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Abstract: In this paper, an adaptive and low-cost robotic coating platform for small production 

series is presented. This new platform presents a flexible architecture that enables fast/automatic 

system adaptive behaviour without human intervention. The concept is based on contactless 

technology, using artificial vision and laser scanning to identify and characterize different 

workpieces travelling on a conveyor. Using laser triangulation the workpieces are virtually 

reconstructed through a simplified cloud of 3D points. From those reconstructed models several 

algorithms are implemented to extract information about workpieces profile (pattern recognition), 

size, boundary and pose. Such information is then used to on-line adjust the “base” robot 

programs. These robot programs are off-line generated from a 3D computer-aided design (CAD) 

model of each different workpiece profile. Finally, the robotic manipulator executes the coating 

process after its “base” programs have been adjusted. This is a low-cost and fully autonomous 

system that allows adapting the robot’s behaviour to different manufacturing situations. It means 

that the robot is ready to work over any piece at any time, and thus, small production series can be 

reduced to as much as a one-object-series. No skilled workers and large setup times are needed to 

operate it. Experimental results showed that this solution proved to be efficient and can be applied 

not only for spray coating purposes but also for many other industrial processes (automatic 

manipulation, pick-and-place, inspection, etc.). 
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1 Introduction 

1.1 Motivation 

Production lines tend to evolve into the concept of mass customization, i.e., 

working on small production series with flexible and customized procedures to 

each of them according to customers’ demands. Consequently, this means that 

high flexibility and versatility are mandatory concepts to the production lines of 

today. However, the setup and reconfiguration time of those flexible 

manufacturing systems (many times robot-based systems) is still too large when 

compared with the effective production time. System reconfiguration and 

associated downtimes implies strong financial efforts. Moreover, highly qualified 

and skilled workers are needed to operate this kind of flexible systems. This is a 

problem since many companies have no budget to hire skilled workers. 

Robotic manipulators are often a key element of flexible manufacturing 

systems. However, industrial manipulators still take a long time to be 

programmed. In fact, robot programming is a time consuming task that usually 

requires experienced and highly qualified workers to perform it. Despite these 

drawbacks, robotic manipulators are strongly desired in modern production lines. 

They have a series of advantages over human labour such as the ability to work 

continuously, high accuracy and repeatability, immunity to fatigue, immunity to 

distractions and the capacity to work in hazardous environments.  

Taking the case study of an adaptive robotic coating system for small 

production series, this paper presents a low-cost and flexible architecture that 

enables fast system adaptation to changing conditions (product variants) without 

human intervention. 

Most of the manufactured products need to be coated to improve their 

visual appearance and/or to provide protection from corrosion or damage. Manual 

coating operations can cause many problems such as environment pollution, 

coating material waste, inconsistent quality and low productivity [1]. These are 

some of the reasons why many companies are changing their manual coating 
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systems to automated ones. This research work was initiated at the request of a 

small and medium-sized enterprise (SME) named FLUPOL. This SME is an 

industrial coatings applicator that usually works with small production series and 

with very different products (industrial bakeware, automotive parts, housewares, 

etc.). 

1.2 Proposed architecture and technologies 

The proposed platform integrates three different sub-platforms, Fig. 1. The 

artificial vision system captures images of the workpieces travelling along a 

conveyor, and on which a laser-line is projected (3D laser scanning). The laser-

line scans the entire workpieces as they are transported (note that the camera and 

the laser are fixed while the workpiece is being transported on the conveyor). 

Then, using laser triangulation the workpieces are virtually reconstructed through 

a simplified cloud of 3D points. From those models several algorithms are 

implemented to extract information about workpieces size, boundary, profile and 

pose. A k-nearest neighbour (KNN) classifier is used to classify the different 

workpieces (pattern recognition). 

Generally speaking, the proposed platform produces the 3D reconstruction 

of the workpieces, identifies those workpieces and also provides information 

about workpieces’ pose. All this information enables on-line automatic system 

adaptation to the working scenario according to the specific profile and pose of 

each workpiece. In practice, this information is used to automatically select and 

adjust the “base” programs that run on the robot controller. These robot programs 

are off-line generated from a 3D CAD model of each different workpiece profile. 

