arXiv:1310.7062v1 [cs.SY] 26 Oct 2013

Real-Time Planning with Primitives for
Dynamic Walking over Uneven Terrain

Ian R. Manchester and Jack Umenberger

Abstract— We present an algorithm for receding-horizon
motion planning using a finite family of motion primitives
for underactuated dynamic walking over uneven terrain. The
motion primitives are defined as virtual holonomic constraints,
and the special structure of underactuated mechanical systems
operating subject to virtual constraints is used to construct
closed-form solutions and a special binary search tree that
dramatically speed up motion planning. We propose a greedy
depth-first search and discuss improvement using energy-based
heuristics. The resulting algorithm can plan several footsteps
ahead in a fraction of a second for both the compass-gait walker
and a planar 7-Degree-of-freedom/five-link walker.

I. INTRODUCTION

Passive dynamic walkers are an inspiring topic of research
because of the way in which a physical mechanism —
an arrangement of masses, joints, springs, etc — can cre-
ate remarkably life-like walking motions without actuation
or deliberate motion planning [1]. Underactuated dynamic
walkers — a.k.a. limit cycle walkers — add minimal actuation
but retain many of the same properties [2].

Despite their aesthetic appeal, the practical utility of
dynamic walkers is severely limited by two facts: firstly,
the motions are usually limited to periodic walking on flat
ground or down a shallow slope, and secondly, these motions
typically have extremely small regions of attraction.

A number active control techniques have been developed
to improve the stability of periodic walking motions, e.g.,
virtual constraints [3], [4], [5], controlled Lagrangians [6],
and transverse linearization [7]. Feedback control with a
periodic target gait can also achieve impressive results on
uneven terrain, as evidenced by the famous BigDog robot
and its siblings [8]. In [9] the virtual constraints methodology
was expanded to include “reflex” motions when unexpected
terrain variations are detected, and [10] analysed stability of
walking on stochastically generated terrain. Nevertheless, it
is clear that for large terrain variations, some kind of motion
planning based on the terrain ahead of the robot will be
beneficial. Indeed, numerical results on the compass gait
walker in [11] suggest that even being able to plan a few
steps ahead can help significantly.

In this paper, we assume the robot control system has a
task breakdown of the form in Figure [I] In real time, the
robot must sense the terrain ahead, continuously re-plan a
feasible motion over several footsteps, perhaps a few times

This work was supported by the Australian Research Council.

The authors are with the Australian Centre for Field Robotics
(ACFR), Department of Aerospace, Mechanical and Mechatronic
Engineering, University of Sydney, NSW, 2006, Australia.
ian.manchester@sydney.edu.au

Motion
Control

Motion
Planning

Terrain
Perception

1 1)

Robot State Sensing

Fig. 1. Possible organization of perception and control of a walking robot.
In this paper we consider the problem of motion planning.

per second, and use active control to stabilize this motion
with a sampling frequency between 100Hz and 1kHz. In
[12] it was shown that the transverse linearization can be
used for active control of such motions using a receding
horizon (model predictive control) approach. The purpose of
the present paper is to address the motion planning problem:
that is, given knowledge of the terrain ahead and the dynamic
state of the robot, rapidly produce a feasible walking motion.

Many of the classic algorithms for robot motion planning
focus on finding collision-free paths in configuration space
[13], [14], since a fully actuated industrial robot can track
any continuous configuration space path, and the dynamics
only affect the timing with which it is tracked. Planning
for Asimo-like walking robots usually supplements these
algorithms with an extra constraint to keep the centre of
pressure — the “zero moment point” — inside the convex hull
of foot contact points, so the robot remains fully actuated
(see, e.g., [15]).

Underactuated robots have differential constraints that
typically render most configuration-space paths infeasible.
The most direct approach to motion planning is to pose it as
an optimization problem over state and control trajectories,
and apply the methods of nonlinear programming. Unfortu-
nately, walking robot motion planning problems are typically
high-dimensional, nonsmooth, and nonconvex. Significant
progress has been made recently on this front, see, e.g.,
[16], [17], however with current algorithms it can still take
several minutes to compute a motion on a multi-core desktop
computer.

The use of primitives converts an infinite-dimensional
optimization over states and inputs to the combinatorial
problem of selecting a finite sequence from a fixed library
of primitives. Complete search over the tree of possible se-
quences obviously has computational complexity that grows
exponentially in the sequence length, so the principle aim in
algorithm development is to reduce the search via heuristics.

A breakthrough technique was the RRT, which aims to
expand the tree in the direction of randomly sampled states
[18], [14], though for highly dynamic systems this can
be difficult. In [19] motions of a helicopter were planned
by augmenting the RRT special primitives and a lower
bound on the cost-to-go function. In [20], bounding motions
over rough terrain were planned for the LittleDog robot
using an RRT with reachability-guided sampling of action
primitives. Again, the planning times on a multi-core desktop
were several minutes, because evaluation of each primitive
required numerically solving a high-dimensional nonlinear
differential equation.

