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Abstract—We present Lower Bound Tree-RRT (LBT-RRT),
a single-query sampling-based algorithm that is asymptotically
near-optimal. Namely, the solution extracted from LBT-RRT
converges to a solution that is within an approximation factor
of 1+ e of the optimal solution. Our algorithm allows for a
continuous interpolation between the fast RRT algorithm and
the asymptotically optimal RRT* and RRG algorithms. When
the approximation factor is 1 (i.e., no approximation is allowed),
LBT-RRT behaves like RRG. When the approximation factor is
unbounded, LBT-RRT behaves like RRT. In between, LBT-RRT
is shown to produce paths that have higher quality than RRT
would produce and run faster than RRT* would run. This is
done by maintaining a tree which is a sub-graph of the RRG
roadmap and a second, auxiliary graph, which we call the lower-
bound graph. The combination of the two roadmaps, which
is faster to maintain than the roadmap maintained by RRT%,
efficiently guarantees asymptotic near-optimality. We suggest to
use LBT-RRT for high-quality, anytime motion planning. We
demonstrate the performance of the algorithm for scenarios
ranging from 3 to 12 degrees of freedom and show that even for
small approximation factors, the algorithm produces high-quality
solutions (comparable to RRG and RRT¥*) with little running-
time overhead when compared to RRT.

I. INTRODUCTION AND RELATED WORK

Motion planning is a fundamental research topic in robotics
with applications in diverse domains such as surgical planning,
computational biology, autonomous exploration, search-and-
rescue, and warehouse management. Sampling-based planners
such as PRM [1], RRT [2] and their many variants enabled
solving motion-planning problems that had been previously
considered infeasible [3, C.7]. Recently, there is growing
interest in the robotics community in finding high-quality
paths, which turns out to be a non-trivial problem [4], [3].
Quality can be measured in terms of, for example, length,
clearance, smoothness, energy, to mention a few criteria, or
some combination of the above.

A. High-quality planning with sampling-based algorithms

Unfortunately, planners such as RRT and PRM produce
solutions that may be far from optimal [4], [5]. Thus, many
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variants of these algorithms and heuristics were proposed in
order to produce high-quality paths.

Post-processing existing paths: Post-processing an exist-
ing path by applying shortcutting is a common, effective,
approach to increase path quality; see, e.g., [6]. Typically,
two non-consecutive configurations are chosen randomly along
the path. If the two configurations can be connected using
a straight-line segment in the configuration space and this
connection improves the quality of the original path, the
segment replaces the original path that connected the two
configurations. The process is continued iteratively until a
termination condition holds.

Path hybridization: An inherent problem with path post-
processing is that it is local in nature. A path that was
post-processed using shortcutting often remains in the same
homotopy class of the original path. Carefully combining even
a small number of different paths (that may be of low quality)
often enables the construction of a higher-quality path [7].

Online optimization: Changing the sampling strategy [8],
9], [10], [[L1], or the connection scheme to a new mile-
stone [10], [12]] are examples of heuristics proposed to cre-
ate higher-quality solutions. Additional approaches include,
among others, useful cycles [6] and random restarts [[13]].

Asymptotically optimal and near-optimal solutions: In
their seminal work, Karaman and Frazzoli [4] give a rigorous
analysis of the performance of the RRT and PRM algorithms.
They show that with probability one, the algorithms will
not produce the optimal path. By modifying the connection
scheme of a new sample to the existing data structure, they
propose the PRM* and the RRG and RRT* algorithms (vari-
ants of the PRM and RRT algorithms, respectively) all of
which are shown to be asymptotically optimal. Namely, as
the number of samples tends to infinity, the solution obtained
by these algorithms converges to the optimal solution with
probability one. To ensure asymptotic optimality, the number
of nodes each new sample is connected to is proportional to
log(n) (here n is the number of free samples).

As PRM* may produce prohibitively large graphs, recent
work has focused on sparsifying these graphs. This can be
done as a post-processing stage of the PRM* [14], [13]], or as
a modification of PRM* [16]], [[17], [18].

The performance of RRT* can be improved using sev-
eral heuristics that bear resemblance to the lazy approach



used in this work [I19]. Additional heuristics to speed up
the convergence rate of RRT* were presented in RRT*-
SMART [20]. Recently, RRT# [21]] was suggested as an
asymptotically-optimal algorithm with a faster convergence
rate when compared to RRT*. RRT# extends its roadmap in
a similar fashion to RRT* but adds a replanning procedure.
This procedure ensures that the tree rooted at the initial state
contains lowest-cost path information for vertices which have
the potential to be part of the optimal solution. Thus, in con-
trast to RRT* which only performs local rewiring of the search
tree, RRT# efficiently propagates changes to all the relevant
parts of the roadmap. Janson and Pavone [22]] introduced the
asymptotically-optimal Fast Marching Tree algorithm (FMT?*).
The single-query asymptotically-optimal algorithm maintains
a tree as its roadmap. Similarly to PRM*, FMT* samples n
collision-free nodes. It then builds a minimum-cost spanning
tree rooted at the initial configuration over this set of nodes
(see Section [E] for further details). Lazy variants have been
proposed both for PRM* and RRG [23] and for FMT* [24]].

An alternative approach to improve the running times of
these algorithms is to relax the asymptotic optimality to
asymptotic near-optimality. An algorithm is said to be asymp-
totically near-optimal if, given an approximation factor e,
the solution obtained by the algorithm converges to within
a factor of (1 + €) of the optimal solution with probability
one, as the number of samples tends to infinity. Similar to
this work, yet using different methods, Littlefield et al. [25]]
recently presented an asymptotic near-optimal variant of RRT*
for systems with dynamics. Their approach however, requires
setting different parameters used by their algorithm.

Anytime and online solutions: An interesting variant of the
basic motion-planning problem is anytime motion-planning:
In this problem, the time to plan is not known in advance,
and the algorithm may be terminated at any stage. Clearly,
any solution should be found as fast as possible and if time
permits, it should be refined to yield a higher-quality solution.

Ferguson and Stentz [26] suggest iteratively running RRT
while considering only areas that may potentially improve the
existing solution. Alterovitz et al. [27] suggest the Rapidly-
exploring Roadmap Algorithm (RRM), which finds an initial
path similar to RRT. Once such a path is found, RRM either
explores further the configuration space or refines the explored
space. Luna et al. [28] suggest alternating between path
shortcutting and path hybridization in an anytime fashion.

