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Abstract

We study the problem of multi-robot target assignment to minimize the total distance traveled by

the robots until they all reach an equal number of static targets. In the first half of the paper, we

present a necessary and sufficient condition under which true distance optimality can be achieved for

robots with limited communication and target-sensing ranges. Moreover, we provide an explicit, non-

asymptotic formula for computing the number of robots needed to achieve distance optimality in terms

of the robots’ communication and target-sensing ranges with arbitrary guaranteed probabilities. The

same bounds are also shown to be asymptotically tight.

In the second half of the paper, we present suboptimal strategies for use when the number of

robots cannot be chosen freely. Assuming first that all targets are known to all robots, we employ a

hierarchical communication model in which robots communicate only with other robots in the same

partitioned region. This hierarchical communication model leads to constant approximations of true

distance-optimal solutions under mild assumptions. We then revisit the limited communication and

sensing models. By combining simple rendezvous-based strategies with a hierarchical communication

model, we obtain decentralized hierarchical strategies that achieve constant approximation ratios with

respect to true distance optimality. Results of simulationshow that the approximation ratio is as low as

1.4.
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I. INTRODUCTION

In this paper, we study the permutation-invariant assignment of a set of networked robots

to a set of targets of equal cardinality. Focusing on minimizing the total distance traveled by

the robots in a planar setting, we seek optimality guarantees and near-optimal strategies. For

robot-to-robot communication, we investigate both a simple circular range-based model and a

region-based model in which all robots within the same region can communicate with each other.

When we consider the limited target-sensing capability of the robots, a circular range sensing

model is used.

The class of problems that we study is denoted astarget assignment in robotic networksas

it shares many similarities with the problems studied in Smith and Bullo (2009). In Smith and

Bullo (2009), the authors characterized the performance ofETSP1 ASSGMT and GRID ASSGMT

algorithms (strategies) in achieving time optimality (i.e., minimizing the time until every target

is occupied). In contrast, we focus on minimizing the total distance traveled by all robots with

significantly different assumptions on the communication and sensing models of the robots. The

total distance serves as a proper proxy to quantities such asthe total energy consumption of

all the robots. Note that a distance-optimal solution for the target assignment problem generally

does not imply time optimality and vice versa Yu and LaValle (2012).

As its name implies, the problem oftarget assignment in robotic networksrequires solving an

assignment(or matching) problem. The assignment problem is extensively studied inthe area of

combinatorial optimization, with polynomial time algorithms available for solving many of its

variations Bertsekas (1988); Bertsekas and CastaŻnon (1991); Burkard et al. (2012); Edmonds and

Karp (1972); Kuhn (1955); Zavlanos et al. (2008). If we instead put more emphasis on multi-robot

systems, the problems of robotic task allocation Ji et al. (2006); Tanner et al. (2007); Treleaven

et al. (2013); Zavlanos and Pappas (2008), swarm reconfiguration Chung et al. (2013), multi-

robot path planning Kloder and Hutchinson (2006); Sharma etal. (2007); Turpin et al. (2013),

and multi-agent consensus Cortés et al. (2006); Jadbabaieet al. (2003); Lin et al. (2007a,b) are

relevant. For a more comprehensive review on these topics, see Bullo et al. (2009).

Our work is also closely related to the study of the connectivity of wireless networks. An in-

teresting result Xue and Kumar (2004) showed that, ifn robots are uniformly randomly scattered

1ETSP stands for theEuclidean traveling salesman problem.
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in a unit square, then each robot needs to communicate withk= Θ(logn) nearest neighbors for

the entire robotic network to be asymptotically connected as n approaches infinity. In particular,

the authors of Xue and Kumar (2004) showed thatk < 0.074logn leads to an asymptotically

disconnected network whereask> 5.1774logn guarantees asymptotic connectivity. This pair of

bounds was subsequently improved and extended in Balister et al. (2005). These nearest neighbor

based connectivity models were further studied in Freris etal. (2010); Ganesh and Xue (2007);

Mao and Anderson (2013), to list a few. In many of these settings, ageometric graphstructure

is used Penrose (2003).

This research effort brings forth three contributions. First, for robots with limited range-

based target-sensing and communication capabilities (theranges are captured by radiirsenseand

rcomm, respectively), we derive necessary and sufficient conditions for ensuring a distance-optimal

solution. In particular, we provide a probabilistic estimate of the number of robots (denoted by

n) sufficient for all robots to form a connected network for a fixed communication radiusrcomm.

In contrast to the asymptotic connectivity results from Xueand Kumar (2004); Penrose (1997),

we give n as an explicit function ofrcomm that is also non-asymptotic. Therefore, our bounds

hold without requiringn→ ∞ . We further show that the same bounds are asymptotically tight

when a high probability guarantee is required.

Second, allowing the robots to have global target-sensing capabilities coupled with a region-

based communication model, we show that an infinite family ofhierarchical strategies can lead

to decentralized target assignments while ensuring that the total expected distance traveled by the

robots is asymptotically within a constant multiple of the optimal distance. Our simulation results

show that this bound can often be smaller than two. Moreover,because hierarchical strategies

avoid running a centralized assignment algorithm, significant savings on computation time (in

certain cases, a speedup of 1000 times or more) are achieved.

Third, for robots with global target-sensing capabilitiesand a range-based communication

model, hierarchical strategies (for assignment) and rendezvous-based strategies (for compen-

sating for the lack of global communication) are combined toobtain decentralized suboptimal

algorithms. These hybrid strategies, under mild assumptions, preserve the constant approximation

ratios on distance optimality achieved by the “pure” hierarchical strategies. We further show that

the global target-sensing assumption can be removed without affecting asymptotic optimality.

Portions of this work were presented in Yu et al. (2014a,b) for the early dissemination of
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results. Compared with Yu et al. (2014a,b), this paper provides a more comprehensive view

of the results along with complete proofs for all theorems. Many of the proofs have been

significantly improved to illustrate more clearly proof techniques that may be of interest on their

own. In addition, the current paper discusses extensively generalizations of the stochastic target

assignment problem to mismatching number of robots and targets, and to higher dimensions.

The rest of the paper is organized as follows. In Section II, we present notations and well-

known results from other branches of research needed for thedevelopment of our results. After

stating the problem formally in Section III, we then elaborate on the three stated contributions in

Sections IV-VI. We present results of simulation studies inSection VII to validate our theoretical

results and conclude in Section VIII.

II. PRELIMINARIES

In this section, we review results on the balls and bins problem, linear assignment, and random

geometric graphs. The symbolsR,R+,N denote the set of real numbers, the set of positive reals,

and the set of positive integers, respectively. For a positive real numberx, logx denotes the natural

logarithm of x; the function⌈x⌉ (resp.,⌊x⌋) denotes the smallest (resp., largest) integer that is

larger (resp., smaller) than or equal tox. | · | denotes the cardinality for a set and the absolute

value for a real number. We use‖v‖2 to denote the Euclidean 2-norm of a vectorv. The unit

square[0,1]2⊂R
2 is denoted asQ. The expectation of a random variableX is denoted asE[X].

We useE(·) to represent a probabilistic event and the probability withwhich an evente occurs

is denoted asP(e).

Given two functionsf ,g : R+→ R
+, f (x) = O(g(x)) if and only if there existMO,xO ∈ R

+

such that

∀x> xO, | f (x)| ≤MO|g(x)|.

Similarly, f (x) = Ω(g(x)) if and only if there existMΩ,xΩ ∈ R
+ such that

∀x> xΩ, | f (x)| ≥MΩ|g(x)|.

If f (x) = O(g(x)) and f (x) = Ω(g(x)), then we sayf (x) = Θ(g(x)). Finally, f (x) = o(g(x))

(resp., f (x) =ω(g(x))) if and only if f (x) =O(g(x)) (resp., f (x) =Ω(g(x))) and f (x) =Θ(g(x))

does not hold.
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A. Balls and Bins

The well-studied problem in probability theory known as theurns-problem, or the problem

of balls and bins, considers the distribution generated as a number of balls are randomly tossed

into a set of bins. The following classical result on the balland bins problem is due to Erdős

and Rényi.