In this paper, we suggest that using virtual constraints
as primitives offers three principle advantages for motion
planning: (i) they correspond to configuration paths, and can
therefore inherit much of the research on planning collision
free paths for fully actuated robots; (ii) a partial closed-
form solution of the hybrid zero dynamics greatly reduces
the computational effort in checking dynamic feasibility
of paths and computing total mechanical energy; (iii) the
affine structure of the solution allows intelligent ordering
of primitives greatly reducing the number of primitives that
must be checked for dynamic feasibility.

We propose a “greedy” best-first-search algorithm and
discuss improvements based on an energy heuristic. These
algorithms are evaluated via simulation on the compass-gait
biped and a seven degree-of-freedom/four actuator biped [21]
which is modelled on the Rabbit robot of CNRS [22].

II. UNDERACTUATED WALKING ROBOTS

In this paper we focus on saggital-plane models of under-
actuated walking robots, however the methods we propose
could be extended to three-dimensional models using the
reduction method in [23] and to some other classes of system
such as brachiating robots.

We consider robots modelled with the methods of classical
mechanics. The configuration is a set of n coordinates ¢ € Q,
an n-dimensional smooth manifold (possibly with a bound-
ary) that specifies the set of feasible geometric arrangements
of the robot. The state of the system is (¢,4) € TQ,
where T'Q is the tangent bundle of Q. If a robot has an
n-dimensional configuration manifold, its state space is 2n-
dimensional.

We will make the common assumption [5] that the biped
robot has a stance leg which does not slip during continuous
phases and can be considered “pinned”. Hence we will
consider g to be made up of the remaining links, which we
assume form an open chain. At impact, the other leg — the
swing leg — becomes the new stance leg, and vice-versa.

The continuous dynamics are derived via a Lagrangian of
the form L(q,q) := 5¢" M (q)¢ — V(q), where V(q) gives
potential energy, and M (q) is a symmetric positive-definite
mass/inertia matrix. The Euler-Lagrange equation:

d 9L(q.4) _ OL(g.4)
dt 94 dq

+ B(q)u, (D

results in a differential equation of the form [13]

M(q(t))q(t) + Clq(t), 4(£))q(t) + G(q(t)) = B(q)u, (2)

where u is a vector signal of actuator forces and torques,
C(q,) consists of Coriolis and centrifugal terms, and G(q)
is the gradient of the potential energy field. For this paper,
we assume that friction and disturbance forces are negligible
or can be counteracted by feedback control.

A model of a walking robot typically also employs an
impact map: a discrete mapping that represents sudden
changes of velocities that occur during collisions, e.g. when
the swing leg touches down to the walking surface and
becomes the new stance leg. In this paper, we assume that
collisions are purely inelastic and the impact map has the
the following form [24]:

q(t*) = Rq(t™), 3)
q(t7) = RA(q(t))q(t™), @)

which occurs when ¢(t~) € S, a switching surface in con-
figuration space. For the systems we consider the matrix R
represents simply a relabelling of coordinates, e.g. redefining
the stance leg as the swing leg and vice-versa. Note also that
the mapping for ¢(¢™) is linear with respect to ¢(¢~). For
simplicity, in this paper we restrict consideration to models
with a single impact per footstep, but extension to systems
with any finite number of impacts per footstep (e.g. due to
knee locking) is straightforward.

As mentioned in the introduction, for fully actuated robots,
i.e. those for which rank B(q) = n for all ¢ € Q, every
configuration path is dynamically feasible, and a common
strategy in motion planning for fully actuated robots is to
first plan a collision-free path through configuration space,
and then plan or control a dynamically feasible time param-
eterization [14].

Unfortunately this is not generally possible for underactu-
ated systems: if B(q) has fewer than n linearly independent
entries, then there exists collision-free trajectories ¢*(-) that
are infeasible. The special case of underactuation degree one
systems, i.e. those that have n — 1 independent actuators,
presents very useful extra structure and includes several
practically important systems, including several common
models for walking robots. In particular, under some mild
assumptions, a trajectory ¢* : [0,5] — Q is quasi-feasible
in the following sense: it is possible to control the system
so that for all ¢, ¢(t) = ¢*(r) for some 7, however the
dynamics of T cannot be directly controlled, but are fixed
by the so-called zero dynamics. Therefore, when planning
a path through configuration space one must also take into
account the zero dynamics.

III. PROBLEM STATEMENT

The receding-horizon planning-with-primitives problem
consists of two parts: (i) construction of a rich library of
useful motion primitives, and (ii) an algorithm for choosing
a primitive sequence in real time. It is assumed that the
algorithm has as inputs the state of the robot ¢, ¢, as well as
a height-map of the terrain ahead.

For the particular problems we consider, the robot is a pla-
nar walker and the terrain data is a one-dimensional height-
map over a finite interval, i.e. a function i : [z1, 2] — R. In
practice, this may come from fused measurements of a laser
scanner or image sensors. We do not address the problem
of terrain sensing in this paper, however it is a well-studied
problem over the last few decades, see, e.g., [25], [26], [27].

Formally, a set of primitives can be modelled as a finite
alphabet P. Then a k-step motion-planning algorithm is a
function 7Q x H — P¥, where H is a suitable function
space for height maps. In a receding horizon architecture, the
first primitive in the sequence is sent to the motion control
module to be regulated, and then the process repeats.

