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An Efficient Index for Visual Search in Appearance-based SLAM

Kiana Hajebi and Hong Zhang

Abstract— Vector-quantization can be a computationally ex-
pensive step in visual bag-of-words (BoW) search when the
vocabulary is large. A BoW-based appearance SLAM needs
to tackle this problem for an efficient real-time operation. We
propose an effective method to speed up the vector quantization
process in BoW-based visual SLAM. We employ a graph-based
nearest neighbor search (GNNS) algorithm to this aim, and
experimentally show that it can outperform the state-of-the-art.
The graph-based search structure used in GNNS can efficiently
be integrated into the BoW model and the SLAM framework.
The graph-based index, which is ak-NN graph, is built over
the vocabulary words and can be extracted from the BoW’s
vocabulary construction procedure, by adding one iteration to
the k-means clustering, which adds small extra cost. Moreover,
exploiting the fact that images acquired for appearance-based
SLAM are sequential, GNNS search can be initiated judiciously
which helps increase the speedup of the quantization process
considerably.

I. INTRODUCTION

Bag-of-Words (BoW) method was originally proposed for
document retrieval. In recent years, the method has been
successfully applied to image retrieval tasks in computer
vision community [17], [18]. The method is attractive be-
cause of its efficient image representation and retrieval. BoW
represents an image as a sparse vector of visual words, and
thus images can be searched efficiently using an inverted
index file system. Moreover, because the complexity of BoW
does not grow with the size of the dataset, as much as that of
other search techniques (e.g., direct feature matching) do, it
can be employed for large-scale image search applications.

One major application area that benefits from BoW is
the appearance-based mobile robot localization and SLAM1.
SLAM employs BoW to solve theloop closure detection
(LCD) problem which is a classic and difficult problem in
SLAM. LCD is addressed as a place recognition problem:
robot should be able to recognize places it has visited before
to localise itself or refine the map of the environment. This
task is performed by matching the current view of the robot
to the existing map that contains the images of the previously
visited locations.

In large-scale environments, SLAM maps contain a large
number of images to match in order to solve the loop closure
detection problem. The image search in such large maps
is challenging and still an open problem. Although BoW
proposes an efficient search technique, its vector quantiza-
tion (VQ) step can be computationally expensive. Vector
quantization maps the image feature descriptors to the words
in a visual vocabulary. Typically hundreds to thousands of
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features are extracted from an image and need to be matched
against tens or hundreds of thousands of visual words.
Approximate nearest neighbor search algorithms, e.g. hierar-
chical k-means tree [17] and randomized KD-trees [22], have
been used to speed up the quantization process, however at
the cost of search accuracy. In this paper, we adapt the graph-
based nearest neighbor search algorithm (GNNS) proposed
in [13] to increase the efficiency of the vector quantization.
GNNS utilizes ak-NN graph as the search index, which
is constructed in an offline pre-processing phase. However,
the graph construction can be expensive when the dataset
(i.e., the vocabulary in our application) is large. Fortunately
by integrating GNNS into the BoW model, thek-NN graph
can be extracted from the k-means procedure, employed for
visual vocabulary construction in BoW-based algorithms, and
it just adds small additional computational cost compared to
the cost of k-means clustering. Most importantly, we show
that GNNS can exploit the sequential dependency in SLAM
data to speed up the vector quantization process considerably
unlike other search indices in which it is difficult to exploit
such sequential dependency in data. This motivates the use
of GNNS rather than other search algorithms in solving loop
closure detection problem.

To support our claim, we experimentally show that adapt-
ing GNNS to solve the vector quantization problem, out-
performs the state-of-the-art search methods by decreasing
the number of distance computations performed and hence
increasing the search speedup,

II. BACKGROUND

A. Bag-of-Words for Image Retrieval

Bag-of-words is a popular model that has been used in
image classification, objection recognition, and appearance-
based navigation. Because of its simplicity and search effi-
ciency it has also been used as a successful method in large-
scale image and document retrieval [23], [17], [18].