Theorem 1 (Balls and Bins Erd̋os and Ŕenyi (1961)) Suppose that a number of balls are

tossed uniformly randomly into m bins, one ball per time step. Let Tk denote the first time

such that k balls are collected in every bin. Then for any realnumber c,

lim
m→∞

P(Tk < mlogm+(k−1)m loglogm+cm) = e−e
− c
(k−1)!

. (1)

It is worth noting that the proof of Theorem 1 is fairly short and elegant, employing only

basic tools from analysis and combinatorics. A useful corollary for k= 1 follows readily.

Corollary 2 For an arbitrary real number c, suppose that no fewer than(mlogm+cm) balls

are tossed uniformly randomly into m bins. As m→ ∞, every bin contains at least one ball with

probability e−e−c
.

PROOF. In (1), lettingk= 1 yields

lim
m→∞

P(T1 < mlogm+cm) = e−e−c
. (2)

The corollary directly follows (2) (recall thatT1 is the number of tosses needed so that every

bin has at least one ball). �

Corollary 2 says thatT1 = mlogm is a sharp threshold. Lettingc= 5 in (2) yields that the

probability of every bin being occupied by at least one ball is greater than 0.99 when at least

mlogm+5m balls are tossed. On the other hand, the same probability is no more than 0.001

when no more thanmlogm−2m balls are tossed.

B. Linear Assignment Problem

The (linear) assignment problem, as a fundamental combinatorial optimization problem, can

be defined as follows.
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Problem 1 (Linear Assignment) Given two finite sets X and Y with|X|= |Y|, together with a

weight function C: X×Y→ R, find a bijection f: X→Y that minimizes the cost

∑
x∈X

C(x, f (x)). (3)

Problem 1 is also called theperfect weighted bipartite matchingproblem. Here, the mapping

C is essentially a square matrix that can be used to represent avariety of weights, such as the

Euclidean distance whenX andY represent physical locations. TheHungarian methodfor the

assignment problem, proposed by Kuhn Kuhn (1955), has anO(n4) running time, which was

subsequently improved toO(n3) by Edmonds and Karp Edmonds and Karp (1972). Many other

algorithms for the assignment problem exist, including other primal-dual (linear programming)

methods Burkard et al. (2012), auction based methods Bertsekas (1988), and parallel algorithms

Bertsekas and CastaŻnon (1991); Zavlanos et al. (2008). Nevertheless, the strongly polynomial2

O(n3) Hungarian method remains as the fastest exact (sequential)algorithm, which we use in

our simulations.

When X and Y are restricted to points on the plane with the weight function C being the

Euclidean distances between the points, the special linearassignment problem is known as the

Euclidean bipartite matchingproblem, which can be solved exactly using anO(n2.5 logn) primal-

dual algorithm Vaidya (1989). Alternatively, near linear time approximation algorithms can yield

near optimal solutions with high probability Sharathkumarand Agarwal (2012).3

C. Random Geometric Graphs

Let X = {x1, . . . ,xn} be a set ofn points in the unit squareQ. For a fixedcommunication radius

rcomm, thegeometric graph Gover this set of points is formed by taking each point as a vertex

and connecting any two vertices whose underlying pointsx1 andx2 satisfy‖x1−x2‖2≤ rcomm.

WhenX is selected randomly following some distribution, the resulting graph is called arandom

geometric graph.

2A polynomial time algorithm runs instrongly polynomial timeonly if its running time does not depend on thesizeof the

input parameters. Note thatn is thenumberof input parameters in this case.

3Although algorithms from Sharathkumar and Agarwal (2012);Vaidya (1989) have theoretically faster running times thanthe

Hungarian method and apply to the problem that we study, theyare more difficult to implement and slower in practice unless

|X| is very large because they are not strongly polynomial time algorithms like the Hungarian method.
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Properties of random geometric graphs have been studied extensively; see Penrose (2003) for

a thorough coverage. One such property is the connectivity of these graphs, which is of particular

interest to wireless communication and robotic networks.

Theorem 3 (Random Geometric Graphs Penrose (1997))Let G be a random geometric graph

obtained following the uniform distribution over the unit square for some n and rcomm. Then for

any real number c, as n→ ∞,

P(G is connected| πnr2
comm− logn≤ c) = e−e−c

. (4)

From (4), it is possible to estimate the number of robots required to guarantee a connected

geometric graphG.

III. TARGET ASSIGNMENT IN ROBOTIC NETWORKS

In this section, we formally define the problem oftarget assignment in robotic networksand

the optimality objective.

A. Problem Statement

Let X0 = {x0
1, . . . ,x

0
n} andY0 = {y0

1, . . . ,y
0
n} be two sets of points (the superscript emphasizes

that these points are obtained at the start timet = 0) in the unit squareQ 4, selected uniformly

randomly. Placen= |X0|= |Y0| point robots on the points inX0, with robotai occupyingx0
i . Each

robot has a unique integer label (e.g.,i). In general, we denote robotai ’s location (coordinates)

at time t ≥ 0 asxi(t). The basic task (to be formally defined) is to move the robots so that at

somefinal time tf ≥ 0, everyy∈Y0 is occupied by a robot. We may assume that there is a final

time t f
i for each robotai , such thatxi(t)≡ xi(t

f
i ) for t ≥ t f

i . For convenience, we also refer to

X0 andY0 as the set of initial locations and the set of target locations, respectively.

Motion model: The robots are single integrators,i.e., ẋi(t) = ui(t) with ui(t) being piece-wise

smooth and‖ui(t)‖2∈ {0,1}. We assume the size of the robots is negligible with respect to the

distance they travel and ignore collisions between robots.

4Our results are scale-invariant because all the theorems hold for squares of any size with proper scaling. Hence, a unit square

environment is used throughout the paper.
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Communication Model 1:We study two communication models in this paper. In the first

communication model, a robotai may communicate with other robots within a disc of radius

rcomm centered atxi(t). At any given timet ≥ 0, we define the (undirected)communication graph

G(t), which is a geometric graph that changes over time, as follows.G(t) hasn verticesv1, . . . ,vn,

corresponding to robotsa1, . . . ,an, respectively. There is an edge between two verticesvi andv j

if the corresponding robot locationsxi(t) andx j(t), respectively, satisfy‖xi(t)−x j(t)‖2≤ rcomm.

Figure 1(a) provides an example of a (disconnected) communication graph.

Given our focus on distance optimality, we make the simplifying assumption that all robots

corresponding to vertices in a connected component of the communication graph may exchange

information instantaneously. In other words, robots in a connected component ofG(t) can be

treated as a single robot insofar as decision making is concerned.

rcomm

(a) Comm. model 1 (b) Comm. model 2

Fig. 1. (a) The communication graph (solid blue nodes and edges) for a set of robots under Communication Model 1 with

a communication radius ofrcomm. Robots (blue dots) in the same connected component of a communication graph can freely

communicate with each other. (b) The communication graph for a set of robots under Communication Model 2 withm= b2 = 9.

Communication Model 2:The unit squareQ is divided into m= b2 equal-sized smaller

squares (regions).5 Robots within each region can communicate with one another but robots

from different regions cannot exchange information (see, e.g., Fig. 1(b)). This model mimics

the natural (geometrical) resource allocation process in which supplies and demands are first

matched locally; the surpluses and deficits within each region then get balanced out at larger

regions, giving rise to a hierarchical strategy.

5In this paper,m is frequently used to denote the number of small squares in a division of the unit squareQ andb=
√

m is

the number of resulting partitions on an edge of the unit square. The value ofm andb may vary.
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Target-sensing model:We assume that a robot is aware of a pointy∈Y0 if ‖y−xi(t)‖2≤ rsense,

the target-sensing radius.

The problem we consider in this paper is defined as follows.

Problem 2 (Target Assignment in Robotic Networks)Given X0, Y0, rsense, and Communica-

tion Model 1 with rcommor Communication Model 2 , find a control strategyu(t)= [u1(t), . . . ,un(t)],

such that for some0≤ t f
i < ∞ and some permutationσ of the numbers1, . . . ,n, xi(t

f
i ) = y0

σ(i)

for all 1≤ i ≤ n.