RRT* was also adapted for online motion planning [29].
Here, an initial path is computed and the robot begins its ex-
ecution. While the robot moves along this path, the algorithm
refines the part that the robot has not yet moved along.

B. Contribution

We present LBT-RRT, a single-query sampling-based algo-
rithm that is asymptotically near-optimal. Namely, the solution
extracted from LBT-RRT converges to a solution that is within
a factor of (1+¢) of the optimal solution. LBT-RRT allows for
interpolating between the fast, yet sub-optimal, RRT algorithm

and the asymptotically-optimal RRG algorithm. By choosing
¢ = 0 no approximation is allowed and LBT-RRT maintains
a roadmap identical to the one maintained by RRG. Choosing
€ = oo allows for any approximation and LBT-RRT maintains
a tree identical to the tree maintained by RRT.

The asymptotic near-optimality of LBT-RRT is achieved by
simultaneously maintaining two roadmaps. Both roadmaps are
defined over the same set of vertices but each consists of a
different set of edges. On the one hand, a path in the first
roadmaps may not be feasible, but its cost is always a lower
bound on the cost of paths extracted from RRG (using the
same sequence of random nodes). On the other hand, a path
extracted from the second roadmap is always feasible and its
cost is within a factor of (1+¢) from the lower bound provided
by the first roadmap.

We suggest to use LBT-RRT for high-quality, anytime
motion planning. We demonstrate its performance on scenarios
ranging from 3 to 12 degrees of freedom (DoF) and show
that the algorithm produces high-quality solutions (comparable
to RRG and RRT*) with little running-time overhead when
compared to RRT.

This paper is a modified and extended version of a publica-
tion presented at the 2014 IEEE International Conference on
Robotics and Automation [30]. In this paper we present addi-
tional experiments and extensions of the original algorithmic
framework. Finally, we note that the conference version of this
paper contained an oversight with regard to the roadmap that
is used for the lower bound. We explain the problem and its
fix in detail in Section after providing all the necessary
technical background.

C. Outline

In Section [lI] we review the RRT, RRG and RRT* algo-
rithms. In Section we present our algorithm LBT-RRT
and a proof of its asymptotic near-optimality. We continue
in Section to demonstrate in simulations its favorable
characteristics on several scenarios. In Section [V] we dis-
cuss a modification of the framework to further speed up
the convergence to high-quality solutions. We conclude in
Section [VI| by describing possible directions for future work.
In the appendix we list several applications where either RRT
or RRT* were used and argue that LBT-RRT may serve as
a superior alternative with no fundamental modification to
the underlying algorithms using RRT or RRT*. Moreover, we
discuss alternative implementations of LBT-RRT using tools
developed for either RRT or RRT* that can enhance LBT-RRT.
Finally, we demonstrate how the framework presented in this
paper for relaxing the optimality of RRG can be used to have
a similar effect on another asymptotically-optimal sampling-
based algorithm, FMT* [22].

II. TERMINOLOGY AND ALGORITHMIC BACKGROUND

We begin this section by formally stating the motion-
planning problem and introducing several standard procedures
used by sampling-based algorithms. We continue by reviewing
the RRT, RRG and RRT* algorithms.



Algorithm 1 RRT (zjn )

Algorithm 2 RRG (i )

1: T.V < {xim-t}
2: while construct_roadmap () do

3: Trand < sample_free ()
Znearest < Nearest_neighbor(xpng, T-V)
5: Tpew Steer(xnearesta xrand)

. if (lcollision_free(Zpearest, Tnew)) then
7: CONTINUE

TV« T.VU {l'new}
T.parent (‘Tnew) < Tnearest

A. Problem definition and terminology

We follow the formulation of the motion-planning problem
as presented by Karaman and Frazzoli [4]. Let X denote the
configuration space (C-space), Xfee and Ao, denote the free
and forbidden spaces, respectively. Let (Xfree, Tinit, Xgoar) be
the motion-planning problem where: iy € Xfee 1S an initial
free configuration and Xy,q C Afee is the goal region. A
collision-free path o : [0,1] — Afe is a continuous mapping
to the free space. It is feasible if 0(0) =xini and o(1) € X goq-

We will make use of the following procedures throughout
the paper: sample_free, a procedure returning a ran-
dom free configuration; nearest_neighbor(z,V) and
nearest_neighbors(z,V, k) are procedures returning the
nearest neighbor and & nearest neighbors of « within the set V,
respectively. Let steer(z,y) return a configuration z that
is closer to y than z is, collision_free(z,y) tests if
the straight line segment connecting x and y is contained in
Xiree and let cost(z,y) be a procedure returning the cost of
the straight-line path connecting z and y. Let us denote by
costg(x) the minimal cost of reaching a node x from iy
using a roadmap G. These are standard procedures used by
the RRT or RRT* algorithms. Finally, we use the (generic)
predicate construct_roadmap to assess if a stopping
criterion has been reached to terminate the algorithny']

B. Algorithmic background

The RRT, RRG and RRT* algorithms share the same high-
level structure. They maintain a roadmap as the underlying
data structure which is a directed tree for RRT and RRT* and a
directed graph for RRG. At each iteration a configuration xynq
is sampled at random. Then, Zpearest, the nearest configuration
t0 Zpang in the roadmap is found and extended in the direction
of ZTyang to @ new configuration ey . If the path between Tpearest
and Xy 1S collision-free, x,ew is added to the roadmap (see
Alg. [T} 2] and [3] lines 3-9).

The algorithms differ in the connections added to the
roadmap. In RRT, only the edge (Znearest; Tnew) is added.
In RRG and RRT*, a set Xyear Of krpralog(|V]) nearest
neighbors of x..y is considered. Here, krprg is a constant

'A stopping criterion can be, for example, reaching a certain number of
samples or exceeding a fixed time budget.

