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Abstract

We study the problem of multi-robot target assignment toimie the total distance traveled by
the robots until they all reach an equal number of staticetargin the first half of the paper, we
present a necessary and sufficient condition under whieh distance optimality can be achieved for
robots with limited communication and target-sensing emdvioreover, we provide an explicit, non-
asymptotic formula for computing the number of robots neeeachieve distance optimality in terms
of the robots’ communication and target-sensing rangeh waibitrary guaranteed probabilities. The
same bounds are also shown to be asymptotically tight.

In the second half of the paper, we present suboptimal giestefor use when the number of
robots cannot be chosen freely. Assuming first that all targee known to all robots, we employ a
hierarchical communication model in which robots commateéconly with other robots in the same
partitioned region. This hierarchical communication moéads to constant approximations of true
distance-optimal solutions under mild assumptions. Wen treisit the limited communication and
sensing models. By combining simple rendezvous-basetegiea with a hierarchical communication
model, we obtain decentralized hierarchical strategias dichieve constant approximation ratios with
respect to true distance optimality. Results of simulatbow that the approximation ratio is as low as
1.4.

Jingjin Yu is currently with the Computer Science and Aridldntelligence Lab at the Massachusetts Institute of Tietigy.
E-mail: jingjin@csail.mit.edu. The work was completed whk Yu was at the University of Illinois at Urbana-Champai§oon-
Jo Chung and Petros G. Voulgaris are with the Coordinatedn8ei Lab and the Department of Aerospace Engineering at the
University of lllinois at Urbana-Champaign. E-mai{sjchung, voulgafi@illinois.edu. This work was supported in part by
AFOSR grant FA95501210193, NSF grant 11S-1253758, and N@Rtd=CCS 10-27437.


http://arxiv.org/abs/1308.3956v3

I. INTRODUCTION

In this paper, we study the permutation-invariant assignnoé a set of networked robots
to a set of targets of equal cardinality. Focusing on miningzhe total distance traveled by
the robots in a planar setting, we seek optimality guaranteel near-optimal strategies. For
robot-to-robot communication, we investigate both a sangtcular range-based model and a
region-based model in which all robots within the same negian communicate with each other.
When we consider the limited target-sensing capabilityhef tobots, a circular range sensing
model is used.

The class of problems that we study is denotedaaget assignment in robotic networks
it shares many similarities with the problems studied in t&nand Bullo (2009). In Smith and
Bullo (2009), the authors characterized the performand&T8P AsscMTand GRID ASSGMT
algorithms (strategies) in achieving time optimalitye( minimizing the time until every target
is occupied). In contrast, we focus on minimizing the totatahce traveled by all robots with
significantly different assumptions on the communicatiod aensing models of the robots. The
total distance serves as a proper proxy to quantities sudheasotal energy consumption of
all the robots. Note that a distance-optimal solution fa tharget assignment problem generally
does not imply time optimality and vice versa Yu and LaVaR@12).

As its name implies, the problem tdrget assignment in robotic networksquires solving an
assignmenfor matching problem. The assignment problem is extensively studigtienarea of
combinatorial optimization, with polynomial time algdmwhs available for solving many of its
variations Bertsekas (1988); Bertsekas and Cast1991); Burkard et al. (2012); Edmonds and
Karp (1972); Kuhn (1955); Zavlanos et al. (2008). If we iagst@ut more emphasis on multi-robot
systems, the problems of robotic task allocation Ji et &l06}; Tanner et al. (2007); Treleaven
et al. (2013); Zavlanos and Pappas (2008), swarm reconfignr&€hung et al. (2013), multi-
robot path planning Kloder and Hutchinson (2006); Sharmal.e2007); Turpin et al. (2013),
and multi-agent consensus Cortés et al. (2006); Jadbabaie (2003); Lin et al. (2007a,b) are
relevant. For a more comprehensive review on these topesBsillo et al. (2009).

Our work is also closely related to the study of the connégtiof wireless networks. An in-

teresting result Xue and Kumar (2004) showed that,ribbots are uniformly randomly scattered

1ETSP stands for th&uclidean traveling salesman problem



in a unit square, then each robot needs to communicatekwiti®(logn) nearest neighbors for
the entire robotic network to be asymptotically connected approaches infinity. In particular,
the authors of Xue and Kumar (2004) showed tkat 0.074logn leads to an asymptotically
disconnected network wherels- 5.1774logn guarantees asymptotic connectivity. This pair of
bounds was subsequently improved and extended in Baliséér(@005). These nearest neighbor
based connectivity models were further studied in Frerial.e2010); Ganesh and Xue (2007);
Mao and Anderson (2013), to list a few. In many of these sgdtimgeometric graptstructure

is used Penrose (2003).

This research effort brings forth three contributions.s&iffor robots with limited range-
based target-sensing and communication capabilitiesréihnges are captured by radinseand
rcomm respectively), we derive necessary and sufficient camstior ensuring a distance-optimal
solution. In particular, we provide a probabilistic esttmaf the number of robots (denoted by
n) sufficient for all robots to form a connected network for atixcommunication radiusomm
In contrast to the asymptotic connectivity results from >amel Kumar (2004); Penrose (1997),
we given as an explicit function of.omm that is also non-asymptotic. Therefore, our bounds
hold without requiringn — o . We further show that the same bounds are asymptoticalty tig
when a high probability guarantee is required.

Second, allowing the robots to have global target-sensapglgilities coupled with a region-
based communication model, we show that an infinite familjiefarchical strategies can lead
to decentralized target assignments while ensuring tleatioifal expected distance traveled by the
robots is asymptotically within a constant multiple of th@imal distance. Our simulation results
show that this bound can often be smaller than two. Moredw&tause hierarchical strategies
avoid running a centralized assignment algorithm, sigaificsavings on computation time (in
certain cases, a speedup of 1000 times or more) are achieved.

Third, for robots with global target-sensing capabilitesd a range-based communication
model, hierarchical strategies (for assignment) and ramiles-based strategies (for compen-
sating for the lack of global communication) are combinedlbain decentralized suboptimal
algorithms. These hybrid strategies, under mild assumstipreserve the constant approximation
ratios on distance optimality achieved by the “pure” hiehéral strategies. We further show that
the global target-sensing assumption can be removed witftecting asymptotic optimality.

Portions of this work were presented in Yu et al. (2014a,b)tfe early dissemination of



results. Compared with Yu et al. (2014a,b), this paper pi®via more comprehensive view
of the results along with complete proofs for all theoremsanyl of the proofs have been
significantly improved to illustrate more clearly proof keiques that may be of interest on their
own. In addition, the current paper discusses extensivemeralizations of the stochastic target
assignment problem to mismatching number of robots anetsrgnd to higher dimensions.
The rest of the paper is organized as follows. In Section #, present notations and well-
known results from other branches of research needed falahelopment of our results. After
stating the problem formally in Section Ill, we then elalieran the three stated contributions in
Sections IV-VI. We present results of simulation studieSattion VII to validate our theoretical

results and conclude in Section VIII.

[I. PRELIMINARIES

In this section, we review results on the balls and bins goblinear assignment, and random
geometric graphs. The symbdisR™, N denote the set of real numbers, the set of positive reals,
and the set of positive integers, respectively. For a pasigal numbek, logx denotes the natural
logarithm ofx; the function[x] (resp.,|x]) denotes the smallest (resp., largest) integer that is
larger (resp., smaller) than or equalxo|-| denotes the cardinality for a set and the absolute
value for a real number. We use/||, to denote the Euclidean 2-norm of a vectorThe unit
squarel0, 1]2 ¢ R? is denoted a®. The expectation of a random variabfeis denoted a&|[X].

We useE(-) to represent a probabilistic event and the probability witlich an evene occurs
is denoted a$(e).

Given two functionsf,g: Rt — R*, f(x) = O(g(x)) if and only if there existMo,xo € R™

such that
VX > Xo, | f(X)| < Mol|g(x)|.

