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Experimental Implementation of an Invariant Extended Kalman
Filter-based Scan Matching SLAM

Martin Barczyk, Silvère Bonnabel, Jean-Emmanuel Deschaud and François Goulette

Abstract— We describe an application of the Invariant Ex-
tended Kalman Filter (IEKF) design methodology to the scan
matching SLAM problem. We review the theoretical founda-
tions of the IEKF and its practical interest of guaranteeing
robustness to poor state estimates, then implement the filter
on a wheeled robot hardware platform. The proposed design is
successfully validated in experimental testing.

I. I NTRODUCTION

Simultaneous Localization and Mapping or SLAM is an
active area of research in robotics due to its use in emerging
applications such as autonomous driving and piloting, search-
and-rescue missions and mobile cartography [1]. SLAM is
fundamentally a sensor fusion problem, and as such it is
typically handled via an Extended Kalman Filter (EKF),
although a number of direct nonlinear designs have also been
proposed e.g. [2], [3], [4], [5], [6].

Applying an EKF to the SLAM problem was first seen
in [7], using a state vector which keeps track of landmark
positions and whose dimension grows as new landmarks
enter into view. Using this technique for experimentally
validated localization and mapping was seen in e.g. [8].
An alternative non-EKF-based approach to SLAM was first
proposed in [9] relying on matching successive scans of
the environment from onboard sensors in order to local-
ize the vehicle and construct a map of the environment.
This second approach was experimentally implemented in
e.g. [10] for autonomously mapping an abandoned mine. The
scan matching-based method uses vehicle odometry to obtain
estimates of the vehicle pose by numerical integration of
the dynamics, known as dead-reckoning [11]. The estimated
poses are then used to localize new scans before matching
them with previous scan(s). This procedure can be seen as
a sensor fusion problem between noisy odometry and scan
matching data, and thus handled by an EKF as proposed
in [12]. We will employ the EKF-based scan matching
approach to SLAM throughout the rest of this paper.

The EKF works by linearizing a system about its estimated
trajectory, then using estimates obtained from an observer
for this linearized model to correct the state of the original
system. In this way the EKF relies on a closed loop which
can be destabilized by sufficiently poor estimates of the
trajectory, known as divergence [13]. Clearly, reducing or
eliminating the dependence of the EKF on the system’s
trajectory would increase the robustness of the overall sys-
tem. An emerging methodology to accomplish this goal is
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the Invariant EKF [14], [15], built on the theoretical foun-
dations of invariant (symmetry-preserving) observers [16],
specialized to the case of Lie groups in [17], [18]. The
IEKF technique has already demonstrated experimental per-
formance improvements over a conventional EKF in aided
inertial navigation designs [19], [20]. Applying the IEKF to
scan matching SLAM was first demonstrated in [21]. The
contribution of the present paper is to design and implement
an IEKF-based scan matching SLAM for a wheeled indoor
robot and experimentally validate the design.

II. M ATHEMATICAL PRELIMINARIES

A. System Dynamics

The dynamics of a 6 DoF vehicle are governed by

Ṙ = RS(ω)

ṗ = Rµ
(1)

whereR ∈ SO(3) is a rotation matrix measuring attitude
of the vehicle,ω ∈ R

3 is the body-frame angular velocity
vector,S(·) is the 3 × 3 skew-symmetric matrix such that
S(x)y = x× y, theR3 cross-product,p ∈ R

3 is the position
vector of the vehicle expressed in coordinates of the ground-
fixed frame, andµ is the velocity vector of the vehicle
expressed in body-frame coordinates. We assumeω andµ are
directly measurable using on-board sensors, e.g. via a triaxial
rate gyro and odometers on a wheeled vehicle. The vehicle
state space can be identified as the Special Euclidean group
SE(3) = SO(3) × R

3, where eachX ∈ SE(3) is written
as the4× 4 homogeneous matrix [22]

X =

[

R p
0 1

]

In this way dynamics (1) can be compactly rewritten as

Ẋ = XΩ where Ω =

[

S(ω) µ
0 0

]

(2)

We assume that the poseX of the vehicle can be obtained
by performing the procedure of scan matching described in
Section II-D, such that the output of the system is

Y = X (3)

B. Geometry ofSE(3)

The system dynamics (2) evolve on the Lie groupSE(3),
which provides access to a number of useful results from
differential geometry.