1 GV +A{zpm} GE<«0
2: while construct_roadmap () do

3: Trand — sample_free ()
© Tpearest ¢ Nearest_neighbor(Zng, G.V)
5: Tpew Steer(wnearesta xrand)

6: if (lcollision_free(Tearest; Tnew)) then
7: CONTINUE

GV «— GV U{Znew}
gE — {(xnearesh Inew)7 (InEW7 xnearest)}

10:  Xpear ¢ nearest_neighbors(Tew,
G.V,krralog(1G.V]))

11:  for all (zpear, Xnear) dO

12: if (collision_free(Zear, Tnew)) then

13: G.E « {(xnear; mnew)» (-'L'new, wnear)}’

Algorithm 3 RRT* (xjy; )
1TV + {xinit}
2: while construct_roadmap () do

3: Trand — sample_free ()
Tnearest < nearest_neighbor(x,and, Q.V)
5:  Tpew ¢ steer(Tpearest; Trand)

6: if (lcollision_free(Tearwest; Tnew)) then
CONTINUE

TV« TVU {xnew}
9: T .parent («Tnew) € Tnearest

10:  Xpear ¢ nearest_neighbors(Tmew,
T.V,krrglog(|T.V]))

11: for all (xneaanear) do
12: rewire_RRT*(Znear, Tnew )

13:  for all (Zpear, Xnear) do
14 rewire_RRT*(Zpew, Tnear )

ensuring that the cost of paths produced by RRG and RRT*
indeed converges to the optimal cost almost surely as the
number of samples grows. A valid choice for all problem
instances is krrg = 2e [4]. For each neighbor zpe,r € Xipear
of Znew, RRG checks if the path between xpe, and Xpey 1S
collision-free and if 0, (Znear, Tnew) and (Tnew, Tnear) are added

Algorithm 4 rewire_RRT*(Tpotential_parent> Lchild)

1: if (collis ion_free(xpolemial_parem, Tehild)) then

2 C<- Cco St(xpotential_parenta Zchild)

3: if (COStT(xpotential_parent) +c< COStT(Ichild)) then
4 T'parent (xchild) — xpotential_parem




to the roadmap (lines 10-13). RRT* maintains a sub-graph of
the RRG roadmap. This is done by an additional rewiring
procedure (Alg. @) which is invoked twice: The first time, it
is used to find the node Zneayr € Xpear Which will minimize
the cost to reach x,ew (Alg. |3l lines 11-12). The second time,
the procedure is used to to minimize the cost to reach every
node Tpeyr € Xpear Dy considering e, as its parent (Alg. El,
lines 13-14). Thus, at all time, RRT* maintains a tree which,
as mentioned, is a subgraph of the RRG roadmap.

Given a sequence of n random samples, the cost of the path
obtained using the RRG algorithm is a lower bound on the cost
of the path obtained using the RRT* algorithm. However, RRG
requires both additional memory (to explicitly store the set of
O(logn) neighbours) and exhibits longer running times (due
to the additional calls to the local planner). In practice, this
excess in running time is far from negligible (see Section [[V)),
making RRT* a more suitable algorithm for asymptotically-
optimal motion planning.

III. ASYMPTOTICALLY NEAR-OPTIMAL
MOTION-PLANNING

Clearly the asymptotic optimality of the RRT* and RRG al-
gorithms comes at the cost of the additional O(krra log(|V]))
calls to the local planner at each stage (and some additional
overhead). If we are not concerned with asymptotically optimal
solutions, we do not have to consider all of the krprq log(|V])
neighbors when a node is added. Our idea is to initially only
estimate the quality of each edge. We use this estimate of the
quality of the edge to decide if to discard it, use it without
checking if it is collision-free or use it after validating that it
is indeed collision-free. Thus, many calls to the local planner
can be avoided, though we still need to estimate the quality
of many edges. Our approach is viable in cases where such
an assessment can be carried out efficiently. Namely, more
efficiently than deciding if an edge is collision-free. This
condition holds naturally when the quality measure is path
length which is the cost function considered in this paper; for
a discussion on different cost functions, see Section

A. Single-sink shortest-path problem

As we will see, our algorithm needs to maintain the shortest
path from =z, to any node in a graph. Moreover, this graph
undergoes a series of edge insertions and edge deletions.
This problem is referred to as the fully dynamic single-
source shortest-path problem or SSSP for short. Efficient
algorithms [31]], [32] exist that can store the minimal cost to
reach each node (and the corresponding path) in such settings
from a source node. In our setting, this source node is jpj.
We make use of the following procedures which are pro-
vided by SSSP algorithms: delete_edgesssp(G, (21, 22))
and insert_edgesssp(G, (21, x2)) which delete and insert,
respectively, the edge (z1,x2) from/into the graph G while
maintaining costg for each node. We assume that these
procedures return the set of nodes whose cost has changed
due to the edge deletion or edge insertion. Furthermore, let

parentsssp(G, ) be a procedure returning the parent of x
in the shortest path from the source to x in G.

B. LBT-RRT

We propose a modification to the RRG algorithm by
maintaining two roadmaps G, Tap, Simultaneously. Both
roadmaps have the same set of vertices but differ in their edge
set. Gy, is a graph and 7, is a tree rooted at a?mi:ﬂ

Let Grre be the roadmap constructed by RRG if run on the
same sequence of samples used for LBT-RRT. The following
invariants are maintained by the LBT-RRT algorithm:

Bounded approximation invariant - For every node
z € Tapa, G, costr,,, (z) < (1+¢)- costg, (z).

and

Lower bound invariant - For every node =z € Gy,
costg, () < costg, e ().

The lower bound invariant is maintained by ensuring that
the edges of Grrc are a subset of the edges of Gj;. As we
will see, G, may possibly contain some edges that Grrc
considered but found to be in collision.

The main body of the algorithm (see Alg. [5) follows the
structure of the RRT, RRT* and RRG algorithms with respect
to adding a new milestone (lines 3-7) but differs in the
connections added. If a path between the new node z., and
its nearest neighbor Tpeaest 1S indeed collision-free, it is added
to both roadmaps together with an edge from Zpearest 10 Tpew
(lines 8-11).

Similar to RRG and RRT*, LBT-RRT locates the set X,car
of krrc log(]V]) nearest neighbors of e, (line 12). Then,
for each edge connecting a node from X, t0 Xpew and for
each edge connecting Tpey to a node from X, it uses a
procedure consider_edge (Alg. [0) to assess if the edge
should be inserted to either roadmaps. The edge is first lazily
inserted into Gy, without checking if it is collision-free. This
may cause the bounded approximation invariant to be violated,
which in turn will induce a call to the local planner for a set
of edges. Each such edge might either be inserted into gy,
or removed from Gyp,.

This is done as follows, first, the edge considered is inserted
to Gy, while updating the shortest path to reach each vertex in
G (Alg. @ line 1). Denote by I the set of updated vertices
after the edge insertion. Namely, for every x € I, costg,, ()
has decreased due to the edge insertion. This cost decrease
may, in turn, cause the bounded approximation invariant to
be violated for some nodes in U. All such nodes are collected
and inserted into a priority queue () (line 2) ordered according
to costg,, from low to high. Now, the algorithm proceeds

2The subscript of Gy, is an abbreviation for lower bound and the subscript
of Tapz is an abbreviation for approximation.