Over all feasible solutions to an instance of Problem 2, we are interested in minimizing the

total distance traveled by all robots, which can be expressed as

Dn :=
n

∑
i=1

∫ t f
i

0
‖ẋi(t)‖2dt. (5)

As an accurate proxy to the energy consumption of the entire system, the cost defined in (5)

is an appropriate objective in practice. Unless otherwise specified,distance optimalityrefers to

minimizing Dn. Over all permutationsσ of the numbers 1, . . . ,n, and for fixedX0 andY0, the

minimum total distance for robots moving along continuous paths is

D∗n := min
σ

n

∑
i=1
‖x0

i −y0
σ(i)‖2, (6)

which may or may not be achievable depending on the capabilities of the robots (e.g, if the

robots cannot follow straight-line paths, thenDn > D∗n). Let U denote the set of all possible

control strategies that solve Problem 2 given a fixed set of capabilities for the robots, we say that

distance optimality is achieved if minU Dn = D∗n. Besides distance optimality, we also briefly

discuss the total task completion time (i.e., the sum of the individual task completion times as

targets are occupied), denoted byTn. If all robots start moving toward targets and do not stop

in the middle, thenTn = Dn. In particular, we defineT∗n := D∗n.

IV. GUARANTEEING DISTANCE OPTIMALITY FOR ARBITRARY rcomm AND rsense

In this section, we use Communication Model 1. In general, when rsense<
√

2 or rcomm<
√

2,

it is impossible to guarantee distance optimality, since global assignment is no longer possible

in general. For example, asrsense→ 0, the robots must search for the targets before assignments

can be made; it is very unlikely that the paths taken by the robots toward the targets will be
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straight lines, which is required to obtainD∗n. This raises the following question: Given a pair of

rcomm and rsense, under what conditions can we ensure distance optimality? Theorem 4 answers

this question.

Theorem 4 In a unit square, under sensing and communication constraints (i.e., rcomm, rsense<
√

2), distance optimality can be achieved with probability oneif and only if at t= 0:

i) the communication graph is connected, and

ii) every target is within a distance of rsenseto some robot.

PROOF. We first prove that the conditions are necessary with two claims: 1) an optimal assign-

ment that minimizesDn is possible in general only ifG(0) is connected, and 2) an optimal

assignment that minimizesDn is possible only if for ally∈Y0, y is within a distance ofrsense

to somex∈ X0.

To see that the first claim is true, we note that distance-optimal assignments forbid robots

from moving unnecessarily, requiring att = 0 a pairing between elements ofX0 and Y0 that

minimizesDn. We now show that this is not possible in general whenrcomm<
√

2. For n= 2,

assume that the two targets are located aty1 andy2 as given in Fig. 2 (solid red dots). Assume

the first robota1 is located atx1 (the blue solid dot at the lower left of Fig. 2) anda1 is of equal

rcomm

rcomm

x1

x2y1

y2

x¶2

Fig. 2. A general setup in which the two robots cannot communicate with each other att = 0 and therefore cannot always

decide an optimal assignment att = 0.

distance toy1 andy2. Let the second robota2 take two possible locationsx2 andx′2 as shown,

which are symmetric along a diagonal ofQ. If a2 is at x2 (resp.x′2), then a2 should go toy2

(resp.y1), forcing a1 to go toy1 (resp.y2). Not knowinga2’s location becausea1 is out of a2’s
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communication radius,a1 has at most 50% chance of picking the distance minimizing choice

at t = 0. We can readily extend the locations of the robots and targets to include neighborhoods

around them (the dotted circles in Fig. 2) to show that there is a non-zero probability that an

optimal assignment cannot be made att = 0. This proves that thatG(0) cannot have more than

one connected component and must be connected. The example can be extended to work for

arbitraryn by adding additional robots and targets to close vicinitiesof x1 andy1, respectively.

For the second claim, suppose that att = 0, somey∈Y0 is not within a distance ofrsenseto

any x∈ X0. A robot must move to search for thaty. This will cause the robot to follow a path

that is not a straight line with probability one, implying that Dn = D∗n with probability zero.

It is not hard to see that the necessary conditions from the two claims are also sufficient:

whenG(0) is connected and each target is observable by some robotai, the robots can decide

at t = 0 a global assignment that minimizesDn. �

Theorem 4 suggests a simple way for ensuring distance optimality by either increasing the

number of robots or increasing one or both ofrcomm and rsense. This essentially leads to a

centralized communication and control strategy (Strategy1). Note that given the assignment

permutationσ , each robotai can easily compute its straight-line path betweenx0
i and y0

σ(i).

Since every robot can carry out the computation in Strategy 1, to resolve conflicting decisions

and avoid unnecessary computation, we may let the highest labeled robot (e.g.,an) handle the

entire assignment process.

Strategy 1: CENTRALIZED ASSIGNMENT

Initial condition : X0,Y0

Outcome: permutationσ that assigns a robotai to y0
σ(i)

1 computedi, j = ‖xi−y j‖2 between each pair of(xi ,y j) in which xi ∈ X0 andy j ∈Y0

2 compute over{di, j} an assignment that minimizesDn

3 communicate the assignment to all the robots

The rest of this section establishes how the conditions fromTheorem 4 can be met. We

point out that similar conclusions can also be reached by exploring Theorem 3, which yields

an asymptotic relationship between the required number of robots forG(0) to be connected and
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rcomm. We take a different approach and produce the required number of robots as an explicit

function of rcomm without the asymptotic assumption.

A. Guaranteeing a Connected G(0)

Since the robots can be anywhere in the unit squareQ, given a communication radius of

rcomm<
√

2, intuitively, at leastΘ(1/r2
comm) robots are needed for a connectedG(0), which

requires the robots to take a lattice-like formation such asa grid. It turns out that when the

robots are uniformly randomly distributed, only a logarithmic factor more robots are needed to

ensure a connectedG(0).

Lemma 5 Suppose that n robots are uniformly randomly distributed inthe unit square. For fixed

rcomm<
√

2 and 0< ε < 1, at t = 0, the communication graph is connected with probability at

least1− ε if

n≥ ⌈
√

5
rcomm

⌉2 log(
1
ε
⌈
√

5
rcomm

⌉2). (7)

PROOF. We divide the unit squareQ into m= b2 equal-sized small squares withb= ⌈
√

5/rcomm⌉.
Label these small squares{q1, . . . ,qm}. Under this division scheme, a robot residing in a small

squareqi can communicate with any other robot in the four squares sharing a side withqi (see

Fig. 3). Therefore,G(0) is connected if eachqi contains a robot. Letni denote the number of

robots inqi . Then

P(ni = 0) = (1− 1
m
)n < e−

n
m.

1

2

b

.

.

.

rcomm

Fig. 3. If the small squares have a side length of⌈
√

5/rcomm⌉ or smaller, then a robot in such a square (e.g., the gray square)

can communicate with any robot in the four neighboring smallsquares sharing a side with the gray square.
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The inequality holds because(1−x)n < e−nx for 0< x< 1. To see this, letf (x) = log(1−x)/x.

The Taylor expansion off (x) at x = 0 is −1− x/2− x2/3+ o(x3) < −1 for 0< x < 1. This

shows that log(1−x) < −x for 0< x< 1⇒ nlog(1−x)< −nx⇒ (1−x)n < e−nx. By Boole’s

inequality (i.e., the union bound), the probability that at least one ofq1, . . . ,qm is empty can be

upper bounded as

P(
m
⋃

i=1

E(ni = 0))≤
m

∑
i=1

P(ni = 0)< me−
n
m.

Settingme−n/m = ε and replacingm= ⌈
√

5/rcomm⌉2 yields

⌈
√

5
rcomm

⌉2exp(−n
1

⌈
√

5
rcomm
⌉2
) = ε

⇒ n= (⌈
√

5
rcomm

⌉2) log(
1
ε
⌈
√

5
rcomm

⌉2),

which guarantees that each small square contains at least one robot with probability 1− ε. �

The bound in Lemma 5 can be further tightened; Corollary 6 (below) illustrates one way to

achieve this. It producesn smaller than that given by (7) whenrcomm<
√

5/2.