Similarly, f(x) = Q(g(x)) if and only if there existMq,xq € R* such that

VX > Xq, | f(X)| = Malg(x)-

If f(x) =0(g(x)) and f(x) = Q(g(x)), then we sayf (x) = ©(g(x)). Finally, f(x) = o(g(x))

(resp.,f(x) = w(g(x))) if and only if f(x) = O(g(x)) (resp.,f(x) =Q(g(x))) and f (x) = ©(g(x))
does not hold.



A. Balls and Bins

The well-studied problem in probability theory known as tiv@s-problem or the problem
of balls and bins considers the distribution generated as a humber of badlsaaadomly tossed
into a set of bins. The following classical result on the lzadt bins problem is due to Erdds

and Rényi.

Theorem 1 (Balls and Bins Erdds and Renyi (1961)) Suppose that a number of balls are
tossed uniformly randomly into m bins, one ball per time stegt Tx denote the first time

such that k balls are collected in every bin. Then for any r@ainber c,

r”Lnoo P(Tk < mlogm-|- (k_ 1)m|Og |Og m-+- Cm) — e—e

k=11

(1)

It is worth noting that the proof of Theorem 1 is fairly shoridaelegant, employing only

basic tools from analysis and combinatorics. A useful darglfor k =1 follows readily.

Corollary 2 For an arbitrary real number c, suppose that no fewer thamogm-+ cm) balls
are tossed uniformly randomly into m bins. As—#ro, every bin contains at least one ball with

probability e €
PROOFE In (1), lettingk =1 yields
lim_ P(T1 < mlogm-+cm) =e €. (2)

The corollary directly follows (2) (recall thal; is the number of tosses needed so that every

bin has at least one ball). O

Corollary 2 says thaf; = mlogm is a sharp threshold. Lettingc =5 in (2) yields that the
probability of every bin being occupied by at least one balgieater than .09 when at least
mlogm+ 5m balls are tossed. On the other hand, the same probabilitg isiore than MO01

when no more thamlogm— 2m balls are tossed.

B. Linear Assignment Problem

The (linear) assignment problermas a fundamental combinatorial optimization problem, can
be defined as follows.



Problem 1 (Linear Assignment) Given two finite sets X and Y witK|=|Y

, together with a

weight function C X xY — R, find a bijection f: X — Y that minimizes the cost

EXC(X, f(x)). 3)

Problem 1 is also called thgerfect weighted bipartite matchingoblem. Here, the mapping
C is essentially a square matrix that can be used to represesniety of weights, such as the
Euclidean distance wheX andY represent physical locations. Thingarian methodor the
assignment problem, proposed by Kuhn Kuhn (1955), ha®@) running time, which was
subsequently improved ©(n®) by Edmonds and Karp Edmonds and Karp (1972). Many other
algorithms for the assignment problem exist, includingeotprimal-dual (linear programming)
methods Burkard et al. (2012), auction based methods Bad9d 988), and parallel algorithms
Bertsekas and Castan (1991); Zavlanos et al. (2008). Nevertheless, the glyopolynomiaf
O(n®) Hungarian method remains as the fastest exact (sequealti@ithm, which we use in
our simulations.

When X andY are restricted to points on the plane with the weight fumctibbeing the
Euclidean distances between the points, the special la&signment problem is known as the
Euclidean bipartite matchingroblem, which can be solved exactly using@m?°logn) primal-
dual algorithm Vaidya (1989). Alternatively, near lineané approximation algorithms can yield

near optimal solutions with high probability Sharathkuraad Agarwal (20125.

C. Random Geometric Graphs

Let X ={xy,...,Xn} be a set oh points in the unit squar®. For a fixedcommunication radius
rcomm the geometric graph Qover this set of points is formed by taking each point as aexert
and connecting any two vertices whose underlying patatandx, satisfy ||x1 —Xz2||2 < rcomm:
WhenX is selected randomly following some distribution, the tesg graph is called aandom

geometric graph

2A polynomial time algorithm runs irstrongly polynomial timenly if its running time does not depend on thize of the
input parameters. Note thatis the numberof input parameters in this case.

3Although algorithms from Sharathkumar and Agarwal (20M&)idya (1989) have theoretically faster running times ttian
Hungarian method and apply to the problem that we study, #neymore difficult to implement and slower in practice unless

|X| is very large because they are not strongly polynomial tifgerdhms like the Hungarian method.



Properties of random geometric graphs have been studiedsxely; see Penrose (2003) for
a thorough coverage. One such property is the connectifityese graphs, which is of particular

interest to wireless communication and robotic networks.

Theorem 3 (Random Geometric Graphs Penrose (1997))et G be a random geometric graph
obtained following the uniform distribution over the unifusre for some n and.gmm Then for

any real number c, as A o,
P(G is connectedi rmr2,,m—logn < ¢) = e ", 4)

From (4), it is possible to estimate the number of robots ireguto guarantee a connected

geometric graplG.

[Il. TARGET ASSIGNMENT INROBOTIC NETWORKS

In this section, we formally define the problemtafget assignment in robotic networksd

the optimality objective.

A. Problem Statement

Let XO={x0,...,x3} andY? = {y?,...,y8} be two sets of points (the superscript emphasizes
that these points are obtained at the start tiree0) in the unit square 4, selected uniformly
randomly. Place = |X% = |Y?| point robots on the points X°, with robota; occupyingx®. Each
robot has a unique integer label (e.g.,In general, we denote robaf’s location (coordinates)
at timet > 0 asx;(t). The basic task (to be formally defined) is to move the robotshat at
somefinal time t' > 0, everyy € YY is occupied by a robot. We may assume that there is a final
time tif for each robotg;, such thatx(t) = xi(tif) fort > tif. For convenience, we also refer to
X% andY? as the set of initial locations and the set of target locatisaspectively.

Motion model: The robots are single integratois., X(t) = u;(t) with u;j(t) being piece-wise
smooth and|ui(t)||2 € {0,1}. We assume the size of the robots is negligible with respethéd

distance they travel and ignore collisions between robots.

40ur results are scale-invariant because all the theoretdsitrosquares of any size with proper scaling. Hence, a wpiage

environment is used throughout the paper.



Communication Model 1We study two communication models in this paper. In the first
communication model, a rob@a may communicate with other robots within a disc of radius
rcommcentered ax;(t). At any given timet > 0, we define the (undirectedpmmunication graph
G(t), which is a geometric graph that changes over time, as fsli@ft) hasn verticesv, ..., Vy,
corresponding to robot, . .., a,, respectively. There is an edge between two vertigesdv;
if the corresponding robot locations(t) andx;(t), respectively, satisfyx;(t) —Xx;(t)||2 < rcomm
Figure 1(a) provides an example of a (disconnected) comeatiaon graph.

Given our focus on distance optimality, we make the simpifyassumption that all robots
corresponding to vertices in a connected component of themamication graph may exchange
information instantaneously. In other words, robots in amsxted component db(t) can be

treated as a single robot insofar as decision making is ¢oade

X\F\ R -4

ie TR
"“7“‘00mm ’ .\- %
(@) Comm. model 1 (b) Comm. model 2

Fig. 1. (a) The communication graph (solid blue nodes and&€dfpr a set of robots under Communication Model 1 with
a communication radius afomm Robots (blue dots) in the same connected component of a oaiation graph can freely

communicate with each other. (b) The communication grapla feet of robots under Communication Model 2 witk= b% = 9.

Communication Model 2:The unit squareQ is divided intom = b? equal-sized smaller
squares (regions).Robots within each region can communicate with one anotheérmrdbots
from different regions cannot exchange information (se@,, é-ig. 1(b)). This model mimics
the natural (geometrical) resource allocation process hichvsupplies and demands are first
matched locally; the surpluses and deficits within eachoreghen get balanced out at larger

regions, giving rise to a hierarchical strategy.