Bag-of-words model represents an image by a sparse
vector of visual words. Image features, e.g., SIFTs [15],
are sampled and clustered (e.g., usingk-means) in order to
quantize the space into a discrete set of visual words. The
centroids of clusters are then considered as visual words
which form the visual vocabulary. During image retrieval
or robot navigation, when a new image arrives, its local
features are extracted and vector-quantized into the visual
words. Each word might be weighed by some score which
is either the word frequency in the image (i.e.,tf ) or the
“term frequency-inverse document frequency” ortf-idf [23].
A histogram of weighted visual words, which is typically
sparse, is then built and used to represent the image.
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An inverted index file, used in the BoW framework, is
an efficient image search tool in which the visual words are
mapped to the database images. Each visual word serves as a
table index and points to the indices of the database images in
which the word occurs. Since not every image contains every
word and also each word does not occur in every image,
the retrieval through inverted-index file is independent ofthe
map size and therefore fast.

B. Bag-of-Words for Appearance-based SLAM

Bag-of-words model has been extensively used as the
basis of the image search in appearance-based localization
or SLAM algorithms [8], [9], [1], [2], [12]. Cummins
and Newman [8], [9] propose a probabilistic framework
over the bag-of-words representation of locations, for the
appearance-based place recognition. Along with the visual
vocabulary they also learn the Chow Liu tree to capture
the co-occurrences of visual words. Similarly, Angeli et al.
[2] develop a probabilistic approach for place recognition
in SLAM. They build two visual vocabularies incrementally
and use two BoW representations as an input of a Bayesian
filtering framework to estimate the likelihood of loop clo-
sures.

Assuming each image has hundreds of features, mapping
the features to the visual words, using a linear search method,
is computationally prohibitive and not practical for real-
time localization. Researchers have tackled this problem with
different approaches that speed up the search but at the
expense of accuracy. A number of papers have employed
compact feature descriptors that speed up the search. Gálvez-
López and Tardós in [12] propose to use FAST [19] and
BREIF [7] binary features and introduce a BoW model that
descritizes a binary space. Similarly [8], [9] use SURF [3] to
have a more compact feature descriptor. Another approach is
to use approximate nearest neighbor search algorithms, like
hierarchical k-means [17], KD-trees [8] or locality sensitive
hashing (LSH) [21], to speed up the quantization process.
Li and Kosecka [14] and Zhang [24] propose reducing
the number of features in each image, thereby reducing or
removing the vector-quantization process.

III. SEARCH INDICES FORVECTORQUANTIZATION

Vector-quantization as a nearest-neighbor search classifi-
cation maps the high-dimensional feature descriptors into
visual words. When the vocabulary is large, in order to
provide sufficient discriminating power for image matching,
the vector-quantization process can be a computationally
expensive task. An efficient approximate nearest-neighbor
search method is therefore required to speed up the search
while minimizing the impact of the search method on accu-
racy.

In the following two subsections, we briefly explain two
of the most popular approximate nearest neighbor search
methods that are widely-adapted to BoW search: hierarchical
k-means and KD-trees. Our method will be compared against
these two methods in the evaluation section.

A. KD-trees

The classical KD-tree algorithm [5], [10], [6] partitions
the space by hyper-planes that are perpendicular to the
coordinate axes. At the root of the tree a hyperplane or-
thogonal to one of the dimensions splits the data into two
halves according to some splitting value, which is usually the
median or the mean of the data to be partitioned. Each half
is recursively partitioned into two halves with a hyperplane
through a different dimension. Partitioning stops after logn
levels, where n is the total number of data points, so that at
the bottom of the tree each leaf node corresponds to one of
the data points. The splitting values at each level are stored in
the nodes. The query point is then compared to the splitting
value at each node while traversing the tree from root to
leaf to find the nearest neighbor. Since the leaf point is not
necessarily the nearest neighbor, to find approximate nearest
neighbors, a backtrack step from the leaf node is performed
and the points that are closer to the query point in the tree
are examined. Instead of simple backtracking, [4] proposes
to use Best-Bin-First (BBF) heuristic to perform the search
faster. In BBF one maintains a sorted queue of nodes that
have been visited and expands the bins in the order of their
distance to the query point (priority search).