Algorithm 5 LBT-RRT (zji, € )

Algorithm 6 consider_edge(z,z2)

1: ﬁbG — {xinit} 7:1px~v — {xinit}
2: while construct_roadmap () do

3: Trand ¢ sample_free ()
Znearest < Nearest_neighbor(x,and, Tip-V)
5: Tpew Steer(xnearesta xrand)

. if (lcollision_free(Zpearest, Tnew)) then
7: CONTINUE

Tapz-V < Tape- V U {Tnew
npx-parent(xnew) <— Tnearest

10 GV Gip.V U {Zpew }
11: insert_edgeSSSP(glba (Inearesh xnew))

12: Xjear ¢ nearest_neighbors(Thew,
G-V, krra log(|Gi-V))

13: for all (-rneary Xnear) do
14: consider_edge(Tnear; Tnew)

15: for all (-Tneara Xnear) do
16: consider_edge(afnew, l’near)

in iterations until the queue is empty (lines 3-15). At each
iteration, the head of the queue x is considered (line 4). If the
bounded approximation invariant does not hold (line 5), the
algorithm checks if the edge in G, connecting the node x to its
parent along the shortest path to xi,; is collision free (lines 6-
7). If this is the case, the approximation tree is updated (line 8)
and the head of the queue is removed (line 9). If not, the
edge is removed from Gy, (line 11). This causes an increase in
costg,, for a set D of nodes, some of which are already in the
priority queue. Clearly, the bounded approximation invariant
holds for the nodes = € D that are not in the priority queue.
Thus, we take only the nodes € D that are already in )
and update their location in Q) according to their new cost
(lines 12-13) . Finally, if the bounded approximation invariant
holds for x then it is removed from the queue (lines 15).

C. Analysis

In this section we show that Alg. [5] maintains the lower
bound invariant (Corollary and that after every iteration
of the algorithm the bounded approximation invariant is main-
tained (Lemma [[IL.§). We then report on the time complexity
of the algorithm (Corollary [[IL.I0).

We note the following straightforward, yet helpful observa-
tions comparing LBT-RRT and RRG when run on the same
sequence of random samples:

Observation IIL.1. A node x is added to Gy, and to Topy
if and only if = is added to Grre (Alg. [2] lines 3-8 and [3)]
lines 3-11).

Observation IIL.2. Both LBT-RRT and RRG consider the
same set of krra log(|V'|) nearest neighbors of xye, (Alg.

1: I +insert_edgessse(Gn, (T1,72))
2 Q< {x el |costy,, () > (1+c¢)-costg, (v)}
3: while Q # 0 do

4 1z + Q.top();

s if costy, , (z) > (1 +¢) - costg,, (=) then

6: Tparent < parentgggp (glbv .13)

7: if (collision_free (Tparent,*)) then
8: Tapz-parent () <— Tparent

9: Q.pop()

10: else

11: D <delete_edgessse(Gip, (Tparent; T))
12: for all y € DNQ do

13: Q.update_cost(y)

14:  else

15: Q-pop()

line 10 and Alg. 3] line 12).

Observation II1.3. Every edge added to the RRG roadmap
(Alg. 2| line 13) is added to Gy, (Alg. [B]lines 14, 16 and Alg. [6]
line 1).

Note that some additional edges may be added to G;;, which
are not added to the RRG roadmap as they are not collision-
free.

Observation IIL.4. Every edge of Tops is collision free (Alg.
line 9 and Alg. [6] line 8).

Thus, the following corollary trivially holds:

Corollary IIL.S. After every iteration of LBT-RRT (Alg.
lines 3-16) the lower bound invariant is maintained.

We continue with the following observations relevant to the
analysis of the procedure consider_edge(xy, x2):

Observation I11.6. The only place where costg,, is decreased
is during a call to insert_edgesssp(Gu, (v1,2) (Alg. @
line 1).

Observation IIL.7. A node x is removed from the queue @
(Algl6 lines 9,15) only if the bounded approximation invariant
holds for x.

Showing that the bounded approximation invariant is main-
tained is done by induction on the number of calls to
consider_edge(z,x2). Using Obs. prior to the first
call to consider_edge(zxy, x2) the bounded approximation
invariant is maintained. Thus, we need to show that:

Lemma IIL.8. If the bounded approximation invariant holds
prior to a call to the procedure consider_edge(xi,T2)
(Alg. [6), then the procedure will terminate with the invariant
maintained.

Proof: Assume that the bounded approximation invariant
was maintained prior to a call to consider_edge(xy, x2).
By Observation [III.6] inserting a new edge (line 1) may cause



the bounded approximation invariant to be violated for a
set of nodes. Moreover, it is the only place where such an
event can occur. Observation implies that the bounded
approximation invariant holds for every vertex not in Q.
Recall that in the priority queue we order the nodes accord-
ing to costg,, (from low to high) and at each iteration of
consider_edge(x,x2) the top of the priority queue x is
considered. The parent Zpaene Of 2, that has a smaller cost
value, cannot be in the priority queue. Thus, the bounded
approximation invariant holds for xpsren.. Namely,

cost,,. (Tparent) < (1 +€) - costg,, (Tparent)-

Now, if the edge between Zpaenc and x is found to be free
(line 7), we update the approximation tree (line 8). It follows
that after such an event,

costr,,.(¥) = costr,, (Tparent) +

cost (Zparent, &)
< (1 + 5) : COSthb(xP‘drem) +
cost (Zparent, &)

< (1+5) : COStglb(x)'

Namely, after updating the approximation tree, the bounded
approximation invariant holds for the node .

To summarize, at each iteration of Alg. E] (lines 3-16), either:
(i) we remove a node x from @ (line 9 or line 15) or (ii) we
remove an incoming edge to the node x from the lower bound
graph (line 11). If the node x was removed from @ (case (i)),
the bounded approximation invariant holds—either it was not
violated to begin with (line 15) or it holds after updating the
approximation tree (lines 8-9).

To finish the proof we need to show that the main loop
(lines 3-15) in Alg.[6]indeed terminates. Recall that the degree
of each node is O(log n). Thus, a node x cannot be at the head
of the queue more than O(logn) times (after each time we
either remove an incoming edge or remove x from the queue).
This in turn implies that after at most O(n logn) iterations @
is empty and the main loop terminates. ]

From Corollary Lemma and using the asymptotic
optimality of RRG we conclude,

Theorem IIL.9. LBT-RRT is asymptotically near-optimal with
an approximation factor of (1 + €).