5In this paperm is frequently used to denote the number of small squares imigiah of the unit squar& andb=\/m is

the number of resulting partitions on an edge of the unit sgjuhe value oim andb may vary.



Target-sensing modelMVe assume that a robot is aware of a pgiatY? if Y= (t)]l2<Tsense
the target-sensing radius

The problem we consider in this paper is defined as follows.

Problem 2 (Target Assignment in Robotic Networks) Given X0, YO, rsense and Communica-
tion Model 1 with gommor Communication Model 2 , find a control stratagif) = [ui(t), ..., un(t)],
such that for som@® < tif < o and some permutatioa of the numberd,...,n, >q(tif) = yg(i)
forall 1<i<n.

Over all feasible solutions to an instance of Problem 2, veeiaterested in minimizing the

total distance traveled by all robots, which can be exprbsse

Dy = Z / * IOl ©)

As an accurate proxy to the energy consumption of the engstem, the cost defined in (5)
IS an appropriate objective in practice. Unless otherwpsi$ied,distance optimalityefers to
minimizing D,,. Over all permutationsr of the numbers 1..,n, and for fixedX® andY?, the

minimum total distance for robots moving along continuoathp is
n
* . ; 0
Dh = ma'n.Z\HXi ~Yolz: (6)
1=

which may or may not be achievable depending on the capabildf the robots (e.g, if the
robots cannot follow straight-line paths, thép > D}). Let % denote the set of all possible
control strategies that solve Problem 2 given a fixed set pélséities for the robots, we say that
distance optimality is achieved if mjpD,, = D};. Besides distance optimality, we also briefly
discuss the total task completion timee( the sum of the individual task completion times as
targets are occupied), denoted By If all robots start moving toward targets and do not stop

in the middle, therl, = Dy. In particular, we defind,; := Dj..

V. GUARANTEEING DISTANCE OPTIMALITY FOR ARBITRARY [¢commAND lsense

In this section, we use Communication Model 1. In generaemense< v'2 Of F'eomm < V2,
it is impossible to guarantee distance optimality, sincabgl assignment is no longer possible
in general. For example, aigense— 0, the robots must search for the targets before assignments
can be made; it is very unlikely that the paths taken by thetoloward the targets will be
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straight lines, which is required to obtadj,. This raises the following question: Given a pair of
rcomm @andrsense UNder what conditions can we ensure distance optimalitygdiem 4 answers

this question.

Theorem 4 In a unit square, under sensing and communication congsdife., Icomm, l'sense<
v2), distance optimality can be achieved with probability ahand only if at t= O:
i) the communication graph is connected, and

i) every target is within a distance ofdnset0 SOme robot.

PROOF. We first prove that the conditions are necessary with twongdal) an optimal assign-
ment that minimizedDy, is possible in general only i6(0) is connected, and 2) an optimal
assignment that minimizeB,, is possible only if for ally € Y°, y is within a distance ofsense
to somex € XV,

To see that the first claim is true, we note that distancevggtiassignments forbid robots
from moving unnecessarily, requiring ait= 0 a pairing between elements ¥ and Y that
minimizesD,. We now show that this is not possible in general whgjm < v2. Forn= 2,
assume that the two targets are locateghandy, as given in Fig. 2 (solid red dots). Assume
the first robota; is located ak; (the blue solid dot at the lower left of Fig. 2) amd is of equal

..$2,

o L2

Yo
r

COMMN,...ovenndemrie=e”

ir

5 comm

Fig. 2. A general setup in which the two robots cannot comeatei with each other d@t= 0 and therefore cannot always

decide an optimal assignmenttat O.

distance toy; andy,. Let the second robai, take two possible locationg andx, as shown,
which are symmetric along a diagonal Qf If a, is atxz (resp.x5), thenay should go toy

(resp.y1), forcing a; to go toy; (resp.y»2). Not knowingay’s location because; is out ofay’s



11

communication radiusa; has at most 50% chance of picking the distance minimizingceho
att = 0. We can readily extend the locations of the robots and tstgeinclude neighborhoods
around them (the dotted circles in Fig. 2) to show that thera non-zero probability that an
optimal assignment cannot be madd at0. This proves that thak(0) cannot have more than
one connected component and must be connected. The exaampleecextended to work for
arbitraryn by adding additional robots and targets to close vicinitieg; andy;, respectively.

For the second claim, suppose that at 0, somey € Y° is not within a distance Ofsenseto
any x € X°. A robot must move to search for that This will cause the robot to follow a path
that is not a straight line with probability one, implyingattD,, = D}, with probability zero.

It is not hard to see that the necessary conditions from tlee daims are also sufficient:
when G(0) is connected and each target is observable by some epptite robots can decide

att =0 a global assignment that minimizBs,. O

Theorem 4 suggests a simple way for ensuring distance oty either increasing the
number of robots or increasing one or both rgdmm and rsense This essentially leads to a
centralized communication and control strategy (StratégyNote that given the assignment
permutationg, each robota; can easily compute its straight-line path betweénand yg(i).
Since every robot can carry out the computation in Strategp fesolve conflicting decisions
and avoid unnecessary computation, we may let the highlested robot (e.g.a,) handle the

entire assignment process.

Strategy 1: CENTRALIZED ASSIGNMENT
Initial condition : X°,Y©

Outcome permutationo that assigns a roba to yg(i)

1 computed; j = || —yj||2 between each pair df;,y;) in which x € X° andy; € Y°
2 compute overd; ;} an assignment that minimizé,

3 communicate the assignment to all the robots

The rest of this section establishes how the conditions fiidmorem 4 can be met. We
point out that similar conclusions can also be reached byoerg Theorem 3, which yields

an asymptotic relationship between the required numbeoludts forG(0) to be connected and



12

rcomm We take a different approach and produce the required nuofo®bots as an explicit

function of r¢comm Without the asymptotic assumption.

A. Guaranteeing a Connected(@

Since the robots can be anywhere in the unit sq@rgiven a communication radius of
rcomm < V2, intuitively, at leastO(1/rZ,,) robots are needed for a connect&d0), which
requires the robots to take a lattice-like formation suchaagid. It turns out that when the
robots are uniformly randomly distributed, only a loganmitic factor more robots are needed to

ensure a connected(0).

Lemma 5 Suppose that n robots are uniformly randomly distributethgunit square. For fixed
feomm< V2 and 0 < £ < 1, at t =0, the communication graph is connected with probability at

leastl—c¢ if

VEREIWEIIE:

l'comm € T'comm

19). )

n>|

PrROOF We divide the unit squar® into m= b? equal-sized small squares with= [v/5/F comml.-
Label these small squards,...,qm}. Under this division scheme, a robot residing in a small
squareg; can communicate with any other robot in the four squaresirsipar side withg; (see
Fig. 3). ThereforeG(0) is connected if eacky contains a robot. Let; denote the number of
robots ing;. Then .

P(n =0) = (1- —)"<e .

3l

N
\
\
i
\
\
\
t
7nr:om m/
'
/
’
’

Fig. 3. If the small squares have a side lengttf @B/rcomm| or smaller, then a robot in such a square (e.g., the gray spjuar

can communicate with any robot in the four neighboring smagllares sharing a side with the gray square.
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The inequality holds becausgt—x)" < e ™ for 0 < x < 1. To see this, lef (x) =log(1—x)/x.
The Taylor expansion of (x) at x =0 is —1—x/2—x?/3+0(x®) < —1 for 0< x < 1. This
shows that logl — x) < —x for 0 < x < 1= nlog(1—Xx) < —nx= (1—x)" < e ™. By Boole’s
inequality {.e., the union bound), the probability that at least oneyof .., qm is empty can be

upper bounded as
m m

P(JE(n=0)) < ;P(ni —0)<mem.