Finally, after the selected “base” robot programs have been adjusted on-line, the 

robotic manipulator executes the coating process. Its coating schemes are adapted 

to match the workpieces’ size and layout. 
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Fig. 1 Simplified platform architecture 

1.3 Related work and discussion 

The integration of artificial vision with laser triangulation, pattern recognition and 

flexible reprogramming schemes of industrial manipulators has not yet been 

intensively discussed in literature, at least for all these fields’ together. On 

contrary, artificial vision, laser based scanning systems for different applications 

as well as pattern recognition techniques have been largely reported in literature.  

Profile acquisition and recognition of real world objects is an important 

issue for modern manufacturing systems. Numerous technologies have been 

studied to perform the above mentioned tasks, all of them with a wide range of 

hardware costs and different levels of achievable accuracy and detail. Streaming 

video and image-based techniques, structured light and laser light-sectioning 

methods, time-of-flight range finders, shape-from-silhouette algorithms and space 

carving techniques are some of the methods which have been studied in recent 

years [2-3]. Moreover, machine learning techniques [4-6], modelling of error [7] 

and methods to deal with time delays [8-9] are often associated with this type of 

technologies. 

In the last few years, several techniques related to laser scanning have 

been studied. This includes a scanning system to reconstruct a 3D surface as a 

large set of polygonal meshes [10], a scanning system for complex surfaces [11] 



5 

and a CAD/scanner based framework for robotic coating of complex products 

where the surface models are generated from points cloud [1]. A stereo head of 

cameras for a triangulation-based laser sensor device has been used for object 

recognition purposes [12]. An image-based visual seam tracking system for butt 

weld of thin plates where a structured laser light is used to detect the welding 

torch deviation is proposed by Fang et al. [13]. Marshall et al. proposes a solution 

based on the segmentation of range images for 3D reconstruction purposes [14].  

Lowe proposes a 3D object recognition system from single 2D images [15]. A 

laser-scan system for medical applications was proposed by Hayashibe et al. [16]. 

An approach to automatically generate robot programs for spray painting of 

unknown parts is presented by Vincze et al. [17]. This system is based on laser 

triangulation sensing, geometric feature detection, robot tool path planning and 

generation of collision-free robot programs. In fact, the goal of this system is 

similar to the goal of the system proposed in this paper. However, some 

substantial differences in methodology can be pointed out: the solution proposed 

in [17, 18] can be uneconomical for many companies since it uses some relatively 

expensive commercial solutions. Moreover, the process of 3D reconstruction is 

performed combining a large number of elementary geometries while in the 

system proposed in this paper the workpieces are classified and 3D reconstructed 

through a simplified cloud of points. 

Owing to recent advances in laser scanning technology, the set of dense 

points collected from the surface of a physical object can contain millions of 

points (point cloud data), leading to significant computational challenges. In this 

way, point cloud simplification algorithms have been studied [1, 19]. The solution 

proposed in this paper addresses this situation by using simplification methods to 

reduce the number of necessary points to virtually reconstruct a certain object 

with a predefined level of accuracy. This makes the reconstruction process faster. 

Looking at other fields of application of vision and laser based scanning, a 

lot of research has been carried out with facial recognition [20-21], dimensional 

measurement of objects [22] and even for inspection and control of quality 

purposes [23-24]. Kwok et al. proposes a laser based system to collect 3D data 

around the surface of a turbine blade. From the reconstructed blade model a tool 

path is generated [25]. Another similar system is dedicated for turbine blades 

repair through the reconstruction of the blades from multiple range images [26]. A 
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recent study analyses the applicability of scanning systems for geometric and 

dimensional tolerance control [27]. In fact, some analysis on precision have 

already been made, for example comparing the use of single or multi laser beams 

[28], or, exploring alternative computer vision systems as stereoscopic pairs [29]. 

Aliakbarpour et al. presents a good coverage on calibrating camera-laser setups 

[30]. Another interesting approach reports an industrial application in which a 

robotic assembly of a car door is assisted by a laser scanning system [31]. 