For any Lie groupG, the exponential map exp: Lie(G) →
G maps elements of the Lie algebra to the Lie group, where
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Lie(G) ∼= TeG, the tangent space toG at the identity element
e. The following properties of this map will be used in the
sequel:

• exp is a smooth map from Lie(G) to G
• exp restricts to a diffeomorphism from some neighbour-

hood of0 in Lie(G) to a neighbourhood ofe in G
• (expX)−1 = exp(−X)

For the case ofG = SE(3) written in homogeneous matrix
coordinates, Lie(SE(3)) ∼= se(3) where the Lie algebra
membersξ ∈ se(3) are written as [22]

ξ =

[

S(vR) vp
0 0

]

:= H

([

vR
vp

])

, vR, vp ∈ R
3 (4)

and exp: se(3) → SE(3) is the standard matrix exponential

eξ := I + ξ +
1

2!
ξ2 + · · ·

The mapH : R6 → se(3) defined in (4) is a vector space
isomorphism. Remark that theΩ term in (2) can be written
asΩ = H([ω, µ]).

As stated above, exp restricts to a diffeomorphism from a
neighborhood of0 in Lie(G) = se(3) to a neighborhoodU
of e in G = SE(3). The inverse of exp is the logarithmic
map log: G→ Lie(G) such that log◦ exp(g) = g, ∀g ∈ U .
The formula for log: SE(3) → se(3) using homogeneous
matrices is [22]

log

[

R p
0 1

]

=

[

S(a) A−1p
0 0

]

, S(a) = θS(ω)

θ = acos

(

traceR− 1

2

)

, S(ω) =
1

2 sin θ
(R−RT )

A = I +
S(a)

‖a‖2
(1− cos ‖a‖) +

S(a)2

‖a‖3
(‖a‖ − sin ‖a‖)

(5)
We now discuss approximations which will be employed

in the sequel. Consider the case whereX = eξ is close
to identity. We know the exponential map restricts to a
diffeomorphism from a neighborhood of zero inse(3) to
a neighborhood of identity inSE(3), thusξ is close to the
matrix 04×4. This meansξ2 and all subsequent terms ineξ

can be dropped as higher-order terms, such that

X ≈ I + ξ, X ∈ SE(3) close to identity (6)

From (expX)−1 = exp(−X) we have

X−1 ≈ I − ξ, X ∈ SE(3) close to identity (7)

Still consideringX close to identity, in (5) we have traceR ≈
3 =⇒ θ ≈ 0 =⇒ a ≈ 0, thus‖a‖ is small and so

S(a) ≈
θ

2θ
(R− RT ) =

R −RT

2

A ≈ I +
S(a)

‖a‖2
(1− 1) +

S(a)2

‖a‖3
(‖a‖ − ‖a‖) = I

This leads to the projection mapπ : SE(3) → se(3),

X =

[

R p
0 1

]

=⇒ π(X) =

[

R−RT

2 p
0 0

]

(8)

The mapπ is defined everywhere but it is the inverse of
exp only whenX ∈ SE(3) is close to identity. In this case
with X = eξ we haveπ(X) = ξ and by (6) we obtain

X − I ≈ π(X), X ∈ SE(3) close to identity (9)