Corollary 6 Suppose that n robots are uniformly randomly distributed inthe unit square. For

fixed rcomm<
√

2 and0< ε < 1, at t= 0, the communication graph is connected with probability

at least1− ε if

n≥ ⌈
√

5
rcomm

⌉2 log
[1

ε
(
1
2
⌈
√

5
rcomm

⌉2+ ⌈
√

5
rcomm

⌉)
]

. (8)

Fig. 4. As long as each of the shaded small squares contains anrobot, G(0) must be connected. Therefore, onlyb2/2+b

small squares need to have robots in them.

PROOF. If each of the shaded small squares in Fig. 4 has at least one robot, thenG(0) must

be connected: any robot falling in a small white square must be connected to some robot in a
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shaded small square. This shows that (8) is sufficient. �

Remark. In comparison to Theorem 3, Lemma 5 providesn as an explicit function ofrcomm.

Moreover, our sufficient condition onn given in (7) (and (8)), unlike (4), is not an asymptotic

bound. Therefore, our bound applies to an arbitraryrcomm. On the other hand, if we letrcomm→ 0,

then an asymptotic statement can also be made.

Lemma 7 Suppose that n robots, each with a communication radius of rcomm, are uniformly

randomly distributed in the unit square. At t= 0, the communication graph is asymptotically

connected with arbitrarily high probability e−e−c
(for some c> 0) if

n≥ (2log⌈
√

5
rcomm

⌉+c)⌈
√

5
rcomm

⌉2. (9)

PROOF. Given the division scheme used in the proof of Lemma 5, distributing robots into the unit

squareQ is equivalent to tossing the robots (balls) into them small squares (bins) uniformly ran-

domly. By Corollary 2, asm→∞, havingn≥mlogm+cm= (2log⌈
√

5/rcomm⌉+c)⌈
√

5/rcomm⌉2

robots guarantees that allm small squares must have at least one robot each with probability

e−e−c
. �

Since f (x)= cxgrows slower thang(x)= xlogx asx→∞, Lemma 7 says thatn=Θ((1/rcomm)
2

log(1/rcomm)) robots can ensure thatG(0) is connected with probability arbitrarily close to one

asymptotically. Next, we show that these many robots are also necessary for the high probability

guarantee.

Let Pn,m(E) denote the probability of an eventE happening after tossingn balls intom bins.

We work with two events:E0, the event that “at least one bin is empty”, andE1, the event that

“at least one bin contains exactly one ball”. We want to show that Pn,m(E1) is not too small for

n up to mlogm, which is proven in the next two lemmas.

Lemma 8 Suppose that1≤ n≤m balls are tossed uniformly randomly into m bins. Then

Pn,m(E1)≥ (1− 1
m
)m−1 > e−1.

PROOF. First we prove a useful inequality: form∈ N,

(1− 1
m
)m−1 > e−1. (10)
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To see this, note that the function log(1−x)
1
x−1 has a Taylor expansion of−1+x/2+o(x2)>−1

for smallx> 0, yielding that(1−x)
1
x−1 > e−1 for smallx> 0. Since the derivative of(1−x)

1
x−1

is positive forx∈ (0,1), (10) holds for allm> 0 (we use the definition 00 = 1 here).

To prove Lemma 8, because all bins are initially empty, aftertossing the first ball, some bin

contains exactly one ball. That is,P1,m(E1) = 1. Let the bin occupied by the first ball be bin 1.

As k−1 additional balls are tossed into them bins, the probability that none of thesek−1 balls

occupy bin 1 is(1−1/m)k−1. Therefore, for 1≤ k≤m, we have

Pk,m(E1)≥ P1,m(E1)(1−
1
m
)k−1

≥ P1,m(E1)(1−
1
m
)m−1

= (1− 1
m
)m−1 > e−1.

�

Lemma 9 Suppose that m< n< mlogm balls are tossed uniformly randomly into m bins. As

m→ ∞,

Pn,m(E1)≥ (1−e−e)(1− 1
m
)m−1 > (1−e−e)e−1.

PROOF. Suppose that after an experiment ofn′ tosses intom bins,E0 holds; i.e., at least one bin

is empty. Without loss of generality, we assume the empty binis bin 1. Now consider tossing

an additionalk balls into them bins. The probability of exactly one of thesek balls falling in

bin 1 is
Pk,m(exactly one ball falls in bin 1)

=

(

k
1

)

1
m
(1− 1

m
)k−1 =

k
m
(1− 1

m
)k−1.

Therefore,
Pn′+k,m(E1)

≥ Pn′,m(E0)Pk,m(exactly one ball falls in bin 1)

=
k
m
(1− 1

m
)k−1Pn′,m(E0).

(11)

Letting c=−1 in Corollary 2, we have

lim
m→∞

P(T1≥mlogm−m) = 1−e−e. (12)
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That is, asm→ ∞, for 0< n′ < mlogm−m, Pn′,m(E0)≥ 1−e−e. Plugging this into (11) and

letting k= m, we have that form< n< mlogm, asm→ ∞,

Pn,m(E1)≥ (1−e−e)
m
m
(1− 1

m
)m−1 > (1−e−e)e−1,

in which the last inequality is by (10). �

Under the assumptions of Lemmas 8 and 9, we always have that asm→ ∞,Pn,m(E1) >

min{e−1,(1−e−e)e−1} > 0.34. We now show thatn = Θ((1/rcomm)
2 log(1/rcomm)) is a tight

bound on the number of robots for guaranteeing the connectivity of G(0) with high probability.

Theorem 10 For n uniformly randomly distributed robots in a unit squarewith a communication

radius rcomm,

n= Θ(
1

r2
comm

log
1

rcomm
) (13)

is necessary and sufficient to ensure that at t= 0, the communication graph is asymptotically

connected with arbitrarily high probability.

PROOF. Lemma 7 covers sufficiency; we are to show that there is some non-trivial probability

that G(0) is disconnected if the number of robots satisfies

n= o(
1

r2
comm

log
1

rcomm
).

To prove the claim, we partition the unit squareQ into m= b2 equal-sized small squares in

which b= ⌊1.1/rcomm⌋. The factor of 1.1 in the expression makes the side of the small square

larger thanrcomm. Assuming thatm is divisible by 3 (it is always possible to truncate some small

squares to satisfy this), we may group the small squares intom/9 groups of 3×3 blocks (see,

e.g., Fig. 5).

If there is a single robot in a 3×3 block, the robot cannot communicate with the rest of the

robots if it falls inside the small square in the center of theblock (e.g., the solid gray square in Fig.

5). By Lemmas 8 and 9, for less than(m/9) log(m/9) = 2⌊1.1/rcomm⌋2 log(⌊1.1/rcomm⌋/3)/9

robots, the probability of having at least one of these 3× 3 blocks containing exactly one

robot is at least 0.34 asm→ ∞ (i.e., rcomm→ 0). If a 3×3 block has exactly one robot in

it, with probability of 1/9, the robot is in the middle square. Therefore, with probability at least

0.34/9≈ 0.04, G(0) is disconnected. �
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rcomm

Fig. 5. A 3×3 block as defined in the proof Theorem 10.

B. Ensuring Target Observability

With a connected communication graphG(0) guaranteed by Lemma 5, we can solve a single

assignment problem if for eachy ∈ Y0, ‖y− x‖2 ≤ rsensefor somex ∈ X0. Similar techniques

used in the proof of Lemma 5 lead to a similar lower bound onn.

Lemma 11 Suppose that n robots and n targets are uniformly randomly distributed in the unit

square. For fixed rsenseand 0< ε < 1, every target is observable by some robot at t= 0 with

probability at least1− ε if

n≥ ⌈
√

2
rsense

⌉2 log(
1
ε
⌈
√

2
rsense

⌉2). (14)

PROOF. If we partition the unit squareQ into ⌈
√

2/rsense⌉2 equal-sized small squares and there

is at least one robot in each small square, then any point ofQ is within rsensedistance to some

robot. Following the same argument used in the proof of Lemma5, the inequality from (14)

ensures that this happens with probability at least 1− ε. �

Putting together Lemmas 5 and 11, we obtain a lower bound onn that makes a distance-optimal

assignment possible.