Settingme™™ = ¢ and replacingn= [v/5/rcomm|? yields

[rc\c{rfm—l zexq—n [L]E-"‘Z) -
= (2 00t Y0

which guarantees that each small square contains at leagibbot with probability +-¢. [

The bound in Lemma 5 can be further tightened; Corollary @o(killustrates one way to

achieve this. It produces smaller than that given by (7) wheBomm < v/5/2.

Corollary 6 Suppose that n robots are uniformly randomly distributedhi@ unit square. For
fixed omm< V2 and0 < & < 1, at t=0, the communication graph is connected with probability

at leastl—¢ if
1

n> [V 120g 2

~ Tcomm €

AL LR (®)

l'comm l'comm

Fig. 4. As long as each of the shaded small squares contaimsbat, G(0) must be connected. Therefore, ord§/2+ b

small squares need to have robots in them.

PROOF If each of the shaded small squares in Fig. 4 has at leastabu, thenG(0) must

be connected: any robot falling in a small white square mestdnnected to some robot in a
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shaded small square. This shows that (8) is sufficient. O

Remark. In comparison to Theorem 3, Lemma 5 providgeas an explicit function of comm.
Moreover, our sufficient condition on given in (7) (and (8)), unlike (4), is not an asymptotic
bound. Therefore, our bound applies to an arbitraggyn On the other hand, if we letomm— 0,

then an asymptotic statement can also be made.

Lemma 7 Suppose that n robots, each with a communication radius.gf.f are uniformly
randomly distributed in the unit square. A&t0, the communication graph is asymptotically

connected with arbitrarily high probability & ° (for some c> 0) if

Y5 g Yo ©

PROOF Given the division scheme used in the proof of Lemma 5, ibigting robots into the unit

n> (2log

squareQ is equivalent to tossing the robots (balls) into themall squares (bins) uniformly ran-
domly. By Corollary 2, asn— o, havingn > mlogm-+cm= (21og[v/5/r comm| +C€)[v/5/r comm|
robots guarantees that ati small squares must have at least one robot each with prdaigabil
e’ O

Sincef (x) = cxgrows slower thag(x) = xlogx asx — o, Lemma 7 says that= 0((1/rcomm)?
log(1/rcomm)) robots can ensure th&(0) is connected with probability arbitrarily close to one
asymptotically. Next, we show that these many robots a@ red¢sessary for the high probability
guarantee.

Let Phm(E) denote the probability of an evekt happening after tossing balls intom bins.
We work with two eventsEg, the event that “at least one bin is empty”, digd the event that
“at least one bin contains exactly one ball”. We want to shioat P, m(E1) is not too small for

n up to mlogm, which is proven in the next two lemmas.

Lemma 8 Suppose that < n<m balls are tossed uniformly randomly into m bins. Then
1
Pam(E1) > (1— a)f“*l >e L.

PROOF. First we prove a useful inequality: fon € N,

(1- 2yt

—1
= >e . (20)
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To see this, note that the function [dg-x)x 1 has a Taylor expansion ef1+x/2+0(x2) > —1

x~1> e1 for smallx > 0. Since the derivative dfl —x)x~2

for smallx > 0, yielding that(1—X)
is positive forx € (0,1), (10) holds for allm> 0 (we use the definition®= 1 here).

To prove Lemma 8, because all bins are initially empty, afbssing the first ball, some bin
contains exactly one ball. That iBy m(E1) = 1. Let the bin occupied by the first ball be bin 1.
As k— 1 additional balls are tossed into thebins, the probability that none of theke- 1 balls
occupy bin 1 is(1—1/m)*1, Therefore, for < k < m, we have

Pm(Ex) > Prn(En)(L— 1)*?

1.
> P1m(E1)(1- m)m 1

1
= (1—r—n)m*1 >e L,

Lemma 9 Suppose that rax n < mlogm balls are tossed uniformly randomly into m bins. As
m— oo,
1
Pam(E1) > (1—e®)(1— m)m‘l >(1-e®el.

PROOF. Suppose that after an experimentnbtosses intan bins, Eg holds;i.e., at least one bin
is empty. Without loss of generality, we assume the emptyidibin 1. Now consider tossing
an additionalk balls into them bins. The probability of exactly one of thekeballs falling in
bin 1 is

P« m(exactly one ball falls in bin jL

_ <k) l(l_ l)kfl _ 5(1— l)kfl.

1/ m m m m
Therefore,
Pn’+k,m(E1)
> Py m(Eo)Pixm(exactly one ball falls in bin JL (12)
_k 11
= a(l— m) Prv.m(Eo)-

Lettingc= —1 in Corollary 2, we have

r!]ian P(Ty > mlogm—m) =1—¢€°. (12)
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That is, asm— oo, for 0 <’ < mlogm—m, Py n(Eo) > 1—e~®. Plugging this into (11) and
letting k = m, we have that fom < n < mlogm, asm — oo,
m 1
_ 1__ m—1 1_ —e\ ~—1
e e
in which the last inequality is by (10). U

Pam(E1) > (1—€7°)

Under the assumptions of Lemmas 8 and 9, we always have that-aseo,Pnm(E1) >
min{e~!, (1—e®)e1} > 0.34. We now show thah = O((1/rcomm)?10g(1/rcomm)) is a tight
bound on the number of robots for guaranteeing the conrgctl G(0) with high probability.

Theorem 10 For n uniformly randomly distributed robots in a unit squavéh a communication

radius reomm

n=0( ! log ! ) (13)

rZomm  Tcomm
is necessary and sufficient to ensure that at®, the communication graph is asymptotically

connected with arbitrarily high probability.

PROOF Lemma 7 covers sufficiency; we are to show that there is soonetnivial probability

that G(0) is disconnected if the number of robots satisfies

1 1
n=o(——log .
Fcomm  comm

To prove the claim, we partition the unit squa@einto m= b? equal-sized small squares in

which b= |1.1/rcomm/. The factor of 11 in the expression makes the side of the small square
larger tharrcomm Assuming thamn is divisible by 3 (it is always possible to truncate some $mal
squares to satisfy this), we may group the small squaresnivibgroups of 3< 3 blocks (see,
e.g., Fig. 5).

If there is a single robot in a 8 3 block, the robot cannot communicate with the rest of the
robots if it falls inside the small square in the center ofttlaxk (e.g., the solid gray square in Fig.
5). By Lemmas 8 and 9, for less tham/9)log(m/9) = 2[1.1/rcomm|2109(|1.1/rcomm] /3)/9
robots, the probability of having at least one of thesg 3 blocks containing exactly one
robot is at least 0.34 a1 — o (i.e, rcomm— 0). If a 3x 3 block has exactly one robot in
it, with probability of 1/9, the robot is in the middle square. Therefore, with proligtat least
0.34/9~0.04, G(0) is disconnected. O
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Fig. 5. A 3x 3 block as defined in the proof Theorem 10.

B. Ensuring Target Observability

With a connected communication gra@0) guaranteed by Lemma 5, we can solve a single
assignment problem if for eache Y°, ly — X||2 < rsensefor somex e X0. Similar techniques

used in the proof of Lemma 5 lead to a similar lower boundnon

Lemma 11 Suppose that n robots and n targets are uniformly randonsgyiduted in the unit
square. For fixed denseand 0 < € < 1, every target is observable by some robot at ® with

probability at leastl — ¢ if
0> [Y2 12109 L1 Y2 72), (14)

~ TIsense € I'sense

PROOF. If we partition the unit squar® into [v/2/rsensd? equal-sized small squares and there
is at least one robot in each small square, then any poif isf within rsensedistance to some
robot. Following the same argument used in the proof of Lensmthe inequality from (14)

ensures that this happens with probability at leastel U

Putting together Lemmas 5 and 11, we obtain a lower bounttbat makes a distance-optimal

assignment possible.