C. Iterative Closest Point algorithm

Assume the vehicle is equipped with sensors which cap-
ture 3-D scans of the environment, either directly using a
time-of-flight LiDAR or indirectly using image-based re-
construction e.g. a Kinect. These scans are represented as
sets of points expressed in coordinates of the body-fixed
frame, known as point clouds. The Iterative Closest Point
(ICP) algorithm [23] is an iterative procedure to find the
δX ∈ SE(3) transformation which aligns cloudA := {ai},
1 ≤ i ≤ NA to cloudB := {bi}, 1 ≤ i ≤ NB by minimizing
the least-squares cost function

NA
∑

i=1

‖δXai − b′i‖
2 where b′i := argmin

bi∈B

‖bi − ai‖
2 (10)

Points {b′i} can be found using an approximate nearest-
neighbour search algorithm. The ICP algorithm guarantees
monotonic convergence to a local minimum of the cost
function (10).

D. Scan Matching algorithms

By construction the vehicle poseX transforms elements
of the 3-D point cloudA = {ai} from the robot-fixed frame
to the ground-fixed frame.

Because successive scans contain elements from the same
scene, we can estimate the pose of the robotX̂ by repeatedly
using the ICP algorithm to compute the transformationδX
between successive point clouds, known as scan matching.
The algorithm proceeds as follows:

1) Define the initial robot pose aŝX = I and assign the
initial point cloud toA

2) Whenever a new point cloud is available,
a) Transfer contents of cloudA to cloudB
b) Assign the new point cloud toA
c) ComputeδX aligningA to B via ICP
d) Let X̂ = X̂δX

3) Goto 2.
There are two issues with this approach. First, if the scanning
rate is not sufficiently fast, the ICP algorithm may compute
an incorrectδX due to convergence to an alternative local
minimum of (10). A second problem is loss of observability:
for certain types of environments e.g. moving along a long
featureless corridor, successive point cloud scans will be
identical such thatδX = I, and so the estimated pose will
not get updated despite the robot moving.

A more robust pose estimation scheme makes use of the
on-board inertial sensors. We numerically integrate (2) to
obtain an initial estimate of the current poseX̂, which is used
to pre-align the scans in the body-fixed frame. The algorithm
proceeds as follows:

1) Assign the initial robot posêX = I and initial point
cloud toB



2) Numerically integrate ˙̂
X = X̂Ω using the current

sensor signals
3) Whenever a new point cloud is available,

a) Assign the new cloud toA and computêX−1{bi}
b) ComputeδX aligningA to X̂−1{bi} via ICP
c) Update estimated pose aŝX = X̂δX
d) Using this updated pose computêX{ai} and

store the result asB

4) Goto 2.

In this odometry-aided scan matching algorithm cloud
X̂−1{bi} is pre-aligned toA, reducing the risk of the
ICP converging to an incorrect local minimum even at low
scanning rates. Meanwhile in unobservable environments
where the two clouds are indistinguishable,X̂ will still get
updated at step 2.

E. Computing covariance of pose estimates

For the second algorithm in Section II-D, the cost function
to be minimized by the ICP at every new scan is

f(δX) =
∑

‖δXai − X̂−1bi‖
2 (11)

and the corresponding pose estimate output is

Y = X = X̂δX (12)

Assuming that theX̂ obtained from odometry integration is
reasonably accurate, the clouds{ai} and X̂−1{bi} in (11)
will be pre-aligned such thatδX will be close to identity.
We can thus employ (6) in (11):

f(ξ) =
∑

‖ai − X̂−1bi + ξai‖
2 (13)

Expandingξai via (4) gives

ξai = S(vR)ai + vp =
[

−S(ai) I3
]

[

vR
vp

]

and by definingBi := [S(ai) − I3], x := [vR vp]
T and

yi := ai − X̂−1bi the cost function (13) is rewritten as

f(x) =
∑

‖yi −Bix‖
2 (14)

meaning that as long as the odometry is reasonably accurate,
the ICP will behave as a linear least-squares estimator ofx.