Theorem 12 Suppose that n robots and n targets are uniformly randomly distributed in the unit

square. Fixing0< ε < 1, at t = 0, the communication graph is connected and every target is

observable by some robot with probability at least1− ε if

n≥ ⌈
√

10
θ
⌉2 log(

1
ε
⌈
√

10
θ
⌉2), (15)

in which θ := min{
√

5rsense,
√

2rcomm}.
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PROOF. Whenθ =
√

5rsense, (15) becomes (14), which implies (9). Therefore,G(0) is connected

with probability 1− ε.

Whenθ =
√

2rcomm, i.e., rsense≥
√

10rcomm/5, by Lemma 5, (9) implies thatG(0) is connected

with probability 1−ε. Moreover, there is at least one robot in each of the small squares with a side

length of at mostrcomm/
√

5 (as specified in the proof of Lemma 5). Havingrsense≥
√

10rcomm/5

guarantees that robots in a small square observes all targeswithin the same small square.

Therefore, everyy∈Y0 is within a distance ofrsenseto somex∈ X0. �

Remark. Theorem 12 is not an asymptotic result and applies to allrcomm andrsense. If a high

probability asymptotic result is desirable, Lemma 11 can bereadily turned into a version similar

to Theorem 10, by following the same proof techniques. In view of this fact, the bounds from

Theorem 12 are asymptotically tight.

V. H IERARCHICAL STRATEGIES FORrsense≥
√

2: OPTIMAL DISTANCE AND PERFORMANCE

GUARANTEES

In this section, we work with the (region-based) Communication Model 2 and assume that

rsense≥
√

2 (that is, every robot is aware of the entireY0). The study of Communication Model 2,

besides leading to interesting conclusions on hierarchical strategies, also facilitates the analysis

in Section VI as we revisit Communication Model 1.

A region-based communication model naturally leads to a hierarchical strategy for solving

Problem 2 under the optimality criterion of minimizing the cost defined by (5). Leth≥ 1 be the

number of hierarchies andmi ,1≤ i ≤ h, be the number of equal-sized regions at hierarchyi. We

make the following assumptions that are mainly used in Theorem 16: i) m1≡ 1, ii) mi+1≥mi ,

and iii) a region at a higher numbered hierarchy is contained in a single region at a lower

numbered hierarchy. For example, dividingQ into 4i−1 squares at hierarchyi satisfies these

requirements. We call the associated strategy under these assumptions thehierarchical divide-

and-conquerstrategy, the details of which are described in Strategy 2. Note that for each region

in Strategy 2, the robots can again let the highest labeled robot within the region carry out the

strategy locally.

It is clear that Strategy 2 is correct by construction because |X0|= |Y0|. The rest of this section

is devoted to analyzing the strategy. We begin with a single hierarchy (h= 1). Sincersense≥
√

2
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Strategy 2: HIERARCHICAL-DIVIDE -AND-CONQUER

Initial condition : X0,Y0,h,m1, . . . ,mh

Outcome: permutationσ that assigns a robotai to y0
σ(i)

1 for each hierarchy i∈ {1, . . . ,h} in decreasing orderdo

2 for each region j∈ {1, . . . ,mi} do

3 let na andng be the number of unmatched robots and targets in regionj,

respectively

4 if na≥ ng > 0 then

5 pick the firstng robots from thena unmatched robots and run an assignment

algorithm to match them with theng unmatched targets in regionj

6 else if ng≥ na > 0 then

7 pick the firstna targets from theng unmatched targets and run an assignment

algorithm to match thena unmatched robots with thesena targets in regionj

8 else

9 continue

implies that all robots are aware of the entire setY0, the robots may form a consensus of which

robot should go to which target att = 0 by finding an optimal assignmentσ that yieldsD∗n

as defined by (6). This assignment problem can be solved usinga bipartite matching algorithm

such as the Hungarian method. Ajtai, Komlós, and Tusnády proved the following aboutD∗n.

Theorem 13 (Optimal Matching Ajtai et al. (1984)) Assuming that n points are i.i.d. follow-

ing the uniform distribution over a unit square, then, with probability 1−o(1),

C1
√

nlogn≤ D∗n≤C2
√

nlogn, (16)

in which C1 and C2 are positive constants.

Remark. The second inequality in (16) remains true in expectation and also for arbitrary

probability measures on[0,1]2, albeit with a different universal constant thanC2, by a result of

Talagrand Talagrand (1992). Therefore,D∗n = Θ(
√

nlogn) in expectation. Although no formulas

for C1 and C2 from (16) were given in Ajtai et al. (1984), a simulation study suggests that
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Fig. 6. The ratio ofD∗n/
√

nlogn. Each data point is an average of 25 runs.

C1 <C2 < 1 andC2/C1→ 1 asn→∞. As an example, for 200≤ n≤ 10000, 0.4
√

nlogn≤D∗n≤
0.5
√

nlogn on average (see Fig. 6).

Next, we look at the general case withh> 1 hierarchies. To boundDn, at each hierarchyi,

we need to know the number of robots that cannot be matched locally. We derive this number

in Lemma 14. Note that Lemma 14 does not depend onm andn being large.

Lemma 14 Suppose that n robots and n targets are uniformly randomly distributed in the unit

square Q, and Q is divided into m equal-sized regions. Withineach of these m regions, the robots

are matched one-to-one with the targets until no more matchings can be made. The total number

of robots that are left unmatched is no more than
√

n(m−1)/2 in expectation.

PROOF. Restricting to one of them equal-sized regions, sayqi , we know forx0
j ∈X0 andy0

j ∈Y0,

P(x0
j ∈ qi) = P(y0

j ∈ qi) =
1
m
,

and

P(x0
j ∈ qi ,y

0
j /∈ qi) = P(x0

j /∈ qi ,y
0
j ∈ qi) =

m−1
m2 ,

in which the event(x0
j ∈ qi ,y0

j /∈ qi) represents a surplus of one robot inqi and the event(x0
j /∈

qi ,y0
j ∈ qi) a deficit in qi. Thus, we may view the experiment of pickingx0

j and y0
j as a one

step walk on the real line starting at the origin, with(m−1)/m2 probability of moving±1. The

entire process of pickingX0 andY0 can then be treated as a random walk ofn such steps.

Under this random walk analogy, we may use a random variableZ j ∈ {0,±1} to represent

the outcome of picking(x0
j ,y

0
j ). We immediately have thatE[Z2

j ] = 2(m−1)/m2. Letting Sn =
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Z1+ . . .+Zn, we can compute the variance ofSn as

E[S2
n] = E[(Z1+ . . .+Zn)

2] = E[Z2
1 + . . .+Z2

n]

= nE[Z2
j ] =

2n(m−1)
m2 .

Applying Jensen’s inequality to the concave function
√

x with x= |Sn|2 = S2
n, we have

E[|Sn|] = E[
√

S2
n]≤

√

E[S2
n]

⇒ E[|Sn|]≤
√

2n(m−1)
m2 .

Because, in expectation, an equal number of them regions have surpluses (more robots than

targets) and deficits (fewer robots than targets), and some of the m regions may have neither, no

more than half of them regions should have a surplus of robots on average. The totalnumber

of unmatched robots in expectation is then no more than(m/2)∗E[|Sn|]≤
√

n(m−1)/2. �

The distance traveled by the matched robots at the bottom hierarchy with m regions can be

bounded easily. For simplicity, we now assume that these regions are equal-sized squares.

Lemma 15 Suppose that n robots and n targets are uniformly randomly distributed in the unit

square Q, and Q is divided into m equal-sized small squares. Within each of these m small

squares, the robots are matched one-to-one with the targetsuntil no more matchings can be

made. The minimum total distance of matchings made between the robots and the targets within

the small squares is no more than C
√

nlogn in expectation, for some positive constant C.

PROOF. SinceQ is divided intom squares, these squares all have a side length of 1/
√

m. Let one

such square beqi with ni robots (note that∑m
i=1ni = n). Since a uniform distribution restricted

to qi is again uniform, we can apply Theorem 13 toqi . If we let theseni robots match only

with targets insideqi, then the total distance incurred locally will not exceedC
√

ni logni/m in

expectation. HereC is some positive constant.