Theorem 12 Suppose that n robots and n targets are uniformly randondgributed in the unit
square. Fixing0 < € < 1, at t =0, the communication graph is connected and every target is

observable by some robot with probability at ledst ¢ if

@—‘qog(} @

n> [Yg-T2log(Z[*5=1%), (15)

|n Wh|Ch 9 = min{\/grsense\/ércomm}.
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PROOF. When® = v/Brsense (15) becomes (14), which implies (9). TherefoB0) is connected
with probability 1— .

Wheno = v/2rcomm i-€. Fsense> V10 comm/5, by Lemma 5, (9) implies tha®(0) is connected
with probability 1— €. Moreover, there is at least one robot in each of the smalirsguwith a side
length of at mostcomm/ /5 (as specified in the proof of Lemma 5). Havingnse> \/Ercomm/S
guarantees that robots in a small square observes all tavgbs the same small square.
Therefore, every € YO is within a distance ofsenseto somex € XO. O

Remark. Theorem 12 is not an asymptotic result and applies tocallm andrsense If @ high
probability asymptotic result is desirable, Lemma 11 camdaalily turned into a version similar
to Theorem 10, by following the same proof techniques. Inwwvié this fact, the bounds from

Theorem 12 are asymptotically tight.

V. HIERARCHICAL STRATEGIES FORIsense> V2: OPTIMAL DISTANCE AND PERFORMANCE

GUARANTEES

In this section, we work with the (region-based) CommumicaModel 2 and assume that
rsense> V2 (that is, every robot is aware of the entif®). The study of Communication Model 2,
besides leading to interesting conclusions on hierartiitategies, also facilitates the analysis
in Section VI as we revisit Communication Model 1.

A region-based communication model naturally leads to aahthical strategy for solving
Problem 2 under the optimality criterion of minimizing thest defined by (5). Leh > 1 be the
number of hierarchies amd,1 <i < h, be the number of equal-sized regions at hieraicWe
make the following assumptions that are mainly used in Tém®@016:i)) m; =1, ii) mj 1 > m;,
and iii) a region at a higher numbered hierarchy is contained in alesirggion at a lower
numbered hierarchy. For example, dividiqyinto 4-1 squares at hierarchiy satisfies these
requirements. We call the associated strategy under trsssengtions thénierarchical divide-
and-conquerstrategy, the details of which are described in Strategyde khat for each region
in Strategy 2, the robots can again let the highest labelbdtraithin the region carry out the
strategy locally.

It is clear that Strategy 2 is correct by construction bee#X8| = |Y°|. The rest of this section

is devoted to analyzing the strategy. We begin with a singdeainchy f = 1). Sincersense> v/2
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Strategy 2: HIERARCHICAL-DIVIDE-AND-CONQUER
Initial condition : X%, YO h,my,...,m,

Outcome permutationo that assigns a rob&; to yg(i)

1 for each hierarchy E {1,...,h} in decreasing ordedo

2 for each region g {1,...,m} do

3 let n, andng be the number of unmatched robots and targets in region
respectively

4 if ng > ng > 0 then

5 pick the firstng robots from then, unmatched robots and run an assignment

algorithm to match them with they unmatched targets in regign
6 else ifng > ng > 0 then

7 pick the firstn, targets from theng unmatched targets and run an assignment

algorithm to match theé, unmatched robots with thesg targets in regionj
8 else

9 continue

implies that all robots are aware of the entire ¥&t the robots may form a consensus of which
robot should go to which target at= 0 by finding an optimal assignmeiat that yieldsDj,
as defined by (6). This assignment problem can be solved asliigartite matching algorithm

such as the Hungarian method. Ajtai, Komlos, and Tusnadyeqa the following aboubDy,.

Theorem 13 (Optimal Matching Ajtai et al. (1984)) Assuming that n points are i.i.d. follow-

ing the uniform distribution over a unit square, then, wittolpability 1 — o(1),

Ci1y/nlogn < Dy, < Cy+/nlogn, (16)

in which G and G are positive constants.

Remark. The second inequality in (16) remains true in expectatiod also for arbitrary
probability measures of®), 1]2, albeit with a different universal constant th@p, by a result of
Talagrand Talagrand (1992). Therefob¥, = ©(/nlogn) in expectation. Although no formulas
for C; and Cy from (16) were given in Ajtai et al. (1984), a simulation sfusuggests that
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Fig. 6. The ratio ofD;,//nlogn. Each data point is an average of 25 runs.

C1 <Cy< 1 andC,/Cp — 1 asn — . As an example, for 20€ n < 10000, 04/nlogn < D} <
0.5 /nlogn on average (see Fig. 6).

Next, we look at the general case with> 1 hierarchies. To boun®,, at each hierarchy,
we need to know the number of robots that cannot be matchedlyjodVe derive this number

in Lemma 14. Note that Lemma 14 does not depenanaand n being large.

Lemma 14 Suppose that n robots and n targets are uniformly randonsgyiduted in the unit
square Q, and Q is divided into m equal-sized regions. Withich of these m regions, the robots
are matched one-to-one with the targets until no more magghcan be made. The total number
of robots that are left unmatched is no more thgfm(m—1)/2 in expectation.

PROOF. Restricting to one of then equal-sized regions, say, we know forx? € X° andy? € Y°,

PO eca) =Py eq)=

and

P0Gy ¢ a) =P ¢ a ca) =",

in which the evem(x‘j) € qi,y(j’ ¢ ;) represents a surplus of one robotgnand the even(x(j’ ¢
gi,y? € gi) a deficit ing. Thus, we may view the experiment of picking} andy? as a one
step walk on the real line starting at the origin, with— 1) /n? probability of moving+1. The
entire process of picking® andY? can then be treated as a random walknafuch steps.
Under this random walk analogy, we may use a random varizpte {0,4+1} to represent
the outcome of pickingx?,y?). We immediately have tha[Z?] = 2(m—1)/n?. Letting S, =
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Z1+ ...+ 2Zn, we can compute the variance 8f as

E[ =E[(Z1+...+Z)? = E[Z2+...+ 72

—nE[Z?] = %

Applying Jensen’s inequality to the concave functigh with x = |S,|° = &, we have
ES)] = E[\/) < \/EI
2n(m—1)

me
Because, in expectation, an equal number ofrtheegions have surpluses (more robots than

= E[|S]] <

targets) and deficits (fewer robots than targets), and sdrtfeean regions may have neither, no
more than half of then regions should have a surplus of robots on average. Thertataber
of unmatched robots in expectation is then no more tmR) «E[|S)|]] < /n(m—-1)/2. O

The distance traveled by the matched robots at the bottorarbley withm regions can be

bounded easily. For simplicity, we now assume that thesemegare equal-sized squares.

Lemma 15 Suppose that n robots and n targets are uniformly randonsgyiduted in the unit

square Q, and Q is divided into m equal-sized small squaraggieach of these m small
squares, the robots are matched one-to-one with the tangetit no more matchings can be
made. The minimum total distance of matchings made betweearmbots and the targets within

the small squares is no more than/@logn in expectation, for some positive constant C.

PROOF SinceQ is divided intom squares, these squares all have a side lengtligfrl Let one
such square bg; with n; robots (note thaf ", nj = n). Since a uniform distribution restricted
to g; is again uniform, we can apply Theorem 13do If we let thesen; robots match only
with targets insideg;, then the total distance incurred locally will not exce&g/n;logn;/m in
expectation. Her€ is some positive constant.

Note that it is not necessarily the case thanhahobots will be matched locally ig;. This does
not affect the current proof. For some<li < m, it may be the case that no local matchings can
be made because eith@r= 0 or there is no target ig;. Let m < m denote the number of these

m squares in which local matchings can be made. The totalndistencurred by local matchings
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is then upper bounded by (note thmtis now indexed with respect to thes® squares)

ZC /n.logm \/*Z\m n 1ogn.