B. Hierarchical K-means tree

Hierarchical k-means trees (HKM), proposed by [11],
is another type of partitioning trees based on k-means
clustering. The tree is built by running k-means clustering
recursively. The data points are first partitioned intok distinct
clusters to form the nodes of the first layer of the tree. Each
cluster is recursively partitioned intok (called branching
factor) clusters and this process continues until there is no
more thank data points in each node. A depth-first search
is a common tree traversal approach for searching the tree.
[16] proposes to use priority queues to search the tree more
efficiently. Similar to the Best-Bin-First approach [4], when
traversing the tree, the unvisited branches of the nodes along
the path, are added to the priority queue. When backtracking,
the branches, in the order of their distance (i.e. the distance
of their cluster centroid) to the query, are extracted and
expanded.

IV. PROPOSED METHOD

Our fast vector quantization method employs a graph-
basedk-nearest neighbor search algorithm, called GNNS,
that outperforms the popular ANN-search methods widely-
used in BoW models and SLAM systems. In the following
sub-sections we describe GNNS’s properties and how nicely
GNNS can be adapted for the vector quantization in BoW
and SLAM system.

A. The Graph Nearest Neighbor Search (GNNS)

The graph nearest neighbor search (GNNS) algorithm
used in this work, has been originally proposed in [20]
and independently re-discovered in [13]. GNNS builds ak-
NN graph and, when queried with a new point, it performs
hill-climbing starting from a randomly sampled node of the



Input : a k-NN graphG = (D ,E ), a query pointQ, the number of
nearest neighbors to be returnedK, the number of random restarts
R, the number of greedy stepsT, and the number of expansionsE.

ρ is a distance function.N(Y,E,G ) returns the firstE neighbors of
nodeY in G .
S = {}.
U = {}.
Z = X1.
for r = 1, . . . ,R do

Y0: a point drawn randomly from a uniform distribution overD .

for t = 1, . . . ,T do
Yt = argminY∈N(Yt−1,E,G ) ρ(Y,Q).
S = S

⋃
N(Yt−1,E,G ).

U = U
⋃
{ρ(Y,Q) : Y ∈ N(Yt−1,E,G )}.

end for
end for
Sort U , pick the first K elements, and return the corresponding
elements inS .

TABLE I

THE GRAPH NEARESTNEIGHBORSEARCH (GNNS)ALGORITHM FOR

K-NN SEARCH PROBLEMS.

graph. In our application the graph is constructed in an offline
phase, which is explained in the following sub-sections2.

B. k-NN Graph Construction

A k-NN graph is a directed graphG = (D ,E ), whereD

is the set of nodes (i.e. datapoints) andE is the set of links.
NodeXi is connected to nodeXj if Xj is one of thek-NNs of
Xi . The computational complexity of the naive construction
of this graph isO(dn2), wheren is the size of the dataset
andd is the dimensionality.

The choice ofk is crucial to have a good performance.
A small k makes the graph too sparse or disconnected so
that the hill-climbing method frequently gets stuck in local
minima. Choosing a bigk gives more flexibility during the
runtime, but consumes more memory and makes the offline
graph construction more expensive.