Note that it is not necessarily the case that allni robots will be matched locally inqi . This does

not affect the current proof. For some 1≤ i ≤m, it may be the case that no local matchings can

be made because eitherni = 0 or there is no target inqi . Let m′ ≤m denote the number of these

m squares in which local matchings can be made. The total distance incurred by local matchings
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is then upper bounded by (note thatni is now indexed with respect to thesem′ squares)

m′

∑
i=1

C

√

ni logni

m
=C

m′√
m

m′

∑
i=1

1
m′

√

ni logni .

Here we assume thatm′ > 0, otherwise the local matchings would have a distance cost

of zero. Since the functionϕ(x) =
√

xlogx is concave, by Jensen’s inequality,E[
√

xlogx]

≤
√

E[x] log(E[x]). Letting x= ni and the expectation be carried out over the discrete uniform

distribution with 1/m′ probability each, we have

C
m′√
m

m′

∑
i=1

1
m′

√

ni logni ≤C
m′√
m

√

√

√

√(
m′

∑
i=1

ni

m′
) log(

m′

∑
i=1

ni

m′
)

=C

√

m′

m

√

√

√

√(
m′

∑
i=1

ni)(log(
m′

∑
i=1

ni)− log(m′))

≤C
√

nlogn.

�

Remark. With minor modifications, Lemma 15 can be applied to regions with shapes other

than squares. Defining the diameter of a two-dimensional region as the diameter of the region’s

smallest enclosing circle, the main requirement for the modification to work is that the maximum

diameter of these regions isO(1/
√

m).

We now give an upper bound onDn, in expectation, for general hierarchical strategies.

Theorem 16 Suppose that n robots and n targets are uniformly randomly distributed in the unit

square Q, and Q is divided into mi equal-sized small squares at hierarchy i with a total of h≥ 2

hierarchies. For all applicable i≥ 1, assume that mi+1≥mi and any small square at hierarchy

i +1 falls within a single square at hierarchy i. Then Strategy 2 yields

E[Dn]≤C
√

nlogn+
h−1

∑
i=1

√

nmi+1

mi
. (17)

PROOF. TheC
√

nlogn term on the RHS of (17) is due to Lemma 15. Then at each hierarchy i

with 1≤ i < h, each of themi squares containsmi+1/mi smaller squares from hierarchyi +1.

Here we use the assumption that a region at a higher numbered hierarchy falls completely

within a single region at a lower numbered hierarchy. This means that a robot that gets matched

at hierarchyi needs to travel at most a distance of
√

2/mi. Since there are no more than
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√

n(mi+1−1)/2<
√

mi+1n/2 unmatched robots at hierarchyi in expectation by Lemma 14, the

distance incurred at hierarchyi is no more than
√

nmi+1/mi for 1≤ i < h. Summing up all the

distances then gives us the inequality (17). �

Theorem 16 allows us to upper bound the performances of different hierarchical strategies

depending on the choices ofh and{mi}. We observe that for fixedh and{mi} independent ofn,

the first termC
√

nlogn dominates the other terms in (17) asn→ ∞. This implies that Strategy

2 yields assignments whose total distance is at most a constant multiple of the optimal distance.

This observation is summarized in Corollary 17. Recall thatD∗n is the minimum possible distance

defined by (6).

Corollary 17 For fixed h and m1, . . . ,mh that do not depend on n, as n→ ∞, Strategy 2 yields

target assignments with Dn/D∗n = O(1) in expectation.

For example, withh≥ 2 andmi = 4i−1 at hierarchyi, we have

E[Dn]≤C
√

nlogn+
h−1

∑
i=1

√
4n

=C
√

nlogn+2(h−1)
√

n.

(18)

For any fixedh, asn→∞, Dn/D∗n≤C/C1+o(1) = O(1). A constant approximation ratio can

also be achieved whenh and {mi} depend onn. For example, lettingh = 3, m2 = logn, and

m3 = log2n, we have

E[Dn]≤C
√

nlogn+
2

∑
i=1

√

nlogn= (C+2)
√

nlogn. (19)

Since hierarchical strategies need not run centralized assignment algorithms for all robots, the

computational part of these strategies can be significantlyfaster. We will come back to this point

in the next section.

Remark. Before concluding this section, it is worth mentioning thatthe results of this section

continue to hold in only slightly weaker forms when the pointsetsX0,Y0 are drawni.i.d. from

the samearbitrary distribution over [0,1]2 (based on Talagrand Talagrand (1992)). Since the

topic of arbitrary probability measures diverges from the main focus of this paper, we only

briefly discuss extending the results of this section to dealwith arbitrary probability measures

on [0,1]2.
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To adapt Lemma 14 for arbitrary probability measures, assume that each regionqi (see the

proof of Lemma 14) has an overall probability ofpi of receiving a robot or target. Note that

∑m
i=1 pi = 1. This changes the upper bound ofE[|Sn|] for the regionqi to

√

2npi(1− pi). Then,

over all m regions, the total number of unmatched robots is bounded by
m

∑
i=1

√

2npi(1− pi) = m
√

2n
m

∑
i=1

1
m

√

pi(1− pi)

≤m
√

2n

√

m

∑
i=1

pi

m
(1−

m

∑
i=1

pi

m
)

= m
√

2n

√

1
m
(1− 1

m
)

=
√

2n(m−1),

in which the inequality is obtained by applying Jensen’s inequality to the concave function
√

x(1−x).

Besides updating the uniform distribution ofX0 andY0 to an arbitrary probability measure,

the statement and proof of Lemma 15 remain largely unchanged. This is because the second

inequality in (16) does not change asymptotically as the underlying robot and target distribution

changes. Then, the inequality (17) from Theorem 16 merely adds a multiplicative constant of 2 to

its second term on the RHS. Because the first inequality in (16) is not known to hold for arbitrary

probability measures, we do not have a parallel of Corollary17 for arbitrary probability measures.

Nevertheless, these bounds for arbitrary probability measures suggest that the uniform distribution

is among theworstdistributions for Problem 2 under the optimality constraint of minimizing (5).

This is because the uniform distribution leads to an optimalassignment distance ofΩ(
√

nlogn),

and an arbitrary distribution leads to an optimal assignment distance ofO(
√

nlogn). Note that

these updates also apply to the results in the next section with appropriate modifications.

VI. NEAR OPTIMAL STRATEGIES

After exploring hierarchical strategies for the region-based Communication Model 2, we now

return to the range-based Communication Model 1. Ifrcomm is arbitrary and the conditions

specified in Theorem 4 are not known to hold, the best we can do is obtain near distance-

optimal strategies. In this section, we show that constant ratio approximation of distant optimality

is possible for arbitraryrsenseand rcomm. The basic idea behind our strategies is to move the

robots to pass around information about the locations of other robots. The assumptionrsense≥
√

2
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is made temporarily. At the end of this section, we show how toremove this assumption without

affecting asymptotic optimality.

A. Near Distance-Optimal Rendezvous Strategy

Our first suboptimal strategy uses moving robots for information aggregation until some robot

is aware of the locations of all robots (i.e., the setX0), at which point a centralized optimal

assignment can be made. Although some robots will move and change their locations during

this process, the moved robots nevertheless are aware of their initial locations in X0. To carry

out the strategy, the unit squareQ is divided intom= b2 disjoint, equal-sized small squares,

with b= ⌈
√

2/rcomm⌉. These small squares are labeled asqi, j ’s, in which i and j are the row

number and column number of the square, respectively (see Fig. 7).

q
2,5

Fig. 7. Directions for robots to move in the rendezvous strategy.

Based on its initial location, each robot can identify the small squareqi, j it lies in. At t = 0,

the robots in the squares on row 1 and rowb start moving in the direction as indicated in Fig. 7.

We want to use these robot to pass the information of where allrobots are. At most one robot

per square is required to move since all robots in a small square can communicate with each

other by the assumptionb= ⌈
√

2/rcomm⌉.
Assuming that a robot in a squareqi, j is moving downwards, it keeps moving until it is within

the communication radius of a robot in a square with labelqi+k, j ,k≥ 1, at which point it passes

over the information it has and stops. The robot inqi+k, j then does the same. The procedure

continues until a robot reaches the middle ofQ (row ⌈b/2⌉). Then, the robots in the squares

on row ⌈b/2⌉ repeat the same process horizontally until a robot in the center of Q knows the

locations of all other robots. At this point, the robot in thecenter ofQ that knows the location
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of all other robots makes a global assignment so that each robot is matched with a target. The

moved robots then reverse their travel directions to deliver the assignment information to all

robots. The outline of the strategy is given in Strategy 3.