Here we assume that! > 0, otherwise the local matchings would have a distance cost
of zero. Since the functiop(x) = \/xlogx is concave, by Jensen’s inequality[\/xlogx]
< /E[Xlog(E[X]). Letting x=n; and the expectation be carried out over the discrete uniform
distribution with 1/m’ probability each, we have

m

C ml\/n-lon-<Cm (S Xyjogs M
ﬁ,;m ilogn; = /m i:m gi:m

o/ J gn, (log( im log(rm)

< C+/nlogn.

Remark. With minor modifications, Lemma 15 can be applied to regiotiith whapes other
than squares. Defining the diameter of a two-dimensionabnegs the diameter of the region’s
smallest enclosing circle, the main requirement for theificadion to work is that the maximum
diameter of these regions &(1/,/m).

We now give an upper bound ddy, in expectation, for general hierarchical strategies.

Theorem 16 Suppose that n robots and n targets are uniformly randond{riduted in the unit
square Q, and Q is divided intojraqual-sized small squares at hierarchy i with a total of &
hierarchies. For all applicable > 1, assume that m; > my and any small square at hierarchy

i + 1 falls within a single square at hierarchy i. Then Strategyi@ds

E[Dn] < Cy/nlogn+ Z,/ (17)

ProoFr TheCy/nlogn term on the RHS of (17) is due to Lemma 15. Then at each higrarch
with 1 <i < h, each of themy squares containsy1/m smaller squares from hierarchiy- 1.
Here we use the assumption that a region at a higher numbeseardny falls completely
within a single region at a lower numbered hierarchy. Thignsethat a robot that gets matched

at hierarchyi needs to travel at most a distance ¢f2/m. Since there are no more than
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v/nN(Mmit1—1)/2 < y/m:1n/2 unmatched robots at hierarchin expectation by Lemma 14, the
distance incurred at hierarchiyis no more than,/nm_1/m for 1 <i < h. Summing up all the
distances then gives us the inequality (17). O

Theorem 16 allows us to upper bound the performances ofréiftehierarchical strategies
depending on the choices bfand{m }. We observe that for fixed and{m} independent o,
the first termC+/nlogn dominates the other terms in (17) mas+ «. This implies that Strategy
2 yields assignments whose total distance is at most a canstatiple of the optimal distance.
This observation is summarized in Corollary 17. Recall tats the minimum possible distance
defined by (6).

Corollary 17 For fixed h and mp...,m, that do not depend on n, as+# o, Strategy 2 yields
target assignments with {3D;, = O(1) in expectation.

For example, witth > 2 andm = 4~ at hierarchyi, we have
h—1
E[Dn] < C+/nlogn+ Zl\/%
i=
=Cy/nlogn+2(h—1)y/n.

For any fixedh, asn — o, D,,/D;, < C/C;+0(1) = O(1). A constant approximation ratio can

(18)

also be achieved wheh and {m} depend om. For example, lettindr= 3, mp = logn, and

mg = log?n, we have

2
E[Dp] gC\/nIogn—l—.Z\\/nlogn:(C+2)\/nlogn. (19)

Since hierarchical strategies need not run centralizedrasent algorithms for all robots, the
computational part of these strategies can be significdasher. We will come back to this point
in the next section.

Remark. Before concluding this section, it is worth mentioning tttag results of this section
continue to hold in only slightly weaker forms when the paietsX?,Y? are drawni.i.d. from
the samearbitrary distribution over [0,1]? (based on Talagrand Talagrand (1992)). Since the
topic of arbitrary probability measures diverges from thainmfocus of this paper, we only
briefly discuss extending the results of this section to deti arbitrary probability measures
on [0,1]2.
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To adapt Lemma 14 for arbitrary probability measures, asstirat each region; (see the
proof of Lemma 14) has an overall probability pf of receiving a robot or target. Note that
S, pi = 1. This changes the upper boundHifS,|] for the regiong; to \/2np(1— pi). Then,
over allm regions, the total number of unmatched robots is bounded by

innn(l— Pi) :m\/ﬁil\/ pi(1—pi)

<m¢—\/zp. P

1
=mv2n (1—r—n)

2n(m—1),

in which the inequality is obtained by applying Jensen’sgiraity to the concave function

X(1—X).

Besides updating the uniform distribution ¥f andY° to an arbitrary probability measure,
the statement and proof of Lemma 15 remain largely unchanfled is because the second
inequality in (16) does not change asymptotically as theedgihg robot and target distribution
changes. Then, the inequality (17) from Theorem 16 meredg admultiplicative constant of 2 to
its second term on the RHS. Because the first inequality ini€ldot known to hold for arbitrary

probability measures, we do not have a paraIIeI of Corol]z?ryor arbitrary probability measures.

is among thewvorstdistributions for Problem 2 under the optimality consttahminimizing (5).
This is because the uniform distribution leads to an optiasaignment distance 61(,/nlogn),
and an arbitrary distribution leads to an optimal assigrtndistance ofO(y/nlogn). Note that

these updates also apply to the results in the next sectittnappropriate modifications.

VI. NEAR OPTIMAL STRATEGIES

After exploring hierarchical strategies for the regiorsé@ Communication Model 2, we now
return to the range-based Communication Model 1rc#nm is arbitrary and the conditions
specified in Theorem 4 are not known to hold, the best we cansdabiain near distance-
optimal strategies. In this section, we show that consttig approximation of distant optimality
is possible for arbitrarysenseand reomm The basic idea behind our strategies is to move the

robots to pass around information about the locations adratbbots. The assumptiogense> v/2
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is made temporarily. At the end of this section, we show howetnove this assumption without

affecting asymptotic optimality.

A. Near Distance-Optimal Rendezvous Strategy

Our first suboptimal strategy uses moving robots for infdrameaggregation until some robot
is aware of the locations of all robotsg, the setX?), at which point a centralized optimal
assignment can be made. Although some robots will move aadgehtheir locations during
this process, the moved robots nevertheless are aware iofirti@l locations in X°. To carry
out the strategy, the unit squa€gis divided intom = b? disjoint, equal-sized small squares,
with b= [v2/rcomm|. These small squares are labeledoags, in whichi and j are the row

number and column number of the square, respectively (sgerFi

Fig. 7. Directions for robots to move in the rendezvous sggat

Based on its initial location, each robot can identify thearaquareq; ; it lies in. Att =0,
the robots in the squares on row 1 and fowstart moving in the direction as indicated in Fig. 7.
We want to use these robot to pass the information of whereohfits are. At most one robot
per square is required to move since all robots in a smallrego@an communicate with each
other by the assumption= [v/2/rcomm|

Assuming that a robot in a squaggj is moving downwards, it keeps moving until it is within
the communication radius of a robot in a square with lapel ;,k > 1, at which point it passes
over the information it has and stops. The robotginy ; then does the same. The procedure
continues until a robot reaches the middle@f(row [b/2]). Then, the robots in the squares
on row [b/2]| repeat the same process horizontally until a robot in théecesf Q knows the

locations of all other robots. At this point, the robot in ttenter ofQ that knows the location
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of all other robots makes a global assignment so that eadht isbmatched with a target. The
moved robots then reverse their travel directions to delitie assignment information to all

robots. The outline of the strategy is given in Strategy 3.

Strategy 3: RENDEZVOUS
Initial condition : X2, Y, rcomm

Outcome produces a permutation that assigns robots to targets and communicatés

all the robots

1 each robot computes its squagg based orreomm. Let the highest labeled robot within
eachq; j be g j, which representsj; j

2 for each qj, 1<i,j <b=[v2/rcomm| do

3 if i # [b/2] then

s | | waitTimee |[b/2] ~il/b

5 else

6 L waitTime« 1/2+|[b/2] —j|/b

7 g j waits for up towaitTimeunits of time for information from a robot coming from

the previous square. After the information is received ¢erafaitTimepassesa; j

starts moving to the next squares and delivers its infomnadince it can communicate

with another robot in these squares. It then stops

[e¢]

robotay, 7 n/2 computeso; the earlier communication process is then reversed to

deliver o to all the robots.