C. Approximate K-Nearest Neighbor Search Algorithm

The GNNS algorithm, which is basically a best-first search
method to solve theK nearest neighbor search problem, is
shown in Table I. Throughout this section, we use capitalK
to indicate the number of nearest neighbors to be returned,
and smallk to indicate the number of neighbors to each node
in the k-nearest neighbor graph. Starting from a randomly
chosen node from thek-NN graph, the algorithm replaces
the current nodeYt−1 by the neighbor that is closest to the
query:

Yt = argmin
Y∈N(Yt−1,E,G )

ρ(Y,Q),

whereN(Y,E,G ) returns the firstE ≤ k neighbors ofY in
G , andρ is a distance measure (we use Euclidean distance
in our experiments). The algorithm terminates after a fixed
number of greedy movesT. We can alternatively terminate

2The following sub-sections are re-stated from our paper [13] for the
clarity of the presentation
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Fig. 1. The GNNS Algorithm on a simple nearest neighbor graph.

the search when the algorithm reaches a node that is closer to
the query than its best neighbor. At termination, the current
bestK nodes are returned as theK nearest neighbors to the
query. Figure 1 illustrates the algorithm on a simple nearest
neighbor graph with queryQ, K = 1 andE = 3.

ParametersR, T, andE specify the computational budget
of the algorithm. By increasing each of them, the algorithm
spends more time in search and returns a more accurate
result. The difference betweenE and k and K should be
noted. E and K are two input parameters to the search
algorithm (online), whilek is a parameter of thek-NN graph
construction algorithm (offline). Given a query pointQ, the
search algorithm has to find theK nearest neighbors ofQ.
The algorithm, in each greedy step, examines onlyE out of
k neighbors (of the current node) to choose the next node.
Hence, it effectively works on anE-NN graph.

In our vector quantization application in this paper, we
setK = 1 as we do not need to assign more than one visual
word to each image feature.

D. Graph Vocabulary Construction

The vocabulary of a BoW model is usually constructed
using k-means clustering. Feature descriptors from a training
dataset are first clustered into visual words, and then a search
index is built over the visual words in an offline phase.

In the previous sub-section, we mentioned to use ak-NN
graph as the search index for the vocabulary so that each
visual word corresponds to a node in the graph. However, the
graph construction is a computationally expensive process
especially when the dataset is large. Even though this search
index is constructed only once offline, it is still desirableto
minimize its computational cost.

As an alternative, we show that the graph construction can
be efficiently integrated into the k-means clustering process.
In k-means processing, in every iteration, the distance of
data points to each cluster centroid is computed to update
their membership in the new clusters, and this continues
until convergence. In the end, the cluster centroids are
chosen as visual words. Givenn data points andC clusters
centroids3, the complexity of each iteration is thenO(nC).
Thek-NN graph construction, can be embedded into k-means

3The number of clusters generated by k-means is generally denoted by
“k”, however to avoid confusion with otherk and K notations we use for
k-NN graph andK-NN search, we useC to denote the number of cluster
centroids.



processing as follows: in the last iteration, in addition toother
data points, the distance of each centroid from the other
centroids is computed and the nearest neighbors are used
to build thek-NN graph. The additional computational cost
is negligible, asC≪ n. The complexity of the last iteration
will then change toO((n+C)C) which is slightly higher than
O(nC). This shows that the complexity of graph construction
is comparable to the complexity of one iteration of k-means
clustering and in applications where k-means clustering is
performed (like in BoW for vocabulary construction), the
construction time of graph-based index is absorbed by the
k-means algorithm.

However, k-means clustering with the time complexity
of O(nC) is an expensive process and only practical for
applications that require small vocabularies (C < 105). The
hierarchical k-means (HKM) [17] with complexityO(nlogC)
has been proposed to reduce the computational cost of k-
means. Philbin et. al [25] propose a modification of k-means
where the exact nearest neighbor search is replaced by an
approximate NN-search algorithm, e.g. KD-trees. They show
that this modification achieves the complexity of HKM.
They also demonstrate that approximate k-means (AKM)
outperforms HKM, when applied to the vector quantization
problem. This justifies the use of k-means or approximate k-
means clustering in generating the visual vocabulary (before
graph construction) in our proposed method.