IV. VIRTUAL HOLONOMIC CONSTRAINTS AS MOTION
PRIMITIVES

The use of virtual constraints for periodic dynamic walk-
ing was introduced in [3] and further studied in [4], [5], [12],
[9]. The idea is that a single generalized coordinate, denoted
6 is chosen as a “phase variable” and all other generalized
coordinates are synchronized to functions of 6. This is
reminiscent of a 19th-century mechanical horse, in which
a single motor drives many joints through clever mechanical
linkages to create the illusion of a natural walking motion.
The difference is that virtual constraints are enforced by
feedback control rather than physical linkages.

Let us assume that # is monotonically increasing over an
interval [0, 6] during the planned trajectory, then one can
construct functions ¢;(6) for the generalized coordinates so
that the planned motion satisfies:

The above condition is referred to as a virtual constraint.
If the constraints are perfectly regulated, then clearly the
following velocity relations also hold:

Gi(t) = wé’ i=1,2,..,n. (6)

We define the vector function &

®(0) = [¢1(0), 92(0), ...

<I>’(9) _ 3%19(9), 3‘1550(9)

second derivatives ®”(6).

In general, € can always be chosen as path length along
a trajectory. However, for several common classes of robot
it is convenient to take 6 as the unactuated coordinate, e.g.
the ankle angle in the compass gait walker. In that case,
we can choose a parameterization with ¢;, 1 = 1,....n — 1
the directly actuated coordinates and g, = 6 the unactuated
coordinate. In general, on the target trajectory g, provide
excessive coordinates for the system, so this representation
can always be achieved by local change of coordinates and
dropping one of the elements of q.

The 2n — 2 conditions given in (3) and () constrain
the 2n-dimensional state space of the system to a two-
dimensional “zero dynamics” manifold parameterized by

[60,0/] — Q as
,6n(0)]T, and use the notation

N 6%’9(9)} and similarly for

0,6. It is straightforward to show that the zero dynamics
have the following form during continuous phases [28]

a(0)6(t) + B(0)0° +7(6) = 0, (7)
where
a(f) = BH(®(0)) M (D(6))P'(6), ®)
B(0) = B-(®(0))[M(2(0))2"(0) + C(2(0), @'(0))2' ()],
v(0) = BH(®(0))G(®(6)), ©)

where B1(q) is a row vector satisfying B+ (q)B(q) = 0.

In [4] conditions were derived for periodic cycles that
ensure that the impact does not shift the system off the
virtual constraint manifold. That is, if ¢ = ®(6~) and
g~ = ®(#7)H~ then the output of the impact map (3),
satisfies ¢ = ®(67) and ¢q- = ®'(67)0~. This is
referred to as invariance of the hybrid zero dynamics. It is
straightforward to extend this to the non-periodic case, see
[12].

Assuming the hybrid zero dynamics are invariant, the
impact dynamics reduce to a map of the following form for
0,0.

0" =k, 0T = 60", (10)
imposed when 6 = ;. Note since we assume impact
conditions are defined by configurations alone, 7 is a fixed
value for each virtual constraint.

A. Fartial Closed-Form Solutions for Velocity and Energy

A useful property of virtual constraints is the fact that a
partial closed-form solution of the reduced dynamics can
be computed off-line. The solution is partial in the sense that
we do not obtain solutions of 0(t),0(t) as functions of time,
but instead we obtain an expression for 0 as a function of 6.

This property has been used before for stabilizing control
design [28], [12], and searching for periodic cycles for
passive walkers [29]. The special structure we take advantage
of is that 6 only enters as a squared term. Indeed, the
chain rule gives %9@)2 = 20(t)6(t). Since 0 is monotonic,
it can be used as a new independent variable, i.e. the time ¢
can be written as a function of 6, giving

d . d - .
—0(t(0))* = —0(t(0))*— = 20((0)).
0(1(6))? = L060)* S5 = 20(1(6))

For virtually constrained systems, this can be combined with

to give

d . 2 _ 6(0) 2 2
2500 = —zme(e) —2

, dt

7(0)

alf)

Let us assume for the moment that «(0) # 0 for 6 € [0y, 0],
we will return to this assumption in the next subsection.
Since is a linear A-varying differential equation, it can
be solved over any interval by numerical quadrature, to give
an expression of the form:

(1)

0(0)% = T(6,00)62 + (6, 6,), (12)

where the scalar functions I', U can be precomputed for
particular intervals [6y, 6]. This implies that on-line compu-
tation of 0(6)? from 6(#y)? requires only a single scalar
multiplication and a single scalar addition. .

Since the impact map for 6 given in is linear in 6,
it is clear that the impact map for 62 is also linear in 62.
Since compositions of affine functions remain affine, this in
turn implies that a similar (affine) formular holds for 62 post-
impact, and even after several impacts.

For the class of systems we consider, the total mechanical
energy of the system is given by

H(q,q) = d" M(q)q + V(q).
When the system is operating under virtual constraints, this
reduces to
H(0,0) = ©(0)"M(2(0))2(0) 6> + V(2(0)),

——
E(9)

()

which is, for any fixed 6, an affine function of 2.