Namely, the cost of the path computed by LBT-RRT converges
to a cost at most (1 4 ) times the cost of the optimal path
almost surely.

We continue now to discuss the time complexity of the
algorithm. If & is the number of nodes updated during a
call to an SSSP procedureE] (namely, insert_edgegssp Or
delete_edgesssp), then the complexity of the procedure
is O(dlogn) when using the algorithm of Ramalingam et

3The number of nodes § updated during an SSSP procedure depends on
the topology of the graph and the edge weights. Theoretically, in the worst
case § = O(n) and a dynamic SSSP algorithm cannot perform better than
recomputing shortest paths from scratch. However, in practice this value is
much smaller.

al. [32]. Set 5 to be the maximum value of § over all calls to
SSSP procedures (Alg[5|line 11 and Alg[6] lines 1 and 11) and
let n denote the final number of samples used by LBT-RRT.

We have O(nlogn) edges and each edge will be inserted
to Gy, once (Alg [5 line 11 or Alg [6] line 1) and possibly be
removed from Gy, once (Alg [f] line 11). Therefor, the total
complexity due to the SSSP procedures is O(5 - nlog?n).
The time-complexity of all the other operations (nearest neigh-
bours, collision detection etc.) is similar to RRG which runs
in time O(nlogn).

Corollary II1.10. LBT-RRT runs in_time 06 - nlog”n),
where n is the number of samples and § is the maximal number
of nodes updated over all SSSP procedures .

While this running time may seem discouraging, we note
that in practice, the local planning dominates the actual
running time of the algorithm in practice. As we demonstrate
in Section [IV]through various simulations, LBT-RRT produces
high-quality results in an efficient manner.

D. Implementation details

We describe the following optimizations that we use in order
to speed up the running-time of the algorithm. The first is that
the set X, is ordered according to the cost to reach ey from
Tini¢ through an element x of X,c,,. Hence, the set X, will be
traversed from the node that yields the smallest lower bound
to reach X, to the node that will yield the highest lower
bound. After the first edge that does not violate the bounded
approximation invariant, no subsequent node can improve the
cost to reach zp.y and insert_edgegssp will not need to
perform any updates. This ordering was previously used to
speed up RRT* (see, e.g., [19], [33]).

The second optimization comes to avoid the situation where
insert_edgegggp is called and immediately afterwards the
same edge is removed. Hence, given an edge, we first check
if the bounded approximation invariant will be violated had
the edge been inserted. If this is indeed the case, the local
planner is invoked and only if the edge is collision free
insert_edgegssp is called.

E. Discussion

Let T%, denote the time needed for an algorithm ALG
to find a feasible solution on a sequence wof random samples.
Clearly, Tipr < Thre (as RRG may require more calls to
the collision detector than the RRT algorithm). Moreover, for
every €1 < g4 it holds that

TErr < TiBr—RRT(22) < TiBT-RRT(e)) < TRRG-

Thus, given a limited amount of time, RRG may fail to
construct any solution. On the other hand, RRT may find a
solution fast but will not improve its quality (if the goal is a
single configuration). LBT-RRT allows to find a feasible path
quickly while continuing to search for a path of higher quality.

Remark The conference version of this paper contained an
oversight with regard to how the bounded approximation
invariant was maintained. Specifically, instead of storing Gy



as a graph, a tree was stored which was rewired locally.
When the algorithm tested if the bounded approximation
invariant was violated for a node z, it only considered the
children of z in the tree. This local test did not take into
account the fact that changing the cost of = in the tree could
also change the cost of nodes y that are descendants of x
(but not its children). The implications of the oversight is
that the algorithm was not asymptotically near optimal. The
experimental results presented in the conference version of this
paper suggest that in certain scenarios this oversight did not
have a significant effect on the convergence to high quality
solutions. Having said that, LBT-RRT as presented in this
paper is both asymptotically near optimal and converges to
high quality solutions faster than the original algorithm.

IV. EVALUATION

We present an experimental evaluation of the performance
of LBT-RRT as an anytime algorithm on different scenar-
ios consisting of 3,6 and 12 DoFs (Fig. [I). The algorithm
was implemented using the Open Motion Planning Library
(OMPL 0.10.2) [34] and our implementation is currently
distributed with the OMPL release. All experiments were run
on a 2.8GHz Intel Core i7 processor with 8GB of memory.
RRT* was implemented by using the ordering optimization
described in Section [[II] and [19])).

The Maze scenario (Fig. [Ia) con-
sists of a planar polygonal robot that

can translate and rotate. The Al-  large holg

ternating barriers scenario (Fig.

consists of a robot with three per-  mallfol

pendicular rods free-flying in space.

The robot needs to pass through a Fig. 2. One barrier of the

series of barriers each containing
a large and a small hole. For an
illustration of one such barrier, see Fig. 2] The large holes
are located at alternating sides of consecutive barriers. Thus,
an easy path to find would be to cross each barrier through a
large hole. A high-quality path would require passing through
a small hole after each large hole. Finally, the cubicles scenario
consists of two L-shaped robots free-flying in space that need
to exchange locations amidst a sparse collection of obstacleﬂ

We compare the performance of LBT-RRT with RRT, RRG
and RRT* when a fixed time budget is given. We add another
algorithm which we call RRT+RRT* which initially runs RRT
and once a solution is found runs RRT*. RRT+RRT* will find
a solution as fast as RRT and is asymptotically-optimal. For
LBT-RRT we consider (1+¢) values of 1.2,1.4,1.8 and report
on the success rate of each algorithm (Fig. [3). Additionally,
we report on the path length after applying shortcuts (Fig. ).
Each result is averaged over 100 different runs.

Fig. |3| depicts similar behaviour for all scenarios: As one
would expect, the success rate for all algorithms has a mono-
tonically increasing trend as the time budget increases. For a

Alternating barriers sce-
nario.

4The Maze Scenario and the Cubicles Scenario are provided as part of the
OMPL distribution.