The correctness of Strategy 3 as an algorithm is proven bgtaartion. Besides the distance
cost from the assignment, the robots in each column travelast a total distance of two. The
middle row incurs an extra distance of at most two. Thus, peetationD, < D;,+2b+2. Since
D; = ©(y/nlogn), D}, dominates B-+2 whenb = o(y/nlogn). In particular,n = O(1/r2,mm
satisfies this requirement. Therefore, Strategy 3 can yielt distance-optimal solution without
requiring ann as large as (13) with respect tgriomm

A drawback of Strategy 3 is that no robot can move to the targetil the assignment phase
is complete. This yields a total task completion timeTgi~ 2n+ T in expectation, which is

undesirable sincd&; = O(y/nlogn) asymptotically. Furthermore, Strategy 3 requires runrdng
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centralized assignment algorithm for all robots. This migdimpractical for large. We address

these issues with decentralized hierarchical strategies.

B. Decentralized Hierarchical Strategies

We first look at a decentralized hierarchical strategy tloatluines Strategies 2 and 3. Instead
of waiting for a centralized assignment to be made, in eadh@tmall square; ; as specified
in Strategy 3, we let the robots j ; be assigned to targets that belong to the same square (we
refer to these atocal assignmenjs The robots that are not matched to targets then carry out
Strategy 3. We denote this hierarchical rendezvous siraaedStrategy 4 and omit the pseudo

code.

Corollary 18 For Strategy 4 (2-level Hierarchical Rendezvous), as o,

E[Dn) < Cy/nlogn+/mn+2y/m+2, (20)
and
E[T,] = ©(y/nlogn+ /mn). (21)

PROOF The bound orE[Dy], given by (20), is straightforward to compute using TheorEsn
in which the first two terms on the right side of (20) corregphom the first and second terms of
the right side of (17), respectively, and the last two termesdue to communication overhead.
For total completion time, all bu®(,/mn) robots can start moving to their targetstat 0. For
the ©(,/mn) robots, they need to wait no more than two units of time eadbreemoving to

their targets. This gives us (21). U

Remark. Similar to Strategy 3, for any fixedh, in expectationD,/D;, = O(1) asn — co.
Moreover, in contrast to Strategy 3, for any fixedT, /T, = O(1) in expectation. Suppose that a
centralized algorithm requirg$n) running time. Using the same centralized algorithm, Sirate
4 has a running time oO(mt(n/m) +t(y/mn)). If t(n) = O(n®) as given by the Hungarian
method, then Strategy 4 has a running timeOgh® /m? 4+ (mn)®/2). Takingn= 1000Qm = 10,
for example, we get a 1000-time speedup.

By introducing additional hierarchies, Strategy 4 can b&lgaxtended to a multi-hierarchy

decentralized strategy. Depending on how the subdivissmasmade, many such strategies are
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possible. For example, usirig> 2 hierarchies with each hierarchyhaving 41 small squares,
we get a “quad-merging” strategy as illustrated in Fig. 8wimich up to four representatives in
four adjacent squares meet to decide a local assignmené abbots in these squares at a given

hierarchy level.

Fig. 8. lllustration of robot movements in a potential hietdacal strategy.

Although these suboptimal strategies vary in detail, theay loe easily analyzed with Theorem
16. For example, we look at an extension to Strategy 4 witbethrierarchies; let us call this
strategy Strategy 5. After partitioning the bottom (or dpihierarchy tom squares, the middle
(or second) hierarchy is partitioned inte= ,/m small squares. At either the third or the second
hierarchy, local assignments are made, followed by apglyite rendezvous strategy as given

in Strategy 3. It is again straightforward to derive the daling.

Corollary 19 For Strategy 5 (3-level Hierarchical Rendezvous), as o,

E[Dn] < Cy/nlogn+24/ny/m+4,/m+ 2. (22)
Remark. Again, D,,/D;, = O(1) asn — o for a fixed m. Introducing more hierarchy levels
extends the total completion timi, which is increased by approximately/gn. Thus, the total
completion time of Strategy 5 is also given by (21). Follogvisimilar analysis, the overall

running time required by Strategy 5@(mt(n/m)+/mt(y/n)+t(1/ny/m)) given a centralized
assignment algorithm that runs ifn) time.

C. Handling Arbitrary kense

Because there can be targets anywher®,ito carry out the algorithms stated in this section,

each robot must be aware of all target locations. For thisafpkn for arbitrarysense Q must be
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swept through in a worst scenario. To do this, we parti@into [1/(2rsensd ]2 small squares
and let a robot in the top-left small square “zig-zag” thrb@g(i.e., following a Boustrophedon
path Choset (2000)) until it covers the bottom side€fif there is no robot in the top-left small
square, then a robot in a square along the Boustrophedonipatied; implicit timing can be
used to determine this. Once the end of the path is reachedpbot then reverses its course
until it gets back to the top-left small square. At this pgititis robot is aware of all target
locations. It can then repeat a similar path to communidadé information to all other robots.
This procedure ensures that all robots are aware of all ttdogations. The total distance cost
of the procedure is about[2/(2rsensd| + [1/(2rcomm)]. Taking this penalty, which does not
depend om and therefore has no impact on the asymptotic optimalitycare then effectively

assUM& sense> V2.

VII. SIMULATION STUDIES

A. Number of Required Robots for a Connectd®)G

cooRN
= O

% of connected G(0)

1 2 3 4 5 6

Tl/ (* log T(:omm/rc%mm )

Fig. 9. Effects ofn on the connectivity of5(0) for different values of comm.

In this subsection, we show a result of simulation to verify theoretical findings in Section
IV. Since the bounds overcomm and rsense are similar, we focus omeomm and verify the
requirement for the connectivity o&(0) for severalrcomms ranging from 001 to Q2. For
each fixedrcomm, Vvarious numbers of robots are used starting from —logrcomm/ rgomm (the
number of robots goes as high asc30° for the case of comm= 0.01). 1000 trials were run
for each fixed combination af;omm andn. The percentage of the runs with a connecB@)
is reported in Fig. 9. The simulation suggests that the bsuwmh from Theorem 10 are fairly
tight.
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TABLE |

COMPARISON BETWEEN(4) AND (7)

l'comm

0.2 0.1 0.05 0.02 0.01
0.1 0.001, 0.82 0.001, 0.96 0.001,0.99 0.001,1 0.003,1
0.5 0.007,0.92 0.006,0.98 0.027,0.99 0.064,1 0.081,1
0.9 0.2, 0.99 031, 1 0.381, 1 0.477,1 0.502, 1
0.99 0.702, 1 0.742, 1 0.794, 1 0.834,1 0.855,1

prob.

To compare to (4), which also allows for estimationroin terms ofr¢omm With a specified
probability for obtaining a connecte@(0), we computech based on (4) and (7) for a range
of recomnrprobability pairs. We then use thess to estimate the actual probability of having a
connected5(0). We list the result in Table I. Each main entry of the table tves probability
numbers separated by a comma, obtained using (4) and (peatesely. As we can see, (4)
gives underestimates (due to its asymptotic nature) andotédre used to provide probabilistic

guarantees. On the other hand, (7) provides overestinfaegtiarantee the desired probability.

B. Performance of Near Optimal Strategies

Next, we simulate Strategies 2-5 and evaluatg T,, and running time for these strategies
over various values oh and rcomm assUMINgrsense> V2. Due to our choice ok = y/min
Strategy 5, we pick specifiomms SO thatm= [\fZ/rcomnﬂ is always a perfect square. These
values arec.omm= 0.16,0.09,0.057, and 04, which correspond ton= 81, 256,625, and 1296,
respectively. The number of robots used in each simulaboges from 100 to 10000. For each
n, 10 assignment problem instances are randomly generat@seTproblem instances are then
used to test all strategies. We test Strategy 2 using the @awmehierarchy and three-hierarchy)
partitions that are used with Strategies 4 and 5.