Thus, the total energy at any given 6 throughout the multi-
step trajectory can also be obtained in closed form as an
affine function of the initial §2. That is,

H(0,6) = Y()T(0,60)02 + Y(0)¥(0,60) +=(0). (13)

To summarise, the critical fact is that knowing the current
0o, and assuming that the virtual constraints will be perfectly
regulated, the values of 62 can be computed for any future
value of 6. Note that for the planned motion to be completed,
it is necessary that 6 > 0 for all 6, we return to this in Section

B. Instantaneous Controllability

Computation of the partial closed-form solution is simpli-
fied if «(0) # 0, V 6 € [0y, 0;]. For just this subsection, let
us defining generalized momentum as p := %‘é’q) = M(q)q
and note that the equations of motion satisfy p = f(q,p) +
B(q)u where f(q,p) is the “natural” flow of the system,
given by —0H (p, q)/0q, where H(p, q) is the Hamiltonian.

A motion satisfying the virtual constraints has ¢ = ®’'(9)0,
and therefore a momentum p = M (®(6))®(0)0. Now the
condition B (®(0))M(®())®'(#) = 0 implies that the
direction in which force cannot be applied is orthogonal to
the momentum at that point. This can be considered a lack
of local instantaneous controllability, i.e. the possibility of
adjusting momentum transversally to the constraint surface.
This is a stronger notion than stabilizability, and is not
strictly necessary, but it simplifies calculations and control
design. A closely related condition was studied in [21]
regarding invertability of coupling matrix in partial feedback
linearization. A less conservative condition could be based
on the region-of-stability analysis in [30].

C. Critical Points and Motion Completion

Many algorithms for planning motions of fully actuated
robots decompose into two stages: planning a collision-free
path ¢*(s),s € [0,S], and then planning or realizing a dy-
namically feasible time parameterization s* : [0,T] — [0, S],

giving the feasible trajectory ¢*(s*(t)). For underactuation
degree one systems and virtual constraints, the situation is
similar but with one key difference: the virtual constraint
represents a collision-free path in Q, but given a particular
virtual constraint and initial condition 6, 8 the time evolution
of the system is then fixed by (7).

This is analogous to a bead sliding (without friction)
along a curved wire of finite length: the path through three-
dimensional space is fixed, but depending on the initial
velocity the bead may complete the path, or it may stop
at some point and slide back along its path, either returning
to its start point or oscillating in a potential well. In the
case of an underactuated walking robot controlled by virtual
constraints, if the initial velocity is too low, the robot will
not complete the footstep, but will fall backwards (see, e.g.,
the phase portrait Figure 6 in [12]).

Given that the continuous-phase reduced dynamics satisfy
@@, if v(0.) = 0 for some 6., then § = 0.0 =6=0,is a
feasible equilibrium solution. For typical virtual constraints
corresponding to walking motions, () will have a single
sign change over the interval [0, 6¢], at a point correspond
to the peak potential energy of the system. We assume this
to be the case and denote the critical value 6.

If 62(A,) > 0, then robot has positive forward motion
at the point of peak potential energy, and the constraint is
dynamically feasible. If §2(6,.) = 0 then the robot approaches
this critical point along a heteroclinic orbit towards the
balance equilibrium. If 62(6,) < 0 there is no real solution
for # and this corresponds to the robot not having enough
velocity to pass the critical point, and falling backwards.

D. An Ordering for Sets of Virtual Constraints

The fact that the partial closed form solutions for 62 is
affine in 9(2) allows us to construct an ordering of virtual
constraints, by which the search for an appropriate virtual
constraint is logarithmic in the number of virtual constraint
primitives in the library rather than linear.

Suppose there is a particular target velocity a that should
be met as closely as possible by 0 at the critical point 6.
Now, consider that the relation

0%(6.) = Tp(6.,600)02 + U, (8., 00) > a®
implies
a® — W, (0)
L)
and likewise for <. We introduce an ordering of motion
primitives <,, defined like so: given two virtual constraints
p and g, with the same ¢; and gy, then p <, g if
a® — ¥, (0) < a® — Py (0)
Lp0) = Ty(0)

02 >

Now, consider the following problem: for a known initial
velocity 6, find the virtual constraint p for which 6. is as
close as possible to a. From the above it is clear that if a
large number P of primitives are stored in the order defined
by <, then a simple binary search can be used to find the

best primitive in O(log P) time, as opposed to O(P) time
for checking each primitive individually.

Similar orderings could be constructed based on total
energy, which is also affine in 02, though we defer discussion
on that for a later work.

V. OFFLINE CONSTRUCTION OF A PRIMITIVE LIBRARY

In this section we describe how a library of motion
primitives can be structured so as to enable real-time on-
line evaluation and selection.

A. Discretization of Impact Configurations

A motion primitive p is defined as a configuration path
from immediately after one impact to immediately before
the next. This path is parameterized by 6 € [0, 6], and
given by the virtual constraint ®, : [0y,0¢] — Q, with
®,,(0y) being the initial configuration and ®,(0) being the
final configuration. Note that for different primitives, the
numerical values of y and 6y may be different.