Algorithm 7 consider_edge_goal_biased(zy,x2)

1. P« costieas(Taps)

2: insert_edgerpas (G, 21, T2)

3: x + shortest_pathipa.(Gp)

4 Tparent — parentpa, (glbax)

5: b« costiea.(G)

6: while ¢ > (1+¢)-cb. do

7 if (collision_free (Tpgrent,x)) then
8 insert_edgerpas (7:1;0."“ Tparent, JC)

9

shortest_pathrpa.(Taps)

10: C?E?n < costipas(Tape)

11: T < parentLPA*(x)

12:  else

13: delete_edgerpax (gzm Tparent, l’)
14: GoTo line 3

specific time budget, the success rate for RRT and RRT+RRT*
is typically highest while that of the RRT* and RRG is lowest.
The success rate for LBT-RRT for a specific time budget,
typically increases as the value of ¢ increases. Fig. [3 also
depicts similar behavior for all scenarios: the average path
length decreases for all algorithms (except for RRT). The
average path length for LBT-RRT typically decreases as the
value of € decreases and is comparable to that of RRT* for
low values of e. RRT+RRT* behaves similarly to RRT* but
with a “shift” along the time-axis which is due to the initial
run of RRT. We note that although RRG and RRT+RRT*
are asymptotically-optimal, their overhead makes them poor
algorithms when one desires a high-quality solution very fast.

Thus, Fig. 3] and [5] should be looked at simultaneously as
they encompass the tradeoff between speed to find any solution
and the quality of the solution found. Let us demonstrate this
on the alternating barriers scenario: If we look at the success
rate of each algorithm to find any solution (Fig. 3b), one can
see that RRT manages to achieve a success rate of 70% after
30 seconds. RRT*, on the other hand, requires 70 seconds to
achieve the same success rate (more than double the time).
For all different values of ¢, LBT-RRT manages to achieve a
success rate of 70% after 50 seconds (around 60% overhead
when compared to RRT). Now, considering the path length at
50 seconds, typically the paths extracted from LBT-RRT yield
the same quality when compared to RRT* while ensuring a
high success rate.

The same behavior of finding paths of high-quality (similar
to the quality that RRT* produces) within the time-frames that
RRT requires in order to find any solution has been observed
for both the Maze scenario and the Cubicles scenario. Results
omitted in this text. For supplementary material the reader is
referred to http://acg.cs.tau.ac.il/projects/LBT-RRT.

V. LAZY, GOAL-BIASED LBT-RRT

In this section we show to further reduce the number of calls
to the local planner by incorporating a lazy approach together
with a goal bias.
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optimal path.

LBT-RRT maintains the lower bound invariant to every
node. This is desirable in settings where a high-quality path
to every point in the configuration space is required. However,
when only a high-quality path to the goal is needed, this may
lead to unnecessary time-consuming calls to the local planner.

Therefore, we suggest the following variant of LBT-RRT
where we relax the bounded approximation invariant such that
it holds only for nodes x € Xg04. This variant is similar to
LBT-RRT but differs with respect to the calls to the local
planner and with respect to the dynamic shortest-path algo-
rithm used. As we only maintain the bounded approximation
invariant to the goal nodes, we do not need to continuously
update the (approximate) shortest path to every node in Gp.
We replace the SSSP algorithm, which allows to compute the
shortest paths to every node in a dynamic graph, with Lifelong
Planning A* (LPA*) [33]. LPA* allows to repeatedly find
shortest paths from a given start to a given goal while allowing
for edge insertions and deletions. Similiar to A* [36], this is
done by using heuristic function h such that for every node z,
h(zx) is an estimate of the cost to reach the goal from z.

Given a start vertex ;n;, a goal region Xgoqi, we will

90 100 110 120

(b) Alternating barriers scenario
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(c) Cubicles scenario

(d) Legend

Path lengths for algorithms on different scenarios. Length values are normalized such that a length of one represents the length of an

use the following functions which are provided when imple-
menting LPA*: shortest_pathipa.(G), recomputes the
shortest path to reach Xgoq from x;,;; on the graph G
and returns the node * € Xgoq such that z € Xgow
and costg, (z) is minimal among all ' € Xgoq. Once
the function has been called, the following functions take
constant running time: costipa,(G) returns the minimal
cost to reach Xgoq from x;,;; on the graph G and
for every node z lying on a shortest path to the goal,
parentipa.(G,x) returns the predecessor of the node z
along this path. Additionally, insert_edgersa.(G,x,y)
and delete_edgerpa.(G,z,y) inserts (deletes) the edge
(z,y) to (from) the graph G, respectively.

We are now ready to describe Lazy, goal-biased LBT-RRT
which is similar to LBT-RRT except for the way new edges
are considered. Instead of the function consider_edge
called in lines 14 and 16 of Alg. [ the function
consider_edge_goal_biased is called.

consider_edge_goal_biased(xi,x2), outlined in

Alg. m, begins by computing the cost to reach the goal in 7qp,
(line 1) and in Gy, after adding the edge (x1,x2) lazily



to Gy (lines 2-5). Namely, the edge is added with no call
to the local planner and without checking if the bounded
approximation invariant is violated. Note that the relaxed
bounded approximation invariant is violated (line 6) only if
a path to the goal is found. Clearly, if all edges along the
shortest path to the goal are found to be collision free, then
the invariant holds. Thus, the algorithm attempts to follow the
edges along the path (starting at the last edge and backtracking
towards x;,;+) one by one and test if they are indeed collision-
free. If an edge is collision free (line 7), it is inserted to Topq
(line 8), and a path to the goal in 7, is recomputed (line 9).
This is repeated as long as the relaxed bounded approximation
invariant is violated. If the edge is found to be in collision
(line 12), it is removed from G;; (line 13) and the process is
repeated (line 14).

Following similar arguments as described in Section [[II} one
can show the correctness of the algorithm. We note that as
long as no path has been found, the algorithm performs no
more calls to the local planner than RRT. Additionally, it is
worth noting that the planner bares resemblance with Lazy-
RRG* [37].

We compared Lazy, goal-biased LBT-RRT with LBT-RRT,
RRT* and RRG on the Home scenario (Fig. [5a). In this
scenario, a low quality solution is typically easy to find and
all algorithms (except RRG) find a solution with roughly the
same success rate as RRT (results omitted). Converging to the
optimal solution requires longer running times as low-quality
paths are easy to find yet high-quality ones pass through
narrow passages. Fig. [5b| depicts the path length obtained
by the algorithms as a function of time. The convergence to
the optimal solution of RRG is significantly slower than all
other algorithms. Both LBT-RRT and RRT* find a low quality
solution (between five and six times longer than the optimal
solution) within the allowed time frame and manage to slightly
improve upon its cost (with RRT* obtaining slightly shorter
solutions than LBT-RRT). When enhancing LBT-RRT with a
lazy approach together with goal-biasing, one can observe that
the convergence rate improves substantially.

