(i)(nk) is computed via (38) and

J (i)(nk) =

∫

[

P(nk;λ
(i)
k = c(β

(i)
k )A)

]1/2

×

G(A; η(i)k−1, θ
(i)
k−1)dA (44)

Integral (44) can be evaluated numerically.

D. Implementation

The pseudo-code of one cycle of the search algorithm is
presented in Algorithm 1. The input consists of the particle
setYk−1, defined by (40). Selection of the control vectoruk

(line 2 of Algorithm 1) is described in Algorithm 2.
Explanation of the steps in Algorithm 1 are described first.

Estimation of the state vector via the RBPF is carried out in
lines 4-18. According to (15), random vectorβ

(i)
k−1 consists of

p
(i)
k−1, X(i) andY (i). Since the source location,(X(i), Y (i)),

is static, only the componentp(i)
k−1 is propagated to future time

k in line 6. In line 7, equation (39) is applied to compute the
unnormalised weights of each particle. The map, represented
by the probability of existence of each link, is updated in line
8, based on the expression (23). The parameters of Gamma
distribution are update in lines 9-11. The weights assigned
to each quadruple(β(i)

k ,q
(i)
k , η

(i)
k , θ

(i)
k ) are normalised in line

14. Resampling of particles is carried out in lines 15-18. The
particles for source positionp(i)

s are not restricted to the grid
nodes and after the resampling step, their diversity is improved
by regularisation [25]. Finally, the output is the particlesetYk.

The selection of a control vector, described by Algorithm 2,
starts with postulating the setUk in line 2. For everyu ∈ Uk,

Algorithm 1 The searcher algorithm
1: Input : Yk−1

2: Run Algorithm 2 to select the control vectoruk

3: Apply control uk and collect measurementszk, nk

4: Yk = ∅; Yk = ∅
5: for i = 1, . . . , N do
6: Draw p

(i)
k ∼ p(pk|p

(i)
k−1,uk)

7: w̃
(i)
k = ϕ(β

(i)
k ,q

(i)
k−1, η

(i)
k−1, θ

(i)
k−1, nk, zk)

8: q
(i)
k = ψ(q

(i)
k−1,β

(i)
k , zk)

9: η
(i)
k = η

(i)
k−1 + nk

10: Compute constantc(i)k as a function ofβ(i)
k using (25)

11: θ
(i)
k = θ

(i)
k−1/(1 + c

(i)
k θ

(i)
k−1)

12: Yk = Yk ∪ {(β
(i)
k ,q

(i)
k , η

(i)
k , θ

(i)
k )}

13: end for
14: w

(i)
k = w̃

(i)
k /

∑N

j=1 w̃
(j)
k , for i = 1, . . . , N

15: for i = 1, . . . , N do
16: Select indexji ∈ {1, . . . , N} with probabilityw(i)

k

17: Yk = Yk ∪ {(β
(ji)
k ,q

(ji)
k , η

(ji)
k , θ

(ji)
k )}

18: end for
19: Output : Yk

the algorithm anticipatesj = 1, . . . ,M future measurements
n
(j)
k (line 9) and accordingly computes a sample of the reward
D(j)(u) (line 14). The expected reward is then a sample mean
(line 16). Finally the optimal one-step ahead control is selected
in line 18.

It has been observed in simulations that one step ahead
control can sometimes lead to situations where the observer
position switches eternally between two or three nodes of the
lattice. In order to overcome this problem, we adopt a heuristic
as follows: if a node has been visited in the last 10 search
steps more than 3 times, the next motion control vector is
selected at random. While a multi-step ahead searcher control
would be preferable than adopted heuristic, it would also be
computationally more demanding. Multi-step ahead searcher
control remains to be explored in future work.

Algorithm 2 Selection of control vector
1: Input : Yk−1

2: Create the set of admissible controlsUk = {·, ↑,→, ↓,←}
3: for everyu ∈ Uk do
4: for j = 1, . . . ,M do
5: Choose at random particle indexij ∈ {1, . . . , N}
6: p

(ij)

k = p
(ij)

k−1 + u;

7: Computec
(ij )

k usingp
(ij)

k andp
(ij)
s via (25)

8: Adopt A(ij) = η
(ij)

k−1 · θ
(ij)

k−1

9: n
(j)
k = ⌊A(ij) · c

(ij)

k ⌉
10: for i = 1, . . . , N do
11: ComputeI(i)(n(j)

k ) via (38)
12: ComputeJ (i)(n

(j)
k ) via (44)

13: end for
14: ComputeD(j)(u) using (43)
15: end for
16: EstimateE{D(u)} as a sample mean of{D(j)(u)}Mj=1

17: end for
18: Select control vectoruk ∈ Uk using (12)
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V. NUMERICAL RESULTS

A. An illustrative run

We applied the described search algorithm to the search area
modelled by the random grid shown in Fig.2. Prior knowledge
available to the searcher is illustrated by Fig.1: the radius of
the search area isR0 = 9; the centre isc = (0, 0) and the
total number of potential links in the complete grid modelling
the search area isL = 572. The parameters of the emitting
source to be estimated are:X = 0, Y = 7 andA0 = 12. The
searcher initial position isp0 = (9,−4).

