
Cable-Driven Robots with Wireless Control Capability for
Pedagogical Illustration in Science

Julien Alexandre dit Sandretto1, Cyprien Nicolas2,
Inria Sophia-Antipolis Méditerranée

May 27, 2013

Abstract

Science teaching in secondary schools is often abstract for students. Even if some experiments can be
conducted in classrooms, mainly for chemistry or some physics fields, mathematics is not an experimental
science. Teachers have to convince students that theorems have practical implications. We present teachers
an original and easy-to-use pedagogical tool: a cable-driven robot with a Web-based remote control inter-
face. The robot implements several scientific concepts such as 3D-geometry and kinematics. The remote
control enables the teacher to move freely in the classroom.

1 Introduction
Students often find the instruction of technological
sciences and mathematics abstract and unclear. To
illustrate their lecture and explain theorems, teach-
ers are restricted to use a limited number of tools
(e.g. ruler, board) that have an abstract link with
the concepts that have to be illustrated. Thus the
understanding is difficult, and the interest of math-
ematics is not physically demonstrated. Our recent
work [3] led us to consider that parallel cable-driven
robot may be interesting as a pedagogical demon-
strator. Cable-driven robots use motorized winches
to coil and uncoil cables and a coordinated control
of the cable lengths allows one to control the posi-
tion of a platform moving in space, like a crane with
several cables [7]. Moreover, teachers need to move
around the robot and walk in the classroom to phys-
ically illustrate their speech and provide an interest-
ing course. Under this constraint, the controller has
to be remote and wireless.

Cable-driven robots may be used to illustrate a
large variety of scientific concepts, such as geom-
etry: Pythagorean theorem, vectors, Grassmann ge-
ometry, etc.; robotics: control, calibration, kinemat-
ics, statics, etc.; and computer science: user inter-
faces, network communication, numerical methods,
programming, etc., this list being non exhaustive.

We present a pedagogical system that has already

1Coprin, julien.alexandre dit sandretto@inria.fr
2Indes, cyprien.nicolas@inria.fr

been used at a local science fair, and we base our
talk on the experience we gained from that demon-
stration. We shall first describe the physical aspects
of the robot in Section 2. Then, we detail the math-
ematical model used to move and locate the robot in
space in Section 3. We show the web-based control
interface in Section 4, and introduce the Hop toolkit
used to build the interface in Section 5. Last, we
conclude in Section 6 and we discuss future works
in Section 7.

2 Our Pedagogical System
Our system is pictured in Figure 1. It is composed
of four coiling systems, each put atop of a tripod.
The four cables are tied to a single platform made
from Lego. Each coil is activated by a stepper mo-
tor, which is controlled by a Phidget Stepper board.
Each board control interface is plugged by a USB
cable. The four USB cables are plugged on a com-
puter either directly (if there are enough USB ports),
or through a USB hub. It can be any kind of com-
puter with the USB “Host” capability. We made suc-
cessful experiments with small embedded systems
such as Phidget SBC2 or Fit-PC2 devices. In the
pictured setup, we merely used a standard laptop.

The software controlling the robot was running on
the laptop. The control interface shows two different
controls: a manual activation of each coil to wind or
unwind a specific cable, and a Cartesian command
to move the robot in a well-known direction.

1

ar
X

iv
:1

30
9.

45
50

v1
 [

cs
.R

O
]

 1
8

Se
p

20
13

Figure 1: The cable-driven robot deployed in a classroom

By creating a WiFi network in the classroom, or
using an existing one, any connected device could
access the Web server running on the laptop to dis-
play the control interface. We actually remotely
controlled the robot from a Nexus S Android device.
The WiFi network was also created by the same An-
droid device, using the connection sharing ability.

This kind of manipulator is portable, modular in
size (it can be put on a table or may cover a whole
classroom) and easy to handle by a teacher or stu-
dents. Moreover the technologies that are used are
cheap, easily available and so simple that students of
any level may build from scratch their own device.