Because the ICP aligns successive scans, we first assume
the residualsyi − Bix will have mean zero and be nor-
mally distributed with diagonal covarianceσ2I3 representing
additive Gaussian sensor noise on the point cloud. Under
these conditions the covariance of the least-squares estimate
x̂ which minimizes (14) is given by [24]

σ2
[

∑

BT
i Bi

]−1

= σ2

[

N
∑

i=1

[

−S(ai)2 S(ai)
−S(ai) I3

]

]−1

whereai are points of the current cloud in the robot-fixed
frame. However the assumption of independent Gaussian
noises is unrealistic, e.g. indicating that sub-millimeter ac-
curacy can be achieved by scan matching two point clouds
obtained from a Kinect for whichσ ≈ 5 cm. We thus

propose as a relevant approximation to rescale the above
covariance matrix as

Nσ2

[

N
∑

i=1

[

−S(ai)2 S(ai)
−S(ai) I3

]

]−1

:= C (15)

We then havêx ∼ N (x,C) =⇒ x̂ = x + ν where x̂ =
[v̂R v̂p]

T andν := [νR νp]
T ∼ N (0, C).

Returning to the pose output (12) and employing (6) with
ξ̂ := H(x̂) via (4) denoting the estimate produced by the
ICP from measured (noisy) data, the corresponding estimated
pose output is

Ym = X̂(I + ξ̂)

SinceH is linear ξ̂ = H(x̂) = H(x) +H(ν) := ξ + V thus

Ym = X̂(I + ξ + V ) = X̂(δX + V ) = X + X̂V

Note thatXV = X̂δXV = X̂(I + ξ)V = X̂V + X̂ξV ≈
X̂V sinceξV is a second-order term, and so the pose output
from odometry-aided measured scan matching is

Ym = X +XV, V = H(ν) =

[

S(νR) νp
0 0

]

(16)

where cov(ν) = C is given by (15).

III. E STIMATOR DESIGN

A. Invariant Observer

We first design an invariant observer for the noise-free
system (2), (3) by following the method in [16], [18]; a
tutorial presentation is available in [20]. LetG be a Lie
group acting on the system dynamicsẋ = f(x, u) state and
input spaces via the Lie group actionsϕg : G × x → x
andψg : G × u → u, respectively. This system is termed
G-invariant if

d

dt
ϕg(x) = f(ϕg(x), ψg(u)), ∀g ∈ G

Finding the actions making the system invariant is non-
systematic, although it is based on the physics of the
problem. For dynamics (2), choosingG = SE(3) and
ϕgx = gx, ψgu = u can be directly verified to provide
G-invariance, which we refer to as left invariance since
ϕg = Lg. Left invariance physically represents applying
a constant rigid-body transformation to ground-fixed frame
vector coordinates, for which the governing dynamics (2) still
hold. The property ofG-invariance is not unique, for instance
G = SE(3) with ϕgx = xg, ψgu = g−1ug verifies another
G-invariance of (2) known as right, which was employed
in [25], [21]. However we will be employing left invariance
for reasons explained in Section III-B.

The remaining steps for obtaining an invariant observer are
systematic. The actionsϕg, ψg induce a Lie group action
on the output spaceρg : G × y → y satisfying theG-
equivariance

ρg(y) = h(ϕg(x), ψg(u)), ∀g ∈ G

where in our case (3) with left invariance givesρgy = gy.
The subsequent design steps consist of computing the mov-
ing frame, finding the complete set of invariants, obtaining



the invariant output error, invariant estimation error and
invariant frame, and obtaining the structure of the invariant
observer as well as its associated invariant estimation error
dynamics. The details of the steps are fully discussed in [16],
[20] and will not be reprinted here due to space constraints.
For the present system (2), (3) under left invariance, we
obtain the moving frameγ(x) = X ; the complete set of
invariants