VI. CONCLUSION AND FUTURE WORK

In this work we presented an asymptotically near-optimal
motion planning algorithm. Using an approximation factor
allows the algorithm to avoid calling the computationally-
expensive local planner when no substantially better solution
may be obtained. LBT-RRT, together with the lazy, goal-
biased variant, make use of dynamic shortest path algorithms.
This is an active research topic in many communities such as
artificial intelligence and communication networks.

Hence, the algorithms we proposed in this work may benefit
from any advances made for dynamic shortest path algorithms.
For example, recently D’Andrea et al. [38] presented an
algorithm that allows for dynamically maintaining shortest
path trees under batches of updates which can be used by
LBT-RRT instead of the SSSP algorithm.

Looking to further extend our framework, we seek natural
stopping criteria for LBT-RRT. Such criteria could possibly be

related to the rate at which the quality is increased as additional
samples are introduced. Once such a criterion is established,
one can think of the following framework: Run LBT-RRT
with a large approximation factor (large <) , once the stopping
criterion has been met, decrease the approximation factor and
continue running. This may allow an even quicker convergence
to find any feasible path while allowing for refinement as time
permits (similar to [27]). While changing the approximation
factor in LBT-RRT may possibly require a massive rewiring
of Gy (to maintain the bounded approximation invariant) this
is not the case in Lazy, goal-biased LBT-RRT. In this variant
of LBT-RRT the approximation factor can change at any stage
of the algorithm without any modifications at all.

An interesting question to be further studied is can our
framework be applied to different quality measures. For certain
measures, such as bottleneck clearance of a path, this is
unlikely, as bounding the quality of an edge already identifies
if it is collision-free. However, for some other measures such
as energy consumption, we believe that the framework could
be effectively used.
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APPENDIX

RRT has been used in numerous applications and various
efficient implementations and heuristics have been suggested
for it. Even the relatively recent RRT* has already gained
many applications and various implementations. Typically, the
applications rely on the efficiency of RRT or the asymptotic
optimality of RRT*. We list two such applications (Sections A
and B below) and discuss the possible advantage of replacing
the existing planner (either RRT or RRT*) with LBT-RRT.

Efficient implementations and heuristics typically take into
account the primitive operations used by the RRT and the
RRT#* algorithms (such as collision detection, nearest neighbor
computation, sampling procedure etc.). Thus, techniques sug-
gested for efficient implementations of RRT and RRT* may
be applied to LBT-RRT with little effort as the latter relies
on the same primitive operations. We give two examples in
Sections C and D below.

Finally, we show how to apply our approach to a dif-
ferent asymptotically-optimal sampling-based algorithm—~Fast
Marching Trees (FMT#*) [22].

A. Re-planning using RRTs:

Many real-world applications involve a C-space that un-
dergoes changes (such as moving obstacles or partial initial
information of the workspace). A common approach to plan
in such dynamic environments is to run RRT, and re-plan
when a change in the environment occurs. Re-planning may
be done from scratch although this can be unnecessary and
time consuming as the assumption is that only part of the
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environment changes. Ferguson et al. [26] suggest to (i)
plan an initial path using RRT, (ii) when a change in the
configuration space is detected, nodes in the existing tree may
be invalidated and a “trimming” procedure is applied where
invalid parts are removed and (iii) the trimmed tree is grown
until a new solution is generated.

Obviously LBT-RRT can replace RRT in the suggested
scheme. If the overhead of running LBT-RRT when compared
to RRT is acceptable (which may indeed be the case as the
experimental results in Section[[V]suggest), then the algorithm
will be able to produce high-quality paths in dynamic envi-
ronments.

B. High-quality planning on implicitly-defined manifolds:

Certain motion-planning problems, such as grasping with
a multi-fingered hand, involve planning on implicitly-defined
manifolds. Jaillet and Porta [39] address the central challenges
of applying RRT* to such cases. The challenges include sam-
pling uniformly on the manifold, locating the nearest neighbors
using the metric induced by the manifold, computing the
shortest path between two points and more. They suggest
AtlasRRT#*, an adaptation of RRT* that operates on manifolds.
It follows the same structure as RRT* but maintains an atlas by
iteratively adding charts to the atlas to facilitate the primitive
operations of RRT* on the manifold (i.e., sampling, nearest-
neighbor queries, local planning etc.).

If one is concerned with fast convergence to a high quality
solution, LBT-RRT can be used seamlessly, replacing the guar-
antee for optimality with a weaker near-optimality guarantee.

C. Sampling Heuristics:

Following the exposition of RRT*, Akgun and Stilman [40]
suggested a sampling bias for the RRT* algorithm. This
bias accelerates cost decrease of the path to the goal in
the RRT* tree. Additionally, they suggest a simple node-
rejection criterion to increase efficiency. These heuristics may
be applied to the LBT-RRT by simply changing the procedure
sample_free (Alg.[5 line 3).

D. Parallel RRTs:

In recent years, hardware allowing for parallel implemen-
tation of existing algorithms has become widespread both in

the form of multi-core Central Processing Units (CPUs) and
in the form of Graphics Processing Units (GPUs). Parallel
implementations for sampling based algorithms have already
been proposed in the late 1990s [41]. Since then, a multitude
of such implementations emerged (see, e.g., [42], [43] for a
detailed literature review).

We review two approaches to parallel implementation of
RRT and RRT* and claim that both approaches may be used
for parallel implementation of LBT-RRT. The first approach,
by Ichnowski et al. [42] suggests parallel variants of RRT and
RRT#* on multi-core CPUs that achieve superlinear speedup.
By using CPU-based implementation, their approach retains
the ability to integrate the planners with existing CPU-based
libraries and algorithms. They achieve superlinear speedup
by: (i) lock-free parallelism using atomic operations to reduce
slowdowns caused by contention, (ii) partition-based sampling
to reduce the size of each processor core’s working data set
and to improve cache efficiency and (iii) parallel backtracking
in the rewiring phase of RRT*. LBT-RRT may benefit from
all three key algorithmic features.

Bialkowski et al. [43] present a second approach for parallel
implementation of RRT and RRT*. They suggest a massively
parallel, GPU-based implementation of the collision-checking
procedures of RRT and RRT*. Again, this approach may
be applied to the collision-checking procedure of LBT-RRT
without any need for modification.