Distance optimality:The ratiosD,,/D;, for Strategy 3 over differem andrcomm are plotted in
Fig. 10. We observe that the overhead for establishing ¢lolm@munication among the robots
becomes insignificant asincreases, drivind,/D;, to close to one.

For Strategy 4, the ratios were plotted similarly in Fig. 1 Wwith (small) error bars. The error

bars display the standard deviation over the 10 runs (wetediibese from a figure, such as Fig.
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Fig. 10. Distance optimality of Strategy 3 over varyin@and rcomm.
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Fig. 11. Distance optimality of Strategy 4 over varyin@nd rcomm.
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Fig. 12. The effect of varyingn on the distance optimality of Strategy 4 witfpmm= 0.16 (m= 81).
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10, when they are too small to see). They can be better seeig.ilZE which is a zoomed-in
version of thercomm= 0.16 line from Fig. 11. The similarities between Fig. 10 and.Hif for
small n are not surprising since both strategies spend most of #ffeirt (distance traveled) in
establishing communication. As this extra communicatiost diminishes as grows, the actual
assignment cost dominates. Strategy 3, with assignmengl@ne in a centralized manner,

becomes better than the decentralized Strategy 4.

25
T

comm

O =
© o

20t .
057 -

k
n
ccoo

15 ™.

o
=

D'n, /D

10 ¢

5t

100 1000 10000
n - number of agents

Fig. 13. Distance optimality of Strategy 5 over varyin@and rcomm.

As expected, for a fixedcomm Dn/D;j, decreases am increases. Fon = 10000, the ap-
proximation ratios for our choices of,mm are around 1.4 (due to the slow growing nature of
D; ~ v/nlogn; fixing any rcomm this ratio should be close to one for lange On the other hand,
for a fixedn, as the partition of the unit squaf@ gets finer,D,/D;, increases, implying that
decreasing the communication radius has a negative effedistance optimality. We observe
similar results on the distance optimality of Strategy Se(5&y. 13).

If we remove the rendezvous part from Strategies 4 and 5,libegme similar to Strategy 2.
The distance optimality performance of these two particu&sions of Strategy 2 is shown in
Fig. 14 and Fig. 15, respectively. For all partitions mane=81, 256,625 1296),D,,/Dj;, ratios
of less than two are achieved and can go as low as 1.06, shokahgierarchical strategies can
provide very good optimality guarantees.

Computational performanceie list the running time, in seconds, for Strategies 3-5 iblda
Il. The standardO(n®) Hungarian method is used as the baseline assignment aigoriach
main entry of the table lists three numbers correspondirtgeéaunning time of Strategies 3, 4,

and 5, respectively, for the given combinatiornrgfnm andn. Note that any version of Strategy 2
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1.8 = 256
¥ = 625
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n - number of agents

Fig. 14. The assignment cost of a two-level “pure” hierazahistrategy.
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Fig. 15. The assignment cost of a three-level “pure” hidriaal strategy.

has the same amount of computation as a corresponding rendebased strategy. As expected,
a hierarchical assignment greatly reduces the computttiee) often by a factor over 0 The
computation was performed on a Intel Core-i7 3970K PC und@GB Java virtual machine.

Time optimality: Since Strategies 3-5 sacrifice distance (and therefore) tit;m compensate
for limited communication, we do not expect the total contipletime T, of these strategies to
matchT; closely. For example, in (21), althou@h— T;* asn— oo for fixed M= [v/2/r comm]| %, it
requires a very larga for y/logn to dominate,/m. Thus, we only compar®, among Strategies
3-5. Using Ty (i) to denote theT, for Strategyi, Th(4)/Ta(3) and T,(5)/Tn(3) are plotted in
Figures 16-17. A1 increases, Strategies 4 and 5 both take much less total eborptime on
average.
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TABLE I
RUNNING TIME FOR STRATEGIES3-5

# of robots,n Feomm(m)
0.16 (81) 0.09 (256) 0.057 (625) 0.04 (1296)
0.007 0.007 0.007 0.007
100 0.001 0.002 0.002 0.003
0.001 0.0001 0.0004 0.0004
0.02 0.02 0.02 0.02
200 0.001 0.005 0.01 0.02
0.0001 0.0003 0.0004 0.0006
0.34 0.34 0.34 0.34
500 0.005 0.02 0.07 0.14
0.0006 0.001 0.002 0.003
2.76 2.76 2.76 2.76
1000 0.015 0.07 0.22 0.54
0.002 0.003 0.003 0.006
22.3 22.3 22.3 22.3
2000 0.05 0.20 0.70 1.90
0.009 0.006 0.011 0.015
345 345 345 345
5000 0.02 0.78 2.84 8.28
0.069 0.032 0.043 0.058
2756 2756 2756 2756
10000 0.83 2.32 8.35 24.4
0.43 0.11 0.11 0.14
1.2 : :
1l Toomm= 0.16 —— |
g osl
5 0.6
X 04¢
& 02!
0

100 1000 10000

n - number of agents

Fig. 16. Ratio of total completion time between Strategieand 4.
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Fig. 17. Ratio of total completion time between Strategieand 5.

VIIl. CONCLUSION AND DISCUSSIONS

Focusing on the distance optimality for the target assigrninpeoblem in a robotic network
setting, we have characterized a necessary and sufficiaditmn under which optimality can
be achieved. We also provided a direct formula for computivegnumber of robots sufficient
for probabilistically guaranteeing such an optimal santi Then, we took a different angle;
we looked at suboptimal strategies and their asymptotitopaance as the number of robots
goes to infinity. We showed that these strategies yield ataohsapproximation ratio when
compared with the true distance optimal solution. Many @fsth decentralized strategies also
provide computational advantages over a centralized one.

We conclude the paper by discussing our choice on certameglts that can be generalized
in a future work.

Equal number of initial and target locationgn the problem statement we assume i =
IYO). 1f |XO| > |Y9)], some robots do not need to move andXf| < |Y|, some robots may need
to reach multiple targets, assuming that the main goal i®teesthe targets. Our result readily
generalizes to the case in whigk®|/|YY] is close to 1. WhemX?| > |Y©

, it is likely that for a

yi € YO, there is a unique; € X0 that is closest tg; Smith and Bullo (2009). Moreover, for two
differenty;,yj, Xi # x;. The spatial assignment problem then degenerates to fithengearest
robot for eachy € YO. When|X%| < |Y©

the traveling salesman problem (we have a standard travstitesman problem wheX°| = 1),

, the problem becomes a multiple salesmen version of

which is an NP-hard problem. It remains an interesting opggstion to investigate the middle
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X% = C|Y?| for some constarnt (for exampleC € [0.1,10)).

Distribution of initial and target locations:Although it is beyond the scope of this paper, it

ground,i.e.,

would be interesting to establish a lower bound on the optassignment distance for arbitrary
probability measures. Also, it would be interesting to stgate the case in which the robots
and the targets assume different distributions. Anothg@ontant aspect not covered in this paper
is the issue of targets distributed somewhat randomly awes.t

Minimizing over other powers of th2-norm: On the side of optimality measures, we note
that Theorem 13 generalizes to arbitrary powers of the Heah 2-norm Ajtai et al. (1984).
That is, for

n
D}y pi= mc;ni;w—yzmug, (23)

it holds true that
D;,p ~ n(logn/n)P/2. (24)

Theorem 13 corresponds to the special cas@ ef 1. As p — o, (23) minimizes the longest
distance traveled by any robot. This is true because for &dvr?, and a sufficiently large,
the Iargestﬂx?—yg(i)ng becomes the dominating term in the Sszllnx?—yg(i)Hg. Although
we restrict our attention t@ = 1 in this paper, our results readily extend to other valueg of
(i.e., other optimality criteria) with (24). Note that this meati®e D), definition given by (5)
needs to be updated accordingly to an appropriately defirgd
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