I(x, u) = ψγ(x)(u) = Ω, Jh(x, y) = ργ(x)(y) = X−1Y

the invariant output error

E(x̂, u, y) = Jh(x̂, h(x̂, u))− Jh(x̂, y) = I − X̂−1Y

the invariant estimation error

η(x, x̂) = ϕγ(x)(x̂)− ϕγ(x)(x) = X−1X̂ − I

redefined asη = X−1X̂ for convenience; the invariant frame

wR
i = dϕxv

R
i =

[

RS(ei) 0
0 0

]

, wp
i = dϕxv

p
i =

[

0 Rei
0 0

]

and the invariant observer

˙̂
X = X̂Ω+

3
∑

i=1

LR
i

[

R̂S(ei) 0
0 0

]

+
3

∑

i=1

Lp
i

[

0 R̂ei
0 0

]

= X̂Ω+

[

R̂ p̂
0 1

] [

S(LR) Lp

0 0

]

:= X̂Ω + X̂L (17)

whereLR ∈ R
3, Lp ∈ R

3 are smooth functions ofI(x̂, u),
E(x̂, u, y) such thatse(3) ∋ L(I, 0) = 0.

We cannot directly employE = I − X̂−1Y to form the
gain termL in (17) sinceI − X̂−1Y /∈ SE(3). Instead we
takeL = π(X̂−1Y ) since by (9),X̂−1Y = I ⇐⇒ L = 0 as
required. We add the observer gain matrixK ∈ R

6×6 as

L = H ◦K ◦H−1[π(X̂−1Y )]

With this L the dynamics ofη = X−1X̂ compute to

η̇ = X−1XΩX−1X̂ +X−1X̂Ω+X−1X̂L

= Ωη + ηΩ+ ηH ◦K ◦H−1[π(η−1)]
(18)

and stabilizing the (nonlinear) dynamics (18) toη = I by
choice of gainsK leads to an asymptotically stable nonlinear
observer (17). The stabilization process is simplified by (18)
not being dependent on the estimated stateX̂ ; indeed the fun-
damental feature of the invariant observer is that it guarantees
η̇ = Υ(η, I(x̂, u)) [16, Theorem 2] withI(x̂, u) = Ω in the
present example, which simplifies gain selection over the
general case, but does not make it systematic. For this reason
we will use the Invariant EKF method to obtain stabilizing
gains.

B. Invariant EKF

We first recall the continuous-time EKF algorithm. Given
the nonlinear systeṁx = f(x, u, w), y = h(x, v) wherew
and v are the process and output Gaussian noise vectors,
we linearize about(x, u, w, y, v) = (x̂, u, 0, ŷ, 0), a nominal

(noise-free) trajectory of the system,˙̂x = f(x̂, u, 0), ŷ =
h(x̂, 0), and obtain

δẋ = Aδx+Bw

δy = Cδx+Dv

The Kalman Filter for this linearized time-varying system is

δ ˙̂x = Aδx̂+K(δy − Cδx̂)

K = PCT (DRDT )−1

Ṗ = AP + PAT − PCT (DRDT )−1CP +BQBT

(19)

andδx̂+ x̂ then becomes the estimated state of the original
nonlinear system. The above EKF possesses the estimation
error ε = δx̂− δx dynamics

ε̇ = (A−KC)ε−Bw +KDv

The Invariant EKF is a systematic approach to computing
the gainsK of an invariant observer by linearizing its
invariant estimation error dynamics. We first introduce input
and output noise terms̃u = u + w, ỹ = y + v such
that w and v preserve theG-invariance of the system as
ẋ = f(x, ũ − w) and ˙̂x = F (x̂, ũ, y + v). Using these we
computeη̇ = Υ(η, I(x̂, u), w, v) then linearize aboutη = η,
w = v = 0 to obtain the form

δη̇ = (A−KC)δη −Bw +KDv

We then read off the(A,B,C,D) matrices and employ the
conventional EKF formulas (19) to compute stabilizing gains
K for the invariant observer. The interest of the Invariant
EKF is the reduced dependence of the linearized system on
the estimated system trajectory of the original system, specif-
ically only through the latter’s estimated invariantsI(x̂, u).
In our present caseI(x̂, u) = Ω thus the (A,B,C,D)
matrices are guaranteed not to depend on the estimated state,
which increases the filter’s robustness to poor state estimates
and precludes divergence (c.f. Section I).