During the science fair, we used the robot to show
how Pythagoras’ theorem is needed to make basic
movements. The challenge proposed to the students
was to move the robot from a point P1 to a point
P2 in the robot’s space using only the manual, per-
coil commands. Point P1 was the initial position of
the robot’s platform, and point P2 was figured by the
hand of a volunteer student. Another volunteer stu-
dent used the control interface to move the robot’s
platform. Less than half of the students managed to
make the full movement in less than a minute. Some
of them resigned.

We then asked the same students to redo the
same P1-to-P2 movement using the Cartesian com-
mand. They all succeeded in less than 15 seconds.

The challenge opened the students’ curiosity for the
robot model.

3 Cable-driven modelling

3.1 Cable-driven robot architecture

In the sketch presented in Figure 2, the mobile plat-
form (linked to the point O) is connected to the base
(linked to the frame Ω) by m = 4 cables.

The cable connects the points A,B,C and D in the
base (coordinate a,b,c and d in Ω) to the point O on
the mobile platform. The position p of O expressed
in Ω is directly controlled by the length la,b,c,d and
the tension of each cable.

3.2 Kinematics

The implicit kinematics links the position of the
platform and the cable length with the four relations:

||p−a||2− la = 0
||p−b||2− lb = 0
||p− c||2− lc = 0
||p−d||2− ld = 0

2

Figure 2: The cable-driven robot architecture

With these relations, we can compute the four ca-
ble lengths to reach a position for the platform p,
with the Pythagorean equation:

la =
√

(x−ax)2 +(y−ay)2 +(z−az)2

lb =
√

(x−bx)2 +(y−by)2 +(z−bz)2

lc =
√
(x− cx)2 +(y− cy)2 +(z− cz)2

ld =
√

(x−dx)2 +(y−dy)2 +(z−dz)2

3.3 Cartesian control

The mobile platform is controlled in the 3 degrees
of freedom, its position, in the global frame Ω. The
inverse kinematics (see Section 3.2) allow one to
compute the length la to reach a given position. We
compute the order for the motor A, denoted ρa, as
follows:

ρa =
(la− l0)
(2πr)

Nsteps (1)

where l0 is the unwound length of cable at mo-
tor’s home position, r the drum radius, and Nsteps the
number of steps per turn. The orders for the other
motors B,C,D are computed by the same manner.

4 Control Interface
The interface is generated and served by Hop. We
wrote a Web interface that allows the demonstrator
not only to move the robot, but also to calibrate the
coils and get feedback about the robot state. We di-
vided the interface in three pages: one for the actual
control of the robot, and two for the calibration part:
the trilateration of coil coordinates and zeroing of
each motor.

On top of each page of the Web app, links enable
to switch between the different roles or to switch
between French and English interface languages. In
this section we present the interfaces, starting with
the Setup and Calibration interfaces. Each interface
is composed of several blocks of information. Each
block has a title and can be folded or unfolded. To
reduce the size of the screenshots presented in this
section, some blocks are presented in their folded
form.

4.1 Robot Setup

Figure 3: The configuration interface

The setup interface is pictured in Figure 3. The
page is divided in three blocks. The first block, enti-

3

tled “Current Status”, is shared among all interfaces.
It reports the current cable lengths and the position
deduced from the lengths by solving the direct kine-
matics. The “Save!” button records the current po-
sition in order to get back there later.

The second block reports the last known coils co-
ordinates. It helps to ensure that the known coordi-
nates roughly correspond to the actual spatial con-
figuration of the robot. The coordinates are stored
within the application configuration for easy reuse
in subsequent demonstrations.

The third and last block computes the coordinates
of the coils using the coil inter-distances. The Carte-
sian coordinates are determined by solving circle
equations. The computation takes six inputs (as we
have four coils); two buttons enable solving and sav-
ing the trilateration. Figure 4 shows the solution co-
ordinates of a given set of distances.