We suppose a finite library of impact configurations has
been constructed, denoted by Q. For every primitive p,
both ®,(fy) and ®,(f;) must be elements of Q. Since
each element of Q corresponds to an impact configuration,
each has a particular step length xy and step height v,
corresponding to the relative positions of the back (previous
stance) and front (next stance) feet. For the compass-gait
walker, the full configuration is completely determined by
2y and yy, but for robots with more degrees of freedom this
will not be the case

We construct a finite set Xy containing n, individual
values of xy, similarly Y; contains n, individual values of
yr, and a set), containing n, individual configurations of
other joints, when present. Thus the cardinality of the set of
impact configurations is \Q| = NgNyNyg.

B. The Library of Motion Primitives

A motion primitive connects one element in @ to another.
During the continuous phase, there is the opportunity to
increase or decrease total energy in the system, as well as
plan motions that have different trade-off between energy ef-
ficiency and collision avoidance, e.g. different bending of the
swing-leg knee, if present. For each pair ®,(6y), ®,(0¢) €
Q% Q, we construct are n,, different smooth paths @, (6), 6 €
(60, 07). Each should of course be kinematically feasible for
the robot (e.g. free of self-collisions or over-extensions of
joints).

We build the library of primitives in a hierarchical struc-
ture that will aid rapid search on-line. At the root are
the |Q| initial configurations ®,(6y) € Q. For each such
configuration there are n, step lengths xy. For each pair
(®p(6o), z5) there are n,, step heights yy.

Now, for each triple (®,(0y),zy,ys) there are nyn,
virtual constraints that start with configuration ®,(6y) and
take a step of length x; and height y;. We construct a
balanced binary search tree of the n,n, virtual constraints
using the ordering in Section The elements of the tree
are pointers to a data structure containing information about

the virtual constraint primitive, detailed in the next section.
We denote this tree by BST(®,(0y),xf,ys). The function
TREE-SEARCH(T, a?) returns the primitive from the tree
T with 62(6,) as small as possible subject to §2(6,) > a2.

C. Data Stored For Each Primitive

For each motion primitive p, we store the affine
functions for evaluation of #2 given 62 at the criti-
cal point (I'(0.,0y), ¥ (0., 0p)), immediately before im-
pact (I'(0¢,00), ¥ (0f,6p)), and immediately post-impact
(F(ep’ 90)7 \IJ(QW ‘90))

For the idealized case of planar bipedal walking over un-
even terrain, in which the “world” consists only of the robot
and the ground terrain, the problem of collision checking is
quite simple. For each virtual constraint p there exists an
envelope function g, : [x;, x¢] — R such that every physical
point on the robot (x,y) satisfies y > g,(x). For typical
walking robots and motions, g,(x) will be the arc swept out
by the lowest point on the swing leg.

VI. THE MOTION PLANNING ALGORITHMS

The purpose of the on-line algorithm is to find a feasible
sequence of virtual constraints. The algorithms we propose
can be understood as iteratively searching through a decision
tree, in which nodes correspond to robot impact states (con-
figurations and velocities), and edges correspond to virtual
constraint primitives linking them. The root node is the
robot’s current state, and the “depth” in the tree corresponds
to the number of footsteps ahead being planned.

If the library contains [feasible primitives for each step,
and there are k footsteps to be planned, then an exhaustive
search must evaluate [¥ possibilities. The objective is to
greatly reduce the number of paths through the tree that are
evaluated. The algorithms we suggest use a form of “best
first search”, but they differ by how “best” is evaluated: either
trying to simply attain a particular critical velocity 9(90) X a
or using heuristics based on predicted energy requirements.

A. Real-Time Selection and Evaluation of Primitives

Unless the environment is purpose made (e.g. in a factory),
it is unlikely that the terrain exactly matches the quantized
heights chosen. In this paper, we introduce a generic function
QUANTIZE: R — {Y},0} that maps a height value from a
terrain map to the closest element of Yy or return a null
value () if there is no element of Y} sufficiently close.
We assume that errors between the exact terrain and the
quantization introduced in motion planning can be tolerated
by the feedback control mechanism.

The first constraint on dynamic feasibility is that the robot
has enough kinetic energy to complete the step. Since the
planned motion assumes 6 to be monotonically increasing,
this corresponds to the constraint that 6 > 0 for the duration
of the motion. That is, the robot does not stop part way
through and fall backwards. This can be enforced by ensuring
6%(0.) > 0.

We assume a perfectly inelastic collision, i.e. no bouncing
or slipping when the swing foot becomes the stance foot.

{ T-Pq 4 H Z.Pa-Pe 6 M T-Pa-Pe-Pr T \

T.pa-Df S
St
State z o-lg
Z.Pe
Fig. 2. Illustration of a hypothetical motion primitive tree, for planning

three footsteps ahead with three primitives available at each node. Green
and red mark nodes that are ruled feasible and infeasible, respectively,
while white nodes are never evaluated. The numbers on the right show the
sequence which primitives are evaluated. See discussion in Section [VI-B]

Many real materials exhibit velocity-dependent coefficients
of restitution [31], so to ensure there is no slipping or
bouncing it may be necessary to impose a bound on velocity
at impact: |6‘\ < b when ¢ € S. This can obviously be
converted into the bound 62(6;) < b2.