E. Exploiting Sequential Dependencies in Data

The sequential property of data can be utilized to the
advantage of image retrieval. Unlike many image retrieval
and classification applications that search in a pool of un-
ordered images, in appearance-based SLAM we can take
advantage of the temporal coherency of images to make
the image search for loop closure detection efficient. We
proposed to use GNNS to do the vector-quantization. In
standard GNNS, search is initiated from a random node.
By taking the sequential property of images into account,
we can make the random initiation of GNNS smarter:
sequential images usually have considerable overlap with
their neighboring images and hence share a certain amount
of features and visual words. This property can reduce the
amount of computations required for the vector-quantization
step, as we can quantize a feature once in the image where
it is first observed, and use its visual word in subsequent
images as long as the feature is observed. This requires us
to match each new frame to the previous frame(s) to find
the repeatable features. This step does not incur a significant
cost as feature matching in two images can be performed
efficiently and can in fact incur no additional costs if the
matching between consequent frames is already done in the
process of key-frame detection: a new frame is matched
against the previous key-frame in order to decide whether it
is sufficiently different from the previous key-frame in terms
of appearance to be considered a new location in the map.
This process is done through direct feature matching between
images [25].

Our approach works as follows: once a new image is

captured, the features are extracted. Each feature is vector-
quantized through GNNS. Letf be a feature in the current
image that has a matchf ′ in the previous key-frame. Let
the visual word assigned tof ′ be w′. Intuitively, there is
a good chance that the visual wordw′ is also the word or
one of the neighbors of the word corresponding to feature
f . Therefore we start the GNNS search fromw′, rather than
a random node. This can significantly reduce the number of
iterations and distance computations in the GNNS search.
This is an advantage of the graph-based index over other
search indices when images to be processed are temporally
dependent as in visual SLAM, as it is not trivial to employ
such prior knowledge in other search indices.

In the GNNS algorithm described in Section IV-C,R,
which indicates the number of random restarts, can take
any number based on our computational budget. However,
our proposed sequential method helps us choose only one
good initial node to start the search with. HavingR> 1
might reduce the efficiency of our sequential algorithm.
So we setR to 1 in our experiments. As we show in
the experiments section, this is still an effective choice in
practice. In addition, we choose the version of GNNS in
which the search terminates at the local minima, instead of
having T greedy moves. Note that improving the speedup,
is not possible if we always make a fixed number of greedy
moves.

V. EXPERIMENTS

In this section, we compare the performance of our
method with hierarchical k-means (HKM) and KD-trees,
when applied to the problem of vector quantization in the
context of visual SLAM. We will describe the datasets we
used for performance evaluation of all methods, followed by
discussion of our experimental results.

A. Datasets

We performed our experiments on two datasets: an outdoor
and an indoor dataset. The outdoor dataset is the City Center
dataset4 (left-side sequence) [8] and contains 1237 images.
The indoor dataset is alab dataset that has been taken
inside a research laboratory using an ActivMedia Pioneer
P3-AT mobile robot equipped with a Dragonfly IEEE-1394
camera, and contains X images. Two different vocabularies
with different sizes, 5000-word and 204,000-word, have been
used for our study, that have been constructed using k-means
clustering. We clustered 128-dimensional SIFT [15] feature
descriptors extracted from different datasets than the above-
mentioned. The 204,000-word one is used to evaluate the
performance of our method on large-scale data.

B. Vector Quantization Performance Evaluation

We compare the performance of four methods on vector
quantization. Randomized KD-trees, hierarchical k-means
tree (HKM), GNNS and our proposed method, Sequential
GNNS (SGNNS), which is the GNNS that considers the

4http://www.robots.ox.ac.uk/˜mobile/IJRR_2008_Dataset/
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sequential property of data. For the KD-trees and HKM we
used FLANN library5 implementations.