Figure 4: Computing coils coordinates

4.2 Robot Calibration
Figure 5 shows the calibration interface, which ze-
roes the motors. For each coil, two buttons permit
to wind and unwind the cable until it reach the ex-
pected length for the coil (each cable has a mark at
exactly l0 = 100 cm of the platform). When wind-
ing or unwinding, the coil rotates continuously un-

Figure 5: The calibration interface

til the “Stop” button is pressed. The “Save” button
records the zero (home position) within the stepper
controller. Each coil can be zeroed independently
from the others. The color tells the user about one
coil’s motor status: green stands for zeroed, orange
for not zeroed yet, and red signals an error. Errors
can mean that the motor cannot be detected, or the
system failed to communicate with the motor con-
troller.

4.3 Robot Control

The main interface is pictured in Figure 6. It is com-
posed of five blocks. As the first block is common
to previous interfaces, we omit it here. The sec-
ond block controls coils. The colors have the same
purpose described above. For each coil there are
two buttons: “Wind”, and “Unwind”. Each respec-
tively winds and unwinds a coil by a half-turn which
roughly corresponds to 3.5 cm.

The third block enables per-axis motion: each
button moves the robot in one direction by 5 cm.
The fourth block enables the manipulator to specify
coordinates to go to. Either the coordinates repre-
sent a vector by which the robot should be shifted,
or, if the checkbox is unmarked, an absolute position
within the coil-delimited affine space.

Last, the fifth control block lists saved coordinates
from the status block. For each saved position, a
button loads the coordinates and moves the robot
there, while the second button removes the coordi-

4

Figure 6: The main interface

nates from the list.

5 Hop

Hop is a programming language and platform for
the Web. It incorporates all the required Web-related
features into a single language with a single homo-
geneous development and execution platform, thus
uniformly covering all the aspects of a Web appli-
cation: client-side, server-side, communication, and
access to third-party resources. Hop embodies and
generalizes both HTML and JavaScript Functionali-
ties in a SCHEME/CLOS-based platform [2] that also
provides the user with a fully general algorithmic
language. Web services and APIs can be used as
easily as standard library functions on the server and

client. In this section, we give a brief introduction to
Hop. Readers interested in extra details should refer
to [5, 6].

We use three different aspects of Hop in our
system. First, the ability to interact with system
(C/C++) libraries, like the libphidget one. Second,
the Web service definitions: how can we expose a
library function through a Web service, how to deal
with concurrency. Last, the Hop ability to generate
interactive Web interfaces, which can invoke the just
described Web services.

5.1 Layered Control

The coils are controlled by Phidget boards. The
Hop’s Phidget library allows the management of
Phidget devices as any other Hop value (such as
String or any number type). As such they can
be passed to functions, returned as results, or stored
in variables and data structures.

Thanks to the Hop’s Phidget library, we wrote all
the control code in Hop. The code is like C-code,
with mainly syntactic differences, and a few stylis-
tic changes. The control code orders a given stepper
motor to rotate in a given direction for a given num-
ber of steps.

Atop of this low-level control layer, comes the ge-
ometric layer, translating points in space into cable
lengths (la,b,c,d), and desired cable lengths on a given
coil into rotation orders of a given number of steps
(ρa,b,c,d). We choose this separation to keep the abil-
ity to replace the control layer by a simulation layer
to draw or report what would be done for a given
position. It enables us to test the geometric layer
separately from the control layer. This separation
also allows us to change the geometric layer to deal
with different robot designs.

Then, we use Hop to provide access to any func-
tions of the geometric layer through URLs. This last
layer also manages the possible concurrent accesses.

5.2 Web services

In Hop, a service is a regular function which can be
called from an URL. The Hop web server waits for
HTTP requests on a given port (8080 by default).
When a request is received, the requested resource
identifies a service, and the function associated with
the service is applied to the request parameters.

As any Web server, Hop is by default concur-
rent. Threads, organized in a pool, handle requests
concurrently for better performance and multitask-
ing. A Hop server is not necessarily serving only

5

one service at a time! Hop uses native threads, usu-
ally POSIX threads, with preemptive semantics. As
such, services with side-effects might require the use
of locks to avoid races.

This concern applies to all services wrapping
functions to move the robot. Moreover, in our spe-
cific situation, the robot should not receive two or-
ders at the same time, even if the orders come from
different services. Here we need a global lock for
any movement-related service. Querying the robot
state is side-effect free and thus does not require re-
source acquisition.