Strategy 3: RENDEZVOUS

Initial condition : X0,Y0, rcomm

Outcome: produces a permutationσ that assigns robots to targets and communicatesσ to

all the robots

1 each robot computes its squareqi, j based onrcomm. Let the highest labeled robot within

eachqi, j be ai, j , which representsqi, j

2 for each qi, j , 1≤ i, j ≤ b= ⌈
√

2/rcomm⌉ do

3 if i 6= ⌈b/2⌉ then

4 waitTime← |⌈b/2⌉− i|/b

5 else

6 waitTime← 1/2+ |⌈b/2⌉− j|/b

7 ai, j waits for up towaitTimeunits of time for information from a robot coming from

the previous square. After the information is received or after waitTimepasses,ai, j

starts moving to the next squares and delivers its information once it can communicate

with another robot in these squares. It then stops

8 robot a⌈b/2⌉,⌈b/2⌉ computesσ ; the earlier communication process is then reversed to

deliver σ to all the robots.

The correctness of Strategy 3 as an algorithm is proven by construction. Besides the distance

cost from the assignment, the robots in each column travel atmost a total distance of two. The

middle row incurs an extra distance of at most two. Thus, in expectation,Dn <D∗n+2b+2. Since

D∗n = Θ(
√

nlogn), D∗n dominates 2b+2 when b = o(
√

nlogn). In particular,n = Θ(1/r2
comm)

satisfies this requirement. Therefore, Strategy 3 can yieldnear distance-optimal solution without

requiring ann as large as (13) with respect to 1/rcomm.

A drawback of Strategy 3 is that no robot can move to the targets until the assignment phase

is complete. This yields a total task completion time ofTn ≈ 2n+T∗n in expectation, which is

undesirable sinceT∗n = O(
√

nlogn) asymptotically. Furthermore, Strategy 3 requires runninga
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centralized assignment algorithm for all robots. This might be impractical for largen. We address

these issues with decentralized hierarchical strategies.

B. Decentralized Hierarchical Strategies

We first look at a decentralized hierarchical strategy that combines Strategies 2 and 3. Instead

of waiting for a centralized assignment to be made, in each ofthe small squareqi, j as specified

in Strategy 3, we let the robots inqi, j be assigned to targets that belong to the same square (we

refer to these aslocal assignments). The robots that are not matched to targets then carry out

Strategy 3. We denote this hierarchical rendezvous strategy as Strategy 4 and omit the pseudo

code.

Corollary 18 For Strategy 4 (2-level Hierarchical Rendezvous), as n→ ∞,

E[Dn]≤C
√

nlogn+
√

mn+2
√

m+2, (20)

and

E[Tn] = Θ(
√

nlogn+
√

mn). (21)

PROOF. The bound onE[Dn], given by (20), is straightforward to compute using Theorem16,

in which the first two terms on the right side of (20) correspond to the first and second terms of

the right side of (17), respectively, and the last two terms are due to communication overhead.

For total completion time, all butΘ(
√

mn) robots can start moving to their targets att = 0. For

the Θ(
√

mn) robots, they need to wait no more than two units of time each before moving to

their targets. This gives us (21). �

Remark. Similar to Strategy 3, for any fixedm, in expectation,Dn/D∗n = O(1) as n→ ∞.

Moreover, in contrast to Strategy 3, for any fixedm, Tn/T∗n =O(1) in expectation. Suppose that a

centralized algorithm requirest(n) running time. Using the same centralized algorithm, Strategy

4 has a running time ofO(mt(n/m)+ t(
√

mn)). If t(n) = O(n3) as given by the Hungarian

method, then Strategy 4 has a running time ofO(n3/m2+(mn)3/2). Taking n= 10000,m= 10,

for example, we get a 1000-time speedup.

By introducing additional hierarchies, Strategy 4 can be easily extended to a multi-hierarchy

decentralized strategy. Depending on how the subdivisionsare made, many such strategies are



28

possible. For example, usingh≥ 2 hierarchies with each hierarchyi having 4i−1 small squares,

we get a “quad-merging” strategy as illustrated in Fig. 8, inwhich up to four representatives in

four adjacent squares meet to decide a local assignment of the robots in these squares at a given

hierarchy level.

Fig. 8. Illustration of robot movements in a potential hierarchical strategy.

Although these suboptimal strategies vary in detail, they can be easily analyzed with Theorem

16. For example, we look at an extension to Strategy 4 with three hierarchies; let us call this

strategy Strategy 5. After partitioning the bottom (or third) hierarchy tom squares, the middle

(or second) hierarchy is partitioned intok=
√

m small squares. At either the third or the second

hierarchy, local assignments are made, followed by applying the rendezvous strategy as given

in Strategy 3. It is again straightforward to derive the following.

Corollary 19 For Strategy 5 (3-level Hierarchical Rendezvous), as n→ ∞,

E[Dn]≤C
√

nlogn+2
√

n
√

m+4
√

m+2. (22)

Remark. Again, Dn/D∗n = O(1) as n→ ∞ for a fixed m. Introducing more hierarchy levels

extends the total completion timeTn, which is increased by approximately 2
√

m. Thus, the total

completion time of Strategy 5 is also given by (21). Following similar analysis, the overall

running time required by Strategy 5 isO(mt(n/m)+
√

mt(
√

n)+ t(
√

n
√

m)) given a centralized

assignment algorithm that runs int(n) time.

C. Handling Arbitrary rsense

Because there can be targets anywhere inQ, to carry out the algorithms stated in this section,

each robot must be aware of all target locations. For this to happen for arbitraryrsense, Q must be
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swept through in a worst scenario. To do this, we partitionQ into ⌈1/(2rsense)⌉2 small squares

and let a robot in the top-left small square “zig-zag” through Q (i.e., following a Boustrophedon

path Choset (2000)) until it covers the bottom side ofQ. If there is no robot in the top-left small

square, then a robot in a square along the Boustrophedon pathis used; implicit timing can be

used to determine this. Once the end of the path is reached, the robot then reverses its course

until it gets back to the top-left small square. At this point, this robot is aware of all target

locations. It can then repeat a similar path to communicate that information to all other robots.

This procedure ensures that all robots are aware of all target locations. The total distance cost

of the procedure is about 2⌈1/(2rsense)⌉+ ⌈1/(2rcomm)⌉. Taking this penalty, which does not

depend onn and therefore has no impact on the asymptotic optimality, wecan then effectively

assumersense≥
√

2.

VII. SIMULATION STUDIES

A. Number of Required Robots for a Connected G(0)
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Fig. 9. Effects ofn on the connectivity ofG(0) for different values ofrcomm.

In this subsection, we show a result of simulation to verify our theoretical findings in Section

IV. Since the bounds overrcomm and rsense are similar, we focus onrcomm and verify the

requirement for the connectivity ofG(0) for severalrcomm’s ranging from 0.01 to 0.2. For

each fixedrcomm, various numbers of robots are used starting fromn=− logrcomm/r2
comm (the

number of robots goes as high as 3×105 for the case ofrcomm= 0.01). 1000 trials were run

for each fixed combination ofrcomm and n. The percentage of the runs with a connectedG(0)

is reported in Fig. 9. The simulation suggests that the bounds onn from Theorem 10 are fairly

tight.
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TABLE I

COMPARISON BETWEEN(4) AND (7)

prob.
rcomm

0.2 0.1 0.05 0.02 0.01

0.1 0.001, 0.82 0.001, 0.96 0.001, 0.99 0.001, 1 0.003, 1

0.5 0.007, 0.92 0.006, 0.98 0.027, 0.99 0.064, 1 0.081, 1

0.9 0.2, 0.99 0.31, 1 0.381, 1 0.477, 1 0.502, 1

0.99 0.702, 1 0.742, 1 0.794, 1 0.834, 1 0.855, 1

To compare to (4), which also allows for estimation ofn in terms ofrcomm with a specified

probability for obtaining a connectedG(0), we computedn based on (4) and (7) for a range

of rcomm-probability pairs. We then use thesen’s to estimate the actual probability of having a

connectedG(0). We list the result in Table I. Each main entry of the table hastwo probability

numbers separated by a comma, obtained using (4) and (7), respectively. As we can see, (4)

gives underestimates (due to its asymptotic nature) and cannot be used to provide probabilistic

guarantees. On the other hand, (7) provides overestimates that guarantee the desired probability.