As a final summary, we can point out that most of the existing systems 

(off-the-shelf and laboratory prototypes) similar to ours are complex to use, suffer 

from lack of portability and usually are highly expensive when compared to the 

custom setup presented in this paper. 

2 Artificial vision and laser triangulation 

The artificial vision subsystem is responsible for capturing images of the 

workpieces travelling along a conveyor. A fixed laser-line is projected onto those 

workpieces. This laser-line is identified in each video frame and thereby it will 

serve as input to generate three-dimensional information about each workpiece. 

Image processing begins with the isolation of the laser-line for each frame: the 

environment illumination is controlled (this makes the area the camera is filming 

dark) and this way the laser-line appears brighter in the images. A binarization 

algorithm (1) is applied to each image, allowing us to work over very clean 

images as the one in Fig. 2 ( &B WF  is the binarized image). The laser-line appears 

in white and everything else in black. 

 
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 &
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,
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 
 


B W
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F u v

if u v threshold
 (1) 

 

Fig. 2 Binarized image 
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2.1 Camera calibration 

Camera calibration is one of the main issues of artificial vision systems. It allows 

identifying the artificial vision system parameters, in other words, calibration 

allows us to recognize the position in the world of any image pixel and vice-versa. 

Assuming that all coordinate systems are Cartesian, in homogeneous coordinates 

the relation between pixel coordinates xP  and world coordinates P can be seen in 

[32-33]. Thus, we have: 

 xP H P  (2) 

Where H is the projection matrix whose fields are parameters we want to estimate, 

namely the translation and rotation of the camera, the focal length, the point 

where the optical axis cuts the image plane and the relation between sensor and 

pixel size. For this purpose, we have used OpenCV routines. These OpenCV 

routines are commonly used in the scientific community for camera calibration 

purposes. Along with the parameters mentioned above, these routines also provide 

information about the parameters for compensating the radial and tangential 

distortions of the images [34]. Calibration is achieved simply by showing to the 

camera different views of a chessboard pattern with known size. 

2.2 Laser calibration 

One might consider that the laser-line projected onto the workpiece actually 

originates a plane L, Fig. 3. The intersection of plane L with the half-line obtained 

by 1

xP H P   results in a single and well defined point in space. Note that the 

laser must be placed obliquely to the camera. The equations of both the half-line r 

and plane L: 

0: ,r r rr P P w t t     (3) 

 0: 0n L LL w P P    (4) 

Where 0rP  and 0LP  are known points from the line and the plane respectively, for 

example the beginning of the half-line (position of the camera) and the position of 

the laser that also belongs to the plane;  
T

r r r rw x y z  is the vector that contains 
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the direction of the half-line and  
T

n n n nw x y z  is a vector orthogonal to the 

laser plane; 
LP  is a point of the plane L. Finding the point that belongs 

simultaneously to r and L, we have: 

0 0( ) 0r r L nP w t P w      (5) 

And then we get t as: 

0 0 0n r n r n r

n r n r n r

d x x y y z z
t

x x y y z z

     


    
 (6) 

Where: 

0n Ld w P   (7) 

Supposing the camera had been calibrated before this step, the half-line equation 

is already known. Coming to know the laser plane parameters is also quite simple. 

We start by measure the laser position in the world and then we get two more 

points non-collinear with the laser position. Then, we just measure two points 

from the laser line when it hits any object in the world. After this, the laser is 

calibrated.  

By replacing t in (5) we get the world coordinates rP  of any point of the 

image which also belongs to the laser-line. We can now jump, unequivocally, 

between image coordinates and world coordinates. 

r

Camera

Laser

Workpiece

Motion

rP

0rP

0LP
L

rw

nw

 

Fig. 3 Intersection of the laser plane with the half-line containing all the points that are projected 

into the same pixel 

 



9 

3 3D reconstruction 

Virtual 3D reconstruction of real profiles has gained an increasing importance in 

industry. For the proposed approach, while the workpieces are being transported 

on the conveyor, the camera and laser setup keeps unaltered (fixed). Thus, owing 

to the workpieces motion, the form of the laser-line captured by the camera is 

changed according to the moving workpieces are gone. In fact, virtual 

representations of real objects give users a “feeling” about the real aspect of the 

reconstructed workpiece. In this way, these virtual models enable quick visual 

validation and errors may be tracked. 