5.3 Web interfaces
Nowadays, Web interfaces are the most universal
way to deploy graphical user interfaces (GUIs).
Smartphones and tablets now embed the same mod-
ern browsers as we have on our computers. Web
applications do not require any installation: the ap-
plication is downloaded from a Web server and is
immediately ready to run. We found it obvious that
a pedagogical system should be as device-agnostic
as possible, and not requiring any complex setup.

Hop is designed to create Web interfaces. Hop
embeds Web-UI languages: it can manipulate any
HTML element as it manipulates any Hop value,
i.e., aggregating the element in data structures, con-
verting it to String and vice-versa.

As Hop defines HTML trees and Web services,
Hop naturally provides simple syntax to call a Hop’s
service from a HTML tree, using standard Web
events such as mouse clicks or keyboard inputs.

6 Conclusion
We described a pedagogical system made of a cable-
driven robot and a remote control. The robot only
requires casual hardware for less than 600 Euros.
Our system enabled us to give a physical illustra-
tion of the Pythagorean theorem and led to a more
attractive presentation of lectures. Mobility through
wireless remote control improves the teaching con-
ditions by enabling all students to move the robot.
These positive results motivate us to distribute our
robot in 3 different schools (high school, university
and engineering school) during the next year.

7 Future Works
There is an ongoing work on Hop called HipHop [1].
HipHop is about porting the Esterel Reactive Pro-

gramming style in Hop. Robots are reactive systems
that react to inputs coming from their environment
or from the manipulator. HipHop is an orchestra-
tion language for Hop. By adding such a layer in
the cable-driven robot, we will be able to easily pro-
gram robots movement sequences, preempt actions
when an obstacle is detected, and so on. We plan to
place a smartphone in the robot to get data from its
sensors through Hop (Hop has already been success-
fully ported to Android platforms). Using HipHop
to orchestrate robot movements, we extend the peda-
gogical system to teach robots and event-based pro-
gramming. In the robotics field, we plan to apply our
recent work on cable-driven robot calibration [4] to
this prototype and add it in our Hop based control
interface.

References
[1] G. Berry, C. Nicolas, and M. Serrano. HipHop:

A Synchronous Reactive Extension for Hop. In
Proceedings of the PLASTIC’11 workshop, Portland,
USA, Oct. 2011.

[2] R. Kelsey, W. Clinger, and J. Rees. The
Revised(5) Report on the Algorithmic Language
Scheme. Higher-Order and Symbolic Computation,
11(1), Sept. 1998.

[3] J.-P. Merlet. Marionet a family of modular wire-
driven parallel robots. In ARK, page 53–62, 2010.

[4] J. A. D. Sandretto, D. Daney, and M. Goutte-
farde. Calibration of a fully-constrained parallel
cable-driven robot. In RoManSy, Paris (France),
2012.

[5] M. Serrano. HOP, a Fast Server for the Diffuse Web.
In proceedings of the COORDINATION’09 confer-
ence (invited paper), Lisbon, Portugal, June 2009.

[6] M. Serrano, E. Gallesio, and F. Loitsch. HOP, a lan-
guage for programming the Web 2.0. In Proceedings
of the First Dynamic Languages Symposium, Port-
land, Oregon, USA, Oct. 2006.

[7] S. Tadokoro, R. Verhoeven, M. Hiller, and
T. Takamori. A portable parallel manipulator for
search and rescue at large-scale urban earthquakes
and an identification algorithm for the installation in
unstructured environments. In Intelligent Robots and
Systems, volume 2, pages 1222 –1227 vol.2, 1999.

6

	1 Introduction
	2 Our Pedagogical System
	3 Cable-driven modelling
	3.1 Cable-driven robot architecture
	3.2 Kinematics
	3.3 Cartesian control

	4 Control Interface
	4.1 Robot Setup
	4.2 Robot Calibration
	4.3 Robot Control

	5 Hop
	5.1 Layered Control
	5.2 Web services
	5.3 Web interfaces

	6 Conclusion
	7 Future Works