The virtual constraint p is then feasible if g, (z) > h(x) for
all z € [z;,zf]. Since these functions are one-dimensional,
checking this on sufficiently fine gridding of [z;,zf] will
generally be acceptable and very fast to compute.

B. Best-First Search

A full listing is given in Algorithm [I] Here we explain the
reasoning behind the algorithm by way of a hypothetical tree
shown in Figure [2] We refer to algorithm line z by (Lx).

At initialisation, ¢,¢ and h(x) are given, and k = 3 is
the number of footsteps to plan. At the first call of ADD-
NODE (L[T), motion primitives pq, py, p. are available. For
a particular step length xf, the TREE-SEARCH function
returns p, (LTT)), and is found to have feasible final velocity
and be free of collisions ([17). It’s post-impact value of
62(6.) is recorded as v, (1]18).

This is repeated for each step length (LT4}23). By con-
struction, all primitives have v, > a?, so the primitive
with the smallest v, is selected (L28), its post-impact state
is computed (L32}{33), and ADD-NODE is called with the
footstep count decremented (L[33).

On this second call of ADD-NODE, the TREE-SEARCH
returns py, which is found to be infeasible (LT3HI7), so v,
representing 92(05) is set to oo. The algorithm next tries the
successor of pp,, which is p, (L22). This is also found to
be infeasible, and exhausts the list of possibilities (L}42)), so
ADD-NODE returns failure.

At this point, program flow returns to (L36) for the first
call of ADD-NODE with a fail status. Hence the successor
to pp is chosen, which is p,, which is found to be feasible.
Supposing TREE-SEARCH returns p. followed by pg, each
of which is feasible, and each of which corresponds to a call

Algorithm 1 BEST-FIRST-SEARCH(q, ¢, h(-), k)

1: [p, status]«+— ADD-NODE(q, ¢, h(x), k)
2: if status = success then
3 MotionControl < p
4: return success
5: else

6 return fail
7: end if

8: function ADD-NODE(q, ¢, h(x))
9: for all z; € X, do

10: ys < QUANTIZE(h(xy))

11: p(z¢) + TREE-SEARCH(BST(q, z¢,ys),a?)
12: end for

13: while true do

14: for all z; € Xy do

15: Vo (‘b;(xf)(eo)q)Q

16: vf < Dy (Op)vo + W) (0f)

17: if vy < b?> AND Qp(zys) > h(z) then

18: vc(xf) — Fp(l.f)(ec)vo + \I/p(lf)(ec)
19: else

20: ve(xf) = 00

21: if p(xr).successor # & then

22: p(x) < p(z).successor

23: end if

24: end if

25: end for

26: v* = ming e x, (ve(xy))

27: if v* # oo then

28: r* = argming e x, (ve(wy))

29: if £ =1 then

30: return [p(z*), success]

31: end if

32: gt bep(z*)(ef)

33: qu — (I);($*) \/FP(T*) (ap)’l)() + \ij(ac*) (GP)
34: k+—k—-1

35: [p,status] <~ ADD-NODE(q ™", ¢, h(x), k)
36: if status = success then

37: return [p(x*), success]

38: else

39: p(z*) = p(z*).successor

40: end if

41: end if

42: if Yoy € Xy, p(zy).successor = & then

43: return fail

44: end if

45: end while

46: end function

Fig. 3. A step-up trajectory of the Compass Gait walker.

of ADD-NODE with k decremented, then k£ has reduced to
1 and the algorithm returns success (L[30).

The algorithm has now found a feasible three-step se-
quence of primitives, so this success status propagates back
up the tree (L37) so the primitive p, is sent to the motion
control system (LJ3).

C. Improvement via Energy Heuristics

The obvious disadvantage of the myopic best-first algo-
rithm is the inability to select the motion primitives best
suited to changes in forthcoming terrain, particularly de-
viations in altitude. An improved strategy involves looking
ahead a finite distance to estimate the net change in altitude
over this range, providing an approximation of the corre-
sponding change in gravitational potential energy, which is
equivalent to the additional energy that we must accumulate
(or dissipate) if we are to maintain the current Kinetic energy.
Dividing this net change in energy by the approximate
number of footsteps gives the required incremental energy
change per footstep, which may then be compared with
the post-impact change in energy resulting from a possible
footstep to assess its suitability. We constructed a similar
algorithm — details ommitted due to space restrictions —
making use of orderings of primitives in terms of the affine
solution of total energy (I3).

VII. SIMULATION RESULTS

This section contains results of simulations using the
proposed algorithms to plan motions over uneven terrain
for two frequently-studied models of walking robots: the
compass gait walker, and a five-link walker. The dynamical
models for both were taken from [5]. The matlab code for
our algorithms and simulations on these models can be found
at the author’s website [32].