The real workpieces can be recreated in a 3D artificial environment by 

analysing the successive image frames and storing 3D data extracted from each 

one. Nevertheless, a more natural way to store collected 3D data is needed, other 

than having a set of loose points in space. Collected data should be well organized 

and treated by efficient algorithms. Hence, apart from visuals, all collected points 

were stored in a matrix form, making the indexes i and j of the matrix match with 

two of the axis of the world reference frame, Fig. 4. The third direction elements 

are associated with each pair of indexes (i and j). In this way, one can map a 

certain volume in space into a simple matrix form. The points that describe the 3D 

models of a given workpiece are then arranged into a data structure that can be 

written as:  

min

min

0 ( , )

c

cw w

x Matrix i j

y y S i

z z S j

    
    

  
    
           

 (8) 

Where cS  is a scale factor that correlates the index length with its world length. 

miny  and minz  are just the offset between the matrix origin and the world origin. 

Note that one more time subscript w indicates the world frame. 
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Fig. 4 Relationship between matrix indexes and world reference frame over a camera snapshot 

3.1 Results 

Fig. 6 presents two different views of a 3D reconstructed workpiece, the 

horizontal wavy-surface plate shown in Fig. 5, with approximately height = 0.80m 

and width = 0.40m. These plates shown in Fig. 5 are examples of industrial 

bakeware produced by FLUPOL. Addressing the requirements of the proposed 

platform, the results of the reconstruction process are very good. Comparing the 

dimensions of the reconstructed workpieces with the real values, we can establish 

an error value. In fact, it is important to quantify the error we have on the 

acquisition of workpiece dimensions. Error is more prominent on the edges of the 

captured images (the edges of the workpieces) due to large barrel distortion. 

Consequently, shorter workpieces have a minor error. In the case of one of the 

biggest horizontal wavy-surface plates (80x40) we have an error of 2.2% on 

length and 2.1% on width. After several tests with different workpieces we can 

establish an average of 2% of error as an upper bound. 

  

Fig. 5 Three different workpieces produced by FLUPOL. Horizontal wavy-surface plate (left), 

vertical wavy-surface plate (middle) and smooth surface (right) 
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Fig. 6 3D reconstruction of the horizontal wavy-surface plate. Front view (left) and lateral view 

(right) 

4 Feature extraction and pattern recognition 

4.1 Border calculation 

Using the matrix representation mentioned in previous section, a segmentation 

algorithm was implemented so that any workpiece profile could be evaluated. For 

the particular case of the coating process under study, all workpieces are 

transported on a rectangular metallic support (Fig. 13). This evidence contributed 

to facilitate the process of 3D reconstruction. Fig. 7 shows a flowchart reporting 

the implemented algorithm for workpiece border reconstruction purposes. Fig. 8 

shows the result of applying the proposed border reconstruction method. 

For each line: scanning from 

the left to the right in order 

to find matrix valid entries 

 

Pf

Pb

Pa

Identification 

of points as belonging to the 

metallic support, Pa

Continue scanning until it 

finds the gap

Identification of entries as 

belonging to the gap, Pf

Detection of the end of 

the gap (valid entries of the 

matrix are achieved again)

Sort the 

first points immediately after 

the gap as border points, Pb

Save points

 

Fig. 7 Border reconstruction method 
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Fig. 8 Border points of a reconstructed workpiece 

4.2 Slope calculation 

As the metallic support that “supports” the workpiece is fixed to the conveyor in 

only two points, due to conveyor motion the hanging workpiece tends to deviate 

from its vertical pose. Thus, an important feature to extract from the reconstructed 

workpiece is the slope of the workpiece in relation to an “ideal” vertical pose. The 

proposed platform allows the estimation of workpiece inclination in a trivial way. 