Dynamic modelp(mk|mk−1) is is a2×2 transitional prob-
ability matrix with diagonal and off-diagonal elements0.999
and0.001, respectively1. Dynamic modelp(pk|pk−1,uk) can
be expressed as:

p(pk|pk−1,uk) =(1− pe)δ(pk − pk−1 + uk)+
∑

v∈Uk\uk

pe
|Uk| − 1

δ(pk − pk−1 + v) (45)

where in simulations we used the valuepe = 0.04.
The parameters of detection matrices, which define the

likelihood functiong2(zk|pk,mk), are as follows: for primary
observable links,pd = 1 and pfa = 0; for secondary
observable linkspd = 0.8 andpfa = 0.1.

The RBPF usedN = 4000 particles withM = 400 samples
used in the averaging of information gain. The particle setY0
at initial time is created as follows:p(i)

0 = p0, for all i =
1, . . . , N particles; the source location vector is drawn from a
uniform distribution over a circle with centrec and radiusR0,
i.e.p(i)

s ∼ UCircle(c,R0)(ps); link existence probabilities are set
to qj,0 = 0.5, for all j = 1, . . . , L links; finally, the parameters
of initial Gamma distributionG(A; η0, θ0) were selected as
η0 = 15 andθ0 = 1.

We terminate the search algorithm when the searcher steps
on the source. At this point we compare the true source
location with the current estimate of the posterior distribution
of the searcher position, approximated by particles{p(i)

k }Ni=1.
If the true source position is contained in the support defined
by {p(i)

k }Ni=1, the search is considered successful.
Fig. 5 illustrates a typical run of the search algorithm. The

true path of the searcher on this run is shown in Fig.5.(a). It
took the searcher53 time steps to reach the source. During the
search, the motion control vector failed to execute correctly on
two occasions. The final estimate of the map (i.e of existing
links of the square lattice) is shown in Fig.5.(b). This figure
shows only the links whose probability of existence is higher
than 0.6. The blue circles in Fig.5.(b) indicate the posterior
distribution of the searcher final position. Its true position,
which is the same as the source position, is included in
the support of this posterior, meaning that the search was
successful. Moreover, on this occasion, the MAP estimate of
the searcher final position coincides with the truth. Fig.5.(c)
shows the measured values of the count numbernk along
the path. As we discussed in introduction, the measurements

1The structure of the search domain must be stable (recall that the count
measurement model is valid for a steady-state), hence the changes in the
statuses of links are very rare.

Table I
THE AVERAGE PERFORMANCE OF THE SEARCH ALGORITHM: DIFFERENT

SOURCE LOCATIONS,A0 = 12

Source Shortest Number of Success
location path length search steps rate [%]

(0, 7) 20 42.1 94
(0, 1) 14 34.0 95
(2,−5) 8 28.8 99

are sporadic, especially in the beginning, when the distance
between the searcher and the source is large: among the first
ten count measurements, only three indicated a non-zero tracer
concentration.

An avi video file, illustrating a single run of the algorithm,
is supplied with the submission of this paper.

B. Monte Carlo runs

The average performance of the search algorithm in the
described scenario has been assessed via Monte Carlo runs. If
the search on a particular run was successful, its corresponding
search time is used in averaging. A run is declared unsuccess-
ful if the source has not been found afterk = 100 discrete-
time steps. We also keep the statistics on the success rate of
the search. The results obtained via averaging over 100 Monte
Carlo runs are presented in Table I for three different locations
of the source, i.e.(X,Y ) = (0, 7), (0, 1), (2,−5). The three
locations correspond to the shortest path distances (from the
searcher initial positionp0 = (9,−4) to the source) of20, 14
and8 unit lengths, respectively. All other parameters were the
same as described above for the illustrative run. As expected,
the results in Table I indicate that the search is quicker and
more reliable (i.e. with a higher success rate) for a source
which is closer to the searcher initial position.

Table II presents the results for a source at location(0, 7)
but with three different values of the source release-rate,i.e.
A0 = 8, 12, 16. The results indicate that the search is quicker
for a source characterised by a higher release rate. The expla-
nation of this trend is as follows. Initially, when the searcher is
far from the source, its measurements of tracer concentration
are very small, typically zero, hence uninformative. During this
phase of the search, the searcher effectively moves according
to a ‘diffusive’ (or random walk) model, which is slower that
the so-called ’ballistic’ movement associated with information
driven search [2]. The random walk phase is longer for a
weaker source, which contributes to the overall longer search
time in this case. As a specific numerical example, we have
also validated that a purely random search never manages
to find the source at(0, 7) in the given time-frame of100
discrete-time steps.