The compass-gait walker is a simple two-degree-of-
freedom planar biped consisting of two straight, rigid legs
which meet at a revolute joint, called the hip, where a single
actuator can apply a torque. In practice, such a robot is fitted
with retractable pointed feet to overcome the problem of
“toe-scuffing” due to the absence of knee joints; in this study,
foot retractions are not modeled as their mass is considered
negligible.

In the Figure [3| we show a simple step-up trajectory
performed with a five-step lookahead. We can see that the
walker swings its leg high in the lead up to the step, which
puts the centre of mass further in front of the pivot point and
adds energy. Figure [] shows the kinetic and potential energy
of the walker for both algorithms for this terrain. We can see
that with both algorithms there is a build-up of kinetic energy

o
o
o
=

—— EK - Best First

o
o
@
L
o
o
a

—o&— E ~ Energy Heuristic

%

=3
o

E — Best First
| | —&— Eg — Energy Heuristic

I
IS
o
&
©
a

Gravitational Potential Energy (J)

o
IS
.
&
©

14.85

Kinetic Energy (J)
o o
S N 9 w
NG w &

o
o
o

o
i
~
=

Stance Foot Position (m)

Fig. 4. Kinetic and potential energy changes with best-first search and the
energy heuristic for the step-up trajectory in Figure [3]

1

Fig. 5. A trajectory of the Compass Gait walker over more varied terrain.

before the step-up, which then transfers to potential energy.
However, with the energy heuristic the build-up begins earlier
and more accurately approaches the required energy. The
build-up from the greedy best-first search occurs simply
because otherwise the trajectories would be infeasible.

In Figure 5| we show another slightly more difficult terrain,
with several steps up and down, and a gap. We can again
see the walker kicks its leg forward to build up energy for
the steps up, and keeps it low for the steps down.

For this simulation, there were 24 possible virtual con-
straints for each step, and a five-step lookahead. This implies
the total search tree has 24° — about 8 million — possible
trajectories for each plan. Figure [6] shows the benefit of the
energy heuristic in terms of computation time. It depicts the
number of nodes evaluated, i.e. the number of times the
ADD-NODE function in Algorithm [I] was run. The worst
case scenario is that it is run 8 million times, the best
case scenario is that it chooses nodes perfectly, so it is run
five times (one for each footstep). As we can see, for the
more difficult terrain the best-first search evaluated several
hundred possible nodes, whereas the energy heuristic algo-
rithm always evaluated less than ten. Since each evaluation
requires only a small number of arithmetic operations, both
algorithms could easily be run in real time on a low-power
microcontroller.

We also applied the algorithm to the more complex 7
degree-of-freedom/5-link walker from [21], modeled on the
Rabbit robot [22]. Each leg consists of two rigid links
connected by a knee joint, while an additional rigid link -
the torso - also extends from the hip joint. The joint between
each femur and the torso is actuated, as are both knees, so an
independent control torque can be applied to each of these

T T
* BestFirst
* O Energy Heuristic
** %
*
2
o 10°F * E
a
£
2
< *
k]
]
E *
Ea
10+ |
o O O
o o o O o O
o o o o ¥ % X & X * @ %
10° L L L L L L L
0 2 4 6 8 10 12 14 16
Step Number

Fig. 6. Number of nodes evaluated to plan the trajectory in Figure El for
best-first search and the energy heuristic.

Fig. 7.

A trajectory of the five-link walker over uneven terrain.

four joints.

In Figure [7] we show the walker negotiating quite difficult
terrain, with large steps up and down and a gap to step across.
Notice that the walker leans its torso forwards for the early
steps to increase energy for the steps up, and leans it back
to slow down for the steps down.

REFERENCES

[1] T. McGeer, “Passive dynamic walking,” The International Journal of
Robotics Research, vol. 9, no. 2, pp. 62-82, 1990.

[2] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal
robots based on passive-dynamic walkers,” Science, vol. 307, no. 5712,
pp. 1082-1085, 2005.

[3] J. W. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking
for biped robots: Analysis via systems with impulse effects,” IEEE
Transactions on Automatic Control, vol. 46, no. 1, pp. 51-64, 2001.

[4] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero
dynamics of planar biped walkers,” IEEE Transactions on Automatic
Control, vol. 48, no. 1, pp. 42-56, 2003.

[5]1 E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and
B. Morris, Feedback control of dynamic bipedal robot locomotion.
CRC press Boca Raton, 2007.

[6] M. W. Spong and F. Bullo, “Controlled symmetries and passive
walking,” IEEE Transactions on Automatic Control, vol. 50, no. 7,
pp. 1025-1031, 2005.

[7]1 L. Freidovich, A. Shiriaev, and I. R. Manchester, “Stability analysis
and control design for an underactuated walking robot via computation
of a transverse linearization,” in Proc. 17th IFAC World Congress,
Seoul, Korea, 2008, pp. 10-166.

[8] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, et al., “Bigdog,
the rough-terrain quadruped robot,” in Proceedings of the 17th World
Congress, 2008, pp. 1082310 825.

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

H. W. Park, A. Ramezani, and J. W. Grizzle, “A finite-state machine for
accommodating unexpected large ground-height variations in bipedal
robot walking,” IEEE Transactions on Robotics, vol. 29, no. 2, pp.
331-345, 2013.