In fact, the estimation of workpiece slope is an important issue when the coating 

phase is initiated. Other methods or techniques would most likely need additional 

sensors to the same end, making the whole setup more expensive and trickier to 

deal with. 

Starting from a 3D reconstructed model and adequately choosing some model 

points, the plane that best fits those points can be computed. We are not using all 

of the model points because it would severely slow down the computations as we 

are talking about almost one million points. Thus, we are mostly using the edge 

points of the reconstructed models to define the plane. The first step is to 

eliminate outliers, points out of the border area and points with very different 

depth comparing to other points inside the border region. Then, the “clean” edge 

points are the input for the regression process. The plane is calculated by 

following a method that consists in solving the least squares problem using the 

singular value decomposition (SVD) technique [35].  

 Some factors affect the quality of the plane provided by the SVD analysis. 

There are problems both with outliers (above mentioned) and the non-symmetry 

of the reconstructed models. As we have only one laser (placed obliquely to the 
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camera), when the wavy-like models are scanned some areas cannot be reached by 

the laser-line (hidden areas). As an example, with the camera orthogonal to the 

workpiece and the laser pointing from left to right, the right side of the waves 

cannot be scanned. The result is a non-symmetric 3D model. Then, this is another 

reason because we are mostly using the edge points of the reconstructed models as 

input for the SVD analysis. These are just some hundred points, no serious threat 

on computational time. For a sample of 1000 points, the SVD process takes about 

10 milliseconds.  

 In terms of slope error, it is difficult to estimate it because it is 

substantially different for each different workpiece. The uncertainty comes from 

the way the operator places the workpieces in the conveyor.   

Fig. 9 shows the plane that represents an approximation to a specific 

workpiece slope is superimposed on the reconstructed workpiece model. The 

orientation of this plane gives an approximation to the real workpiece deviation 

from the “ideal” vertical pose.  

 

Fig. 9 Plane representing the workpiece slope, front view (left) and lateral view (right) 

4.3 Pattern recognition 

The proposed platform should be able to distinguish between at least three 

different types of workpieces: one with a smooth surface and two others with 

undulated surfaces (vertical or horizontal), Fig. 5. Each one of these types of 

workpieces can have varying dimensions (Table I). The proposed system should 

be able not only to recognize workpieces profile but also workpieces different 

sizes. 
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Table I: Horizontal wavy-surface plate model sizes 

Model Length (cm) Width (cm) 

Model #1 80 40 

Model #2 60 40 

Model #3 61.5 48 

Model #4 75.5 48 

Model #5 56 38 

Model #6 55 36.5 

 

The recognition/classification of the workpieces profile is carried out using 

a KNN classifier [4]. An N-dimensional space is created extracting N features 

from the 3D reconstructed models. Some workpieces are used for training 

purposes, in other words, the N features are off-line computed and then manually 

classified. When the system is running, upon detecting a new workpiece, the 

workpiece model is created, features are extracted and then the distance to each 

one of the training points is computed (within the feature space). Choosing the k-

nearest points, the workpiece under analysis will be attributed to the most 

common class among the k-neighbors. 

For this type of industrial application we cannot expect less than an almost 

“perfect” classifier, i.e., one that would return near 100% of accurate 

classification. Since after the classification process a robot program is uploaded to 

the robot controller, a wrong classification could lead to dangerous situations 

(collisions) and/or wasting of coating product. To achieve such a classifier, 

instead of computing a lot of common features and proceed to more complex 

classifiers, research focused on the search for “good” features. These “good” 

features will allow to distinguish the different workpieces in a direct and easy 

way. The selected features were 2
mHoriz  and 2

mVert , both representing the variance 

of depth in M slices of the 3D models (in horizontal and vertical direction 

respectively). The 3D models are sliced horizontally and vertically as Fig. 10 

suggests. Therefore, each 2
m  stands for the mean of the variance on depth in those 

cuts, which themselves are built up from cN  points. In this way, 2
m  is defined as: 
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Where j
ix  is a point in cut j and j

Px  is the mean of points in cut j. 