VI. SUMMARY

The paper considers a very difficult problem of autonomous
search for a diffusive point source of tracer in an environment
whose structure is unknown. Sequential estimation and motion
control are carried out in highly uncertain circumstances with
the state space including, in addition to the source parameters,
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Figure 5. An illustration of a single run of the search algorithm: (a) The true
path of the searcher (blue circles); (b) The final estimate ofthe map (existing
links) and the searcher position; (c) measured countsnk over time

Table II
THE AVERAGE PERFORMANCE OF THE SEARCH ALGORITHM: DIFFERENT

SOURCE RELEASE-RATES, SOURCE LOCATION0, 7)

Release Number of Success
rateA0 search steps rate [%]

8 49.5 78
12 42.1 94
16 38.2 93

the map of the search area and the searcher position within
the map. The paper develops mathematical models of mea-
surements, it formulates the sequential Bayesian solution(in
the form of a Rao-Blackwellised particle filter) and proposes
an information driven motion control of the searcher. The
numerical results demonstrate the concept, indicating high
success-rates in comparison with random walk.

There are many areas for further research and improvements
of the concepts introduces in this paper. One direction is to
explore the potential benefits of analytical results available
from the percolation theory in carrying out olfactory search.
Another is to investigate more efficient particle filters for
source parameter estimation (being a deterministic part ofthe
state space). Finally, the search strategies based on multiple
steps ahead (rather than myopic search) are expected to
improve the performance in a domain with obstacles.

APPENDIX

An approximate model of mean concentration, independent
of the grid structure, was introduced in Sec.II-C. This model
is a solution of the Laplace equation (1) for a circular search
area in the absence of obstacles, with a boundary condition
θ(r = R0) = 0, but using different values of parameters.
More specifically, the obstacles in the search area are incor-
porated in this model viahomogenization(volume/ensemble
averaging) of the diffusion equation (similar to the effective
media approach [26], [27]), so that (1) is replaced with

D ∆〈θ〉 = A0δ(x−X, y − Y ), (46)

whereD is the re-scaled diffusivity that accounts for such a
homogenization, and〈θ〉 is the time/ensemble averaged tracer
concentration. The new (often called effective) diffusivity D is
related to ’unobstructed’ diffusivityD0 of (1) via the formula
D = fcD0. The scaling parameter0 ≤ fc ≤ 1 (known
as tortuosity [14], [28]) describes the effect of obstacles
(their shape and packing density [14], [27]). According to
(46), the decrease of the effective diffusivity of the tracer
due to the presence of obstacles has the same effect as an
appropriate increase of source release-rate (i.e.A = A0/fc),
with unchanged diffusivity in (46) (i.e.D = D0), where pa-
rametersD0, A0 correspond to their values in an unobstructed
space, see (1). We arrive at a conclusion that the effect of
obstacles can be approximately incorporated with imprecision
(overestimation) of the source release-rate, without any effect
on the source position. Since the main goal of the search
algorithm is to find the source, then such inaccuracy in release-
rate estimation becomes irrelevant for the performance of
the algorithm. This means that as the first approximation for
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adopted measurements model we can still use (46) with known
diffusivity D = D0 and some unknownA. Estimation of
A0 (if required) can be implemented retrospectively based on
a theoretical model forfc [28]). For the lattice models an
expression forfc can be derived analytically by employing the
framework of percolation theory, resulting in the expression
fc = (1 − p/pc)

α, wherepc = 1/2 (percolation threshold
on square lattice),p is the fraction of missing links in the
incomplete square lattice andα = 1.30 [13], [14]. If the
number of missing links is small, we can adopt approximation
fc ≈ 1 andA ≈ A0.

In line with the above comments we will use (46) as a
foundation for the measurements model that is independent of
the structure of the search domain. The solution of (46) for a
tracer source located at the center of circle (X = Y = 0), is
given by [29]:

〈θ〉 = A

2
log[(zz∗)/R2

0], (47)

where z = x + iy is the complex coordinate andz∗ is its
complex-conjugate. To find the solution for configurations
other than the circular domain with the source in the centre,we
employ the property of conformal invariance of the Laplace
equation [29]. We illustrate this method with a source placed
inside the circular domain, but away from its centre (that is
at coordinates(X,Y ) s.t.

√
X2 + Y 2 < R0). If we can find a

conformal transformationω(z) that maps an arbitrary position
of the source(X,Y ) back to the center of the circular domain,
then we can still use the solution (47), but with the substitution
z → ω(z). Therefore, for an arbitrary position of the source
inside the search area

√
X2 + Y 2 < R0 we can write

〈θ〉 = (κ/2) log[(ww∗)/R2
0]. (48)

The required conformal transformation is the well-known
Möbius map (see [29])

w(z) =
R0(z − Z)
ZZ∗ −R2

0

, (49)

whereZ = X + iY . After straightforward calculations we
arrive at the solution given by (5) and (6).

We point out that the model is not restricted to a circular
search area. According to the theory of analytical functions, a
conformal mapping to the circle always exists for arbitrary
simply connected domain, and therefore can be computed
analytically or numerically [29].
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