E. Framework Extensions

FMT#*, proposed by Janson and Pavone, is a recently
introduced asymptotically-optimal algorithm which is shown
to converge to an optimal solution faster than PRM* or
RRT*. It uses a set of probabilistically-drawn configurations to
construct a tree, which grows in cost-to-come space. Unlike
RRT#, it is a batch algorithm that works with a predefined
number of nodes n.

We first describe the FMT* algorithm (outlined in Alg. [g),
we continue to describe how to apply it in an anytime fashion
and conclude by describing how to apply our framework to
this anytime variant. FMT* samples n collision-free nodeﬂ v

By slight abuse of notation, sample_free (n) is a procedure return-
ing n collision-free samples.



(line 1) and builds a minimum-cost spanning tree rooted at the
initial configuration by maintaining two sets of nodes H, W
such that H is the set of nodes added to the tree that may be
expanded and W is the set of nodes not in the tree (line 2).
It then computes for each node the set of nearest neighbor{’]
of radius r(n) (line 4). The algorithm repeats the following
process: the node z with the lowest cost-to-come value is
chosen from H (lines 5 and 17). For each neighbor x of z that
is not already in H, the algorithm finds its neighbor y € H
such that the cost-to-come of y added to the distance between
y and x is minimal (lines 7-10). If the local path between y
and z is free, x is added to H with y as its parent (lines 11-13).
At the end of each iteration z is removed from H (line 14).
The algorithm runs until a solution is found or there are no
more nodes to process.

We now outline a straightforward enhancement to FMT* to
make it anytime. As noted in previous work (see, e.g., [44])
one can turn a batch algorithm into an anytime one by the
following (general) approach: choose an initial (small) number
of samples n = ng and apply the algorithm. As long as time
permits, double n and repeat the process. We call this version
anytime FMT* or aFMT*, for short.

We can further speed up this method by reusing both exist-
ing samples and connections from previous iterations. Assume
the algorithm was run with n samples and now we wish to
re-run it with 2n samples. In order to obtain the 2n random
samples, we take the n random samples from the previous
iteration together with n new additional random samples. For
each node that was used in iteration ¢ — 1, on average half
of its neighbors in iteration ¢ are nodes from iteration ¢ — 1
and half of its neighbors are newly-sampled nodes. Thus, if
we cache the results of calls to the local planner, we can use
them in future iterations using the framework presented in this
paper. We call this algorithm LBT-aFMT*.

Alg. E] outlines one iteration of LBT-aFMT%*, differences
between FMT* and LBT-aFMT* are colored in red. Similar
to LBT-RRT, LBT-aFMT* constructs two trees 7, and 7, and
maintains the bounded approximation invariant and the lower
bound invariant. The two invariants are maintained by using
a cache that can efficiently answer if the local path between
two configurations is collision-free for a subset of the nodes
used. The proof of near-optimality of LBT-aFMT#*, which is
omitted, follows the same lines as the analysis presented in
Section

In order to demonstrate the effectiveness of applying our
lower-bound framework to aFMT*, we compared the two
algorithms, namely aFMT* and LBT-aFMT*, in the case of
a three-dimensional configuration space which we call the
Corridors scenario (Fig. [6a). It consists of a planar hexagon
robot that can translate and rotate amidst a collection of small
obstacles. There are two main corridors from the start to the
goal position, a wide one and a narrow one. A relatively
small number of samples suffices to find a path through

%The nearest-neighbor computation can be delayed and performed only
when needed but we present the batched mode of computation to simplify
the exposition.

Algorithm 8 fast_marching_tree
1: V< {zini}Usample_free(n); E« 0; T« (V,E)

22 W+V \ {xinit};
3: for all v € V do

H + {init}

4 N, « nearest_neighbors(V \ {v},v,r(n))
51 Z < Tinit

6: while z ¢ XGoa do

7 Hnew — (Z); Xnear —~Wn Nz

8 for x € X, car do

9: Yiear < H NN,

10: Ymin <— argming ey, {costr(y) + cost(y,z)}
11: if collision_free(yYmmn,z) then

12: T .parent(z) < Ymin

13: Huew + Hpew U{z}; W+ W\ {2}

14 H <« (HUHpew) \ {2}

15: if H = () then

16: return FAILURE

172 z < argmingeg{costr(y)}
18: return PATH

the wide corridor, yet in order to compute a low-cost path
through the narrow corridor, many more samples are needed.
This demonstrates how LBT-aFMT* refrains from refining
an existing solution when no significant advantage can be
obtained. Fig. [6b] depicts the success rate of finding a path
through the narrow corridor as time progresses. Clearly, for
these types of settings LBT-aFMT* performs favorably over
aFMT* even for large approximation factors. For example, to
reach a 60% succes rate in finding a path through the narrow
corridor, LBT-aFMT#*, run with ¢ = 0.5, needs half of the
time needed by aFMT*.
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(a) Corridors scenario—Start and target configurations are depicted by green and red circles, respectively. The narrow corridor appears in

the lower half of the workspace. (b) Success rate to find a path through the narrow corridor.

Algorithm 9 LBT-aFMT*

(Cache)

1:
2:
3:
4:
5:
6:

25:
26:
27:
28:
29:

V + {zpni} Usample_free(n); E + 0;
T < (V,E);  Tape < (V, E)
W=V \{zmi}:  H < {ini}
for all v € V do
N, < nearest_neighbors(V \ {v},v,r(n))
Z < Tingt
while z ¢ Xgoq do
Hyew 0; Xpear &< WNN,
for z € X,,¢qr do
Yiear < HN N,
Y < argmingey,, . {costy, (y) + cost(y,z)}
)/’11”17 — {y € )/n,(fa,r ‘ (y, fL) & Cache) }
Yape < argmingey,  {costr,  (y)+cost(y,x)}
e < cost, (Yw) + cost(ym, x)
Capz < cOStT,,. (Yapz) + COSt (Yape, T)
if Capzx < (1 + 5) * Clp then
Tip-parent(z) < yp
Tapz-parent () < Yops
Hnew — Hnew U {-T}s
else
if collision_free(yy,z) then
Tiw-parent(z) < ynp
Tapz-parent(x) < yn
Hnew — Hnew U {fE}s

H <+ (HUH,e) \ {2}
if H = () then
return FAILURE
z < argminycg{cost(y)}
return PATH

W+ W {z}

W+ W\ {z}
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