B. Performance of Near Optimal Strategies

Next, we simulate Strategies 2-5 and evaluateDn, Tn, and running time for these strategies

over various values ofn and rcomm, assumingrsense≥
√

2. Due to our choice ofk =
√

m in

Strategy 5, we pick specificrcomm’s so thatm= ⌈
√

2/rcomm⌉ is always a perfect square. These

values arercomm= 0.16,0.09,0.057, and 0.04, which correspond tom= 81,256,625, and 1296,

respectively. The number of robots used in each simulation ranges from 100 to 10000. For each

n, 10 assignment problem instances are randomly generated. These problem instances are then

used to test all strategies. We test Strategy 2 using the same(two-hierarchy and three-hierarchy)

partitions that are used with Strategies 4 and 5.

Distance optimality:The ratiosDn/D∗n for Strategy 3 over differentn andrcomm are plotted in

Fig. 10. We observe that the overhead for establishing global communication among the robots

becomes insignificant asn increases, drivingDn/D∗n to close to one.

For Strategy 4, the ratios were plotted similarly in Fig. 11 but with (small) error bars. The error

bars display the standard deviation over the 10 runs (we omitted these from a figure, such as Fig.
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10, when they are too small to see). They can be better seen in Fig. 12, which is a zoomed-in

version of thercomm= 0.16 line from Fig. 11. The similarities between Fig. 10 and Fig. 11 for

small n are not surprising since both strategies spend most of theireffort (distance traveled) in

establishing communication. As this extra communication cost diminishes asn grows, the actual

assignment cost dominates. Strategy 3, with assignment being done in a centralized manner,

becomes better than the decentralized Strategy 4.
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Fig. 13. Distance optimality of Strategy 5 over varyingn and rcomm.

As expected, for a fixedrcomm, Dn/D∗n decreases asn increases. Forn = 10000, the ap-

proximation ratios for our choices ofrcomm are around 1.4 (due to the slow growing nature of

D∗n∼
√

nlogn; fixing any rcomm, this ratio should be close to one for largen). On the other hand,

for a fixed n, as the partition of the unit squareQ gets finer,Dn/D∗n increases, implying that

decreasing the communication radius has a negative effect on distance optimality. We observe

similar results on the distance optimality of Strategy 5 (see Fig. 13).

If we remove the rendezvous part from Strategies 4 and 5, theybecome similar to Strategy 2.

The distance optimality performance of these two particular versions of Strategy 2 is shown in

Fig. 14 and Fig. 15, respectively. For all partitions made (m= 81,256,625,1296),Dn/D∗n ratios

of less than two are achieved and can go as low as 1.06, showingthat hierarchical strategies can

provide very good optimality guarantees.

Computational performance:We list the running time, in seconds, for Strategies 3-5 in Table

II. The standardO(n3) Hungarian method is used as the baseline assignment algorithm. Each

main entry of the table lists three numbers corresponding tothe running time of Strategies 3, 4,

and 5, respectively, for the given combination ofrcomm andn. Note that any version of Strategy 2
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has the same amount of computation as a corresponding rendezvous-based strategy. As expected,

a hierarchical assignment greatly reduces the computationtime, often by a factor over 103. The

computation was performed on a Intel Core-i7 3970K PC under a8GB Java virtual machine.

Time optimality: Since Strategies 3-5 sacrifice distance (and therefore, time) to compensate

for limited communication, we do not expect the total completion time Tn of these strategies to

matchT∗n closely. For example, in (21), althoughTn→T∗n asn→∞ for fixedm= ⌈
√

2/rcomm⌉2, it

requires a very largen for
√

logn to dominate
√

m. Thus, we only compareTn among Strategies

3-5. UsingTn(i) to denote theTn for Strategyi, Tn(4)/Tn(3) and Tn(5)/Tn(3) are plotted in

Figures 16-17. Asn increases, Strategies 4 and 5 both take much less total completion time on

average.
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TABLE II

RUNNING TIME FOR STRATEGIES3-5

# of robots,n
rcomm(m)

0.16 (81) 0.09 (256) 0.057 (625) 0.04 (1296)

100

0.007

0.001

0.001

0.007

0.002

0.0001

0.007

0.002

0.0004

0.007

0.003

0.0004

200

0.02

0.001

0.0001

0.02

0.005

0.0003

0.02

0.01

0.0004

0.02

0.02

0.0006

500

0.34

0.005

0.0006

0.34

0.02

0.001

0.34

0.07

0.002

0.34

0.14

0.003

1000

2.76

0.015

0.002

2.76

0.07

0.003

2.76

0.22

0.003

2.76

0.54

0.006

2000

22.3

0.05

0.009

22.3

0.20

0.006

22.3

0.70

0.011

22.3

1.90

0.015

5000

345

0.02

0.069

345

0.78

0.032

345

2.84

0.043

345

8.28

0.058

10000

2756

0.83

0.43

2756

2.32

0.11

2756
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VIII. C ONCLUSION AND DISCUSSIONS

Focusing on the distance optimality for the target assignment problem in a robotic network

setting, we have characterized a necessary and sufficient condition under which optimality can

be achieved. We also provided a direct formula for computingthe number of robots sufficient

for probabilistically guaranteeing such an optimal solution. Then, we took a different angle;

we looked at suboptimal strategies and their asymptotic performance as the number of robots

goes to infinity. We showed that these strategies yield a constant approximation ratio when

compared with the true distance optimal solution. Many of these decentralized strategies also

provide computational advantages over a centralized one.

We conclude the paper by discussing our choice on certain elements that can be generalized

in a future work.

Equal number of initial and target locations:In the problem statement we assume that|X0|=
|Y0|. If |X0|> |Y0|, some robots do not need to move and if|X0|< |Y0|, some robots may need

to reach multiple targets, assuming that the main goal is to serve the targets. Our result readily

generalizes to the case in which|X0|/|Y0| is close to 1. When|X0| ≫ |Y0|, it is likely that for a

yi ∈Y0, there is a uniquexi ∈X0 that is closest toyi Smith and Bullo (2009). Moreover, for two

different yi ,y j , xi 6= x j . The spatial assignment problem then degenerates to findingthe nearest

robot for eachy∈Y0. When |X0| ≪ |Y0|, the problem becomes a multiple salesmen version of

the traveling salesman problem (we have a standard traveling salesman problem when|X0|= 1),

which is an NP-hard problem. It remains an interesting open question to investigate the middle
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ground,i.e., |X0|=C|Y0| for some constantC (for exampleC∈ [0.1,10]).

Distribution of initial and target locations:Although it is beyond the scope of this paper, it

would be interesting to establish a lower bound on the optimal assignment distance for arbitrary

probability measures. Also, it would be interesting to investigate the case in which the robots

and the targets assume different distributions. Another important aspect not covered in this paper

is the issue of targets distributed somewhat randomly over time.

Minimizing over other powers of the2-norm: On the side of optimality measures, we note

that Theorem 13 generalizes to arbitrary powers of the Euclidean 2-norm Ajtai et al. (1984).

That is, for

D∗n,p := min
σ

n

∑
i=1
‖x0

i −y0
σ(i)‖

p
2, (23)

it holds true that

D∗n,p∼ n(logn/n)p/2. (24)

Theorem 13 corresponds to the special case ofp = 1. As p→ ∞, (23) minimizes the longest

distance traveled by any robot. This is true because for fixedX0, Y0, and a sufficiently largep,

the largest‖x0
i −y0

σ(i)‖
p
2 becomes the dominating term in the sum∑n

i=1‖x0
i −y0

σ(i)‖
p
2. Although

we restrict our attention top= 1 in this paper, our results readily extend to other values ofp

(i.e., other optimality criteria) with (24). Note that this meansthe Dn definition given by (5)

needs to be updated accordingly to an appropriately definedDn,p.
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