Tables II-V compare the results of four search algorithms
on vector quantization. The first two columns show the
results when all image features are quantized, and the last
two columns show the results when only matched features
between images are quantized. Matched features between
each image and the previous keyframe are detected using fea-
ture matching with distance-ratio test and epipolar geometric
verification. In SGNNS’s implementation, for the features
that have a match in the previous frame, GNNS search starts
from the visual word assigned to their match in the previous
frame. For the rest of image features, GNNS starts from a
random node.

Our performance evaluation metric is the speedup over
linear search while fixing the search accuracy in terms of
the true nearest neighbors found. We select the parameters
in the algorithms such that we can obtain a fixed accuracy
and then calculate the speedup of the algorithms over the
linear search at the same accuracy. The speedup over linear
search is computed as the ratio of the number of distance
computations one algorithm performs over the number of
distance computations linear search performs.

The only parameter in GNNS and SGNNS that we set
here isk, the size of thek-NN graph index. We explained
in Section IV-E and IV-C how the other parameters are
chosen.E, the number of expansions is also equal tok in
our experiments.

In the case of KD-trees, the FLANN parameters that we
set includetrees, the number of randomized KD-trees, and
checks, the number of leaf nodes to check in one search. In
the case of HKM, the parameter set includesiterations, the
maximum number of iterations to perform in one k-means
clustering,branching, which is the branching factor of the
tree, andchecks, the number of leaf nodes to check.

Tables II-IV shows the experiments on City Center dataset
using the 5000-word vocabulary. The average number of
SIFT features extracted from each image is 316 and the
average number of matched features is 42, which is roughly
13% of all features. The speedups for accuracies of∼87%
and∼99% have been shown in the first two tables.

To obtain the results in Table II, we used a 50-NN
graph for GNNS and SGNNS. For KD-trees, we settrees
and checksto 1 and 200, respectively. For HKM, we set
iterations, branchingandchecksto 3, 8 and 40, respectively.

In Table III, we used a 200-NN graph for GNNS and
SGNNS. For KD-trees, we settrees and checksto 4 and
600, respectively. For HKM, we setiterations, branching
andchecksto 7, 8 and 160, respectively.

In Table IV, we show the vector quantization results when
the 204,000-word vocabulary is used. We used a 300-NN
graph for GNNS and SGNNS. For KD-trees, we settrees
and checksto 4 and 2200, respectively. For HKM, we set
iterations, branchingandchecksto 7, 8 and 500, respectively.

The last part of experiments has been done on an indoor

5[http://www.cs.ubc.ca/˜mariusm/index.php/FLANN/FLANN]

dataset (Table V) where the overlap between images is larger
(around 82% of features are matched). We used the 5000-
word vocabulary for this experiment. For GNNS and SGNNS
we used a 250-NN graph and for KD-trees, we settrees
and checksto 6 and 400, respectively. For HKM, we set
iterations, branchingandchecksto 3, 8 and 160, respectively.

As can be seen in all experiments, both GNNS and HKM
outperform KD-trees, and SGNNS, our proposed method,
outperforms HKM by as much as 50% for the case of
vector-quantizing all features, or as much as 300% if only
matched features are used in creating the BoW representation
of an image. This superior performance is due to both the
efficiency of graph-based search (GNNS) - as indicated by
the third row of each table, over the first two rows of each
table - and by the exploitation of the sequential property
of images whose features are to be vector-quantized, as
indicated by the last row (SGNNS) of each table over the
third row (GNNS).

We also observed that the features that are common
between two images do not share common visual words,
necessarily. On average, 64% of corresponding features share
the same visual words, in the experiments presented in Tables
II-III. This amount was reduced to 36%, when we used the
204k vocabulary (Table IV).

VI. CONCLUSION

We proposed to use the graph nearest search (GNNS) al-
gorithm to speed up the vector quantization task in BoW. We
described the GNNS’s properties and how it can integrated
into the BoW and SLAM framework, taking advantage of
the sequential property of SLAM data. We experimentally
showed significant improvements over the state-of-the-art
algorithms. We also observed that there is a bigger improve-
ment if we only consider the matched features.
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