 

Fig. 10 Sliced representations of the horizontal wavy-surface plate; horizontal cuts (left) and 

vertical cuts (right) 

4.3.1 Results and discussion 

Results showing the reason for having near 100% of accurate classification are 

presented in Table II and summarized in Fig. 11. It can easily be seen that for 

smooth surfaces, both 2
mHoriz  and 2

mVert  take small values. On the other hand, an 

undulated surface presents high depth variance according to the direction of the 

“waves”, i.e., an horizontal wavy profile has high 2
mHoriz  and low 2

mVert , and vice-

versa when thinking about a vertical wavy profile. Results presented in Table II 

are average values calculated from five tests for each different type of workpiece 

profile.  

Table II: Features values 

Features 
2

mHoriz  
2

mVert  

Smooth surface 0.7 0.8 

Horizontal wavy-surface 5.8 1.4 

Vertical wavy-surface 1.1 6.3 
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Fig. 11 Workpieces features 

With respect to a more general application where there is no obvious 

distinction of objects with such a few features, more complex and robust 

algorithms other than KNNs may be applied. Classification algorithms based on 

artificial neural networks (ANNs) [5] or support vector machines (SVMs) are 

plausible solutions. However, these solutions would require a greater number of 

training samples. As extensively shown in the literature [36-38], designing this 

kind of classifiers with very few training samples brings additional problems. The 

design of the classifier is much more complex and high performance rates may 

not be achievable. 

The implemented KNN classifier provides very good results. The 

implementation is simple and, if needed, we can always increase the training set 

later. This can be done without changing code and having to run the training 

again, as in the case of ANNs or SVMs. Adding training samples in KNN means 

just more computation when testing. Even for the application proposed in this 

paper, it may be necessary to classify other type of workpieces. The proposed 

solution is flexible and expansible enough to deal with that situation, simply 

reinventing and exploring new and “good” features to extract from the models.  

Another totally different technique that could be implemented eying the 

same goal of recognizing objects is, for example, the attachment of RFID tags in 

each workpiece. This technique allows classifying the workpieces, but it requires 

that labels are manually placed in each different workpiece (different in profile 

and size). Moreover, with RFID tags we could not estimate the workpiece 

deviation from its “ideal” pose. The proposed platform allows us to compensate 
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and deal with such negative issues: Otherwise, we will be forced to introduce new 

hardware in the system such as transporting guides to maintain workpieces’ 

position and orientation constant.    

5 Robot programming from CAD 

The “base” robot programs are off-line generated from a 3D CAD model of each 

different workpiece (different in profile and not in size). Robot programs are 

designed so that robot motion is parameterized with the workpieces dimensions. 

These programs are kept in the robots’ controller and called when needed. 

Once CAD technology is today common throughout industry, any user 

with basic CAD skills can be able to generate robot programs off-line from a 

CAD model. In addition, the 3D CAD package (Autodesk Inventor) that 

interfaces with the user is a well known CAD package, widespread in the market 

at a relative low-cost. This system works as a real human-robot interface where, 

through the CAD, the user generates programs for the real robot. The methods 

used to extract information from the CAD models and techniques to treat/convert 

it into robot commands have been investigated and successfully implemented 

[39]. The information needed to program the robot (generation of coating gun 

trajectories) is extracted from the 3D CAD model of each different workpiece and 

from the virtual robot paths that the user can easily define in the CAD drawing, 

Fig. 12. 

In order to achieve uniform coat thickness, the spatial gun position, 

orientation and velocity should be planned based on the local geometry of the 

free-form surface [40]. In this case study, it is desired that the plates can be coated 

according to their surfaces, e.g., horizontal-wavy profiles should be coated with 

vertical moves. Experiments were conducted to evaluate the interface 

performance, and results showed that the CAD-based system is easy to use and 

within minutes an untrained user can generate a robot program for a new 

workpiece. 
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Robot Path Robot Path

Horizontal wavy-surface plate
 

Fig. 12 A robot program will be generated from this CAD model 

6 Experimental setup, results and future work 

Results and critical analysis of the 3D reconstruction process, pattern recognition 

and feature extraction have been presented and discussed in previous sections. 