K. Byl and R. Tedrake, “Metastable walking machines,” The Interna-
tional Journal of Robotics Research, vol. 28, no. 8, pp. 1040-1064,
2009.

, “Approximate optimal control of the compass gait on rough ter-
rain,” in IEEE International Conference on Robotics and Automation
(ICRA), 2008.

I. R. Manchester, U. Mettin, F. Iida, and R. Tedrake, “Stable dynamic
walking over uneven terrain,” The International Journal of Robotics
Research, vol. 30, no. 3, pp. 265-279, 2011.

M. W. Spong and M. Vidyasagar, Robot dynamics and control. Wiley.
com, 2008.

S. M. LaValle, Planning Algorithms.
2006.

J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and
T. Kanade, “Footstep planning for the Honda ASIMO humanoid,” in
IEEE International Conference on Robotics and Automation (ICRA),
2005.

T. Erez and E. Todorov, “Trajectory optimization for domains with
contacts using inverse dynamics,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2012.

M. Posa and R. Tedrake, “Direct trajectory optimization of rigid body
dynamical systems through contact,” in Algorithmic Foundations of
Robotics X. Springer, 2013, pp. 527-542.

S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378-400, 2001.

E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” Journal of Guidance, Control, and
Dynamics, vol. 25, no. 1, pp. 116-129, 2002.

A. Shkolnik, M. Levashov, I. R. Manchester, and R. Tedrake, “Bound-
ing on rough terrain with the LittleDog robot,” The International
Journal of Robotics Research, vol. 30, no. 2, pp. 192-215, 2011.

F. Plestan, J. W. Grizzle, E. R. Westervelt, and G. Abba, “Stable
walking of a 7-DOF biped robot,” IEEE Transactions on Robotics
and Automation, vol. 19, no. 4, pp. 653-668, 2003.

C. Chevallereau, A. Gabriel, Y. Aoustin, F. Plestan, E. Westervelt,
C. C. De Wit, J. Grizzle, et al., “Rabbit: A testbed for advanced control
theory,” IEEE Control Systems Magazine, vol. 23, no. 5, pp. 57-79,
2003.

R. D. Gregg, A. K. Tilton, S. Candido, T. Bretl, and M. W. Spong,
“Control and planning of 3-d dynamic walking with asymptotically
stable gait primitives,” IEEE Transactions on Robotics, vol. 28, no. 6,
pp. 1415-1423, 2012.

Y. Hurmuzlu and D. B. Marghitu, “Rigid body collisions of planar
kinematic chains with multiple contact points,” The International
Journal of Robotics Research, vol. 13, no. 1, pp. 82-92, 1994.

E. Krotkov and R. Hoffman, “Terrain mapping for a walking planetary
rover,” IEEE Transactions on Robotics and Automation, vol. 10, no. 6,
pp. 728-739, 1994.

R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2006.

S. Vasudevan, F. Ramos, E. Nettleton, and H. Durrant-Whyte,
“Gaussian process modeling of large-scale terrain,” Journal of Field
Robotics, vol. 26, no. 10, pp. 812-840, 2009.

A. Shiriaev, J. W. Perram, and C. Canudas-de-Wit, “Constructive
tool for orbital stabilization of underactuated nonlinear systems: Vir-
tual constraints approach,” IEEE Transactions on Automatic Control,
vol. 50, no. 8, pp. 1164-1176, 2005.

L. B. Freidovich, U. Mettin, A. S. Shiriaev, and M. W. Spong, “A
passive 2-DOF walker: hunting for gaits using virtual holonomic
constraints,” IEEE Transactions on Robotics, vol. 25, no. 5, pp. 1202—
1208, 2009.

I. R. Manchester, “Transverse dynamics and regions of stability for
nonlinear hybrid limit cycles,” in Proceedings of the IFAC World
Congress, Milan, Italy, 2011.

D. E. Stewart, “Rigid-body dynamics with friction and impact,” SIAM
review, vol. 42, no. 1, pp. 3-39, 2000.

(2013, Sept.) MATLAB code for planning dynamic walking.
[Online]. Available: http://www-personal.acfr.usyd.edu.au'\/ian/doku.
php?id=wiki:software

Cambridge university press,

http://www-personal.acfr.usyd.edu.au\/ian/doku.php?id=wiki:software
http://www-personal.acfr.usyd.edu.au\/ian/doku.php?id=wiki:software

	I INTRODUCTION
	II Underactuated Walking Robots
	III Problem Statement
	IV Virtual Holonomic Constraints as Motion Primitives
	IV-A Partial Closed-Form Solutions for Velocity and Energy
	IV-B Instantaneous Controllability
	IV-C Critical Points and Motion Completion
	IV-D An Ordering for Sets of Virtual Constraints

	V Offline Construction of a Primitive Library
	V-A Discretization of Impact Configurations
	V-B The Library of Motion Primitives
	V-C Data Stored For Each Primitive

	VI The Motion Planning Algorithms
	VI-A Real-Time Selection and Evaluation of Primitives
	VI-B Best-First Search
	VI-C Improvement via Energy Heuristics

	VII Simulation Results
	References