This section aims to present an overview of the entire system setup and its 

working performance. Fig. 13 shows the system setup where you can see a 

workpiece being transported, the laser-line projected onto the workpiece, the 

camera capturing images and a MOTOMAN HP6 robotic arm equipped with an 

NX100 controller. Note that both the laser (wavelength = 650nm, power = 3mW) 

and camera (Imaging Source DMK 31BU03 [41]) are fixed. The distance between 

the laser and the camera is 50cm. Fig. 14 presents a detailed architecture of the 

platform, where the off-line and on-line processes are highlighted. The ambient 

light is controlled to be dark. In this way, the laser-line appears brighter in the 

images. 

Once a new workpiece has been identified by the system, multiple 

commands are immediately sent to the robot controller. These commands contain 

information about the type of workpiece (a “base” robot program is selected), 

workpiece size and the necessary slope adjustments. It means that, after the 

scanning process the robot receives the necessary information to perform the 

coating process in an appropriate way. A video is a good way to visualize the 

entire system setup and modus operandi [42]. The main quantitative results of the 

entire system are listed below: 
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- In the process of 3D reconstruction we have an average of 2% of error 

as an upper bound. 

- In terms of classification we have near 100% of accurate classification. 

- The scanning time is imposed by the velocity of the conveyor. For this 

particular process the conveyor velocity is 1m/min.   

These results are in line with the results obtained by other similar studies (see 

section 1.3). However, the proposed platform has some important features that 

should be highlighted: 

- The workpiece profile is reconstructed using a simplified cloud of 

points. Other studies use different methods for the same purpose [1, 17, 

18]. 

- The proposed platform not only classifies workpieces profiles but also 

provides information on the size and slope of the workpiece under 

analysis. This is very important for the adaptive behaviour that 

characterizes the platform. 

- The “base” robot programs are off-line generated from a 3D CAD 

model running on a commercial 3D CAD package. This is an 

alternative to commercial computer-aided robotics (CAR) software, 

which can be an expensive solution for many companies. This point 

reinforces the low-cost character of the proposed platform. 

The greatest difficulties we have encountered throughout the research were: 

- The calculation of workpieces slope. 

- The development of a system able to deal with any workpiece profile 

and size. 

- The achievement of “good” features for the classification phase. These 

features should be simple and size-invariant. 

Generally speaking, the proposed platform works well and meets the requirements 

previously defined. We can say that the platform is flexible enough to adapt itself 

to each workpiece conditions. The classification algorithm needs further 

validation and development in order to make it more robust and comprehensive. 

This is important, especially in the definition of the features to extract from the 

workpieces, other than those presented here. 
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Fig. 13 System setup; laser scanning (left) and robotic coating process (right) 
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Fig. 14 System architecture. Off-line and on-line processes are highlighted 

7 Conclusions 

An adaptive scheme for an industrial coating process of small series was studied 

and developed. This is a low-cost and fully autonomous system that allows 

adapting the robot’s behaviour to different manufacturing situations. It means that 

the robot is ready to work over any piece at any time, and thus, small production 
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series can be reduced to as much as a one-object-series. No skilled workers and 

large setup times are needed to operate it. 

 The proposed solution is a noncontact scanning system where artificial 

vision together with laser triangulation allows an accurate 3D reconstruction of 

workpiece models. From those reconstructed models features are extracted and 

workpieces are classified with near 100% of accurate recognition. Base robot 

programs are generated off-line from 3D CAD models of the workpieces. These 

programs are automatically adjusted with information from the reconstructed 

workpiece models, adapting the robot coating movements to the workpieces size 

and pose. 

 Experimental results showed that the proposed solution proved to be 

efficient. Moreover, it can be applied not only for spray coating purposes but also 

for many other industrial processes where workpieces need to be recognized 

before robot(s) working on them. For example, this solution can be used for many 

different automatic manipulation processes or for inspection purposes. Most of the 

existing systems similar to ours (off-the-shelf and laboratory prototypes) are 

complex to use, suffer from lack of portability and usually are highly expensive 

when compared to the custom setup presented in this paper. 
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