Returning to (2), (3), we first need to introducew
and v noise terms which preserveG-invariance andG-
equivariance. As discussed in Section III-A the left invari-
ance case corresponds to transforming ground-fixed frame
vector coordinates, and so introducing noise terms expressed
in the body-fixed frame will not affect the invariance of the
system. For inertial sensors we write

Ωm =

[

S(ω) µ
0 0

]

+

[

S(νω) νµ
0 0

]

:= Ω +W

i.e. use an additive sensor noise model, which is standard in
inertial navigation design [11] since cov(W ) can be directly
identified from logged sensor data. This is precisely the
reason why we chose to use the left-invariant version of the
observer in Section III-A. For the output equation we have
obtained (16) whereV represents body-frame noise terms
due to the ICP alignment being performed in the body-fixed
frame.



Introducingw andv asẋ = f(x, ũ−w), ˙̂x = F (x̂, ũ, y+v)
into dynamics (2) and observer (17) we have

Ẋ = X(Ωm −W )

˙̂
X = X̂Ωm + X̂Lm, Lm := H ◦K ◦H−1[π(X̂−1Ym)]

and computingη̇ whereη = X−1X̂ gives

η̇ = −X−1X(Ωm −W )X−1X̂ +X−1(X̂Ωm + X̂Lm)

= ηΩm − Ωmη +Wη + ηLm

Linearizing the above aroundη = η, w = v = 0 we have
η ≈ I + ξ, η−1 ≈ I − ξ by (6), (7) and so

ξ̇ = (I + ξ)Ωm − Ωm(I + ξ) +W (I + ξ) + (I + ξ)Lm

= ξΩm − Ωmξ +W +H ◦K ◦H−1[π(X̂−1Ym)]

and

π(X̂−1Ym) = X̂−1Ym − I = η−1(I + V )− I

= (I − ξ)(I + V )− I = V − ξ

By (4) we defineξ := H([ζR ζp]), Ωm := H([ωm µm]),
W := H([νω νµ]), V := H([νR νp]) and writeξ̇ as

[

ζ̇R
ζ̇p

]

=

[

−S(ωm) 0
−S(µm) −S(ωm)

] [

ζR
ζp

]

+

[

νω
νµ

]

+K

([

νR
νp

]

−

[

ζR
ζp

])

By matching the above withδη̇ = (A−KC)δη−Bw+KDv
we read off

A =

[

−S(ωm) 0
−S(µm) −S(ωm)

]

, B =

[

−I 0
0 −I

]

C =

[

I 0
0 I

]

, D =

[

I 0
0 I

]

Just as predicted, the linearized system matrices do not
depend on the estimated trajectorŷX but only on Ω =
I(x̂, u). Using (A,B,C,D) with (19) we compute the gain
K of the invariant observer by

Ṗ = AP + PAT − PV −1P +W

K = PV −1

IV. EXPERIMENTAL VALIDATION

A. Hardware Platform

Fig. 1. The Wifibot Lab v4 Robot

The wheeled robot used for our experiments is shown
in Figure 1. The robot is equipped with an Intel Core
i5-based single-board computer, WLAN 802.11g wireless
networking, all-wheel drive via 12V brushless DC motors,
and a Kinect camera providing 3-D point cloud scans of the
environment. The odometry data at50 Hz and Kinect point
clouds at5 Hz are passed to the IEKF which estimates the
plane position(x, y) and heading angleψ of the vehicle.
The robot is also equipped with a Hokuyo UTM-30LX
LiDAR which provides centimeter-level positioning accuracy
through proprietary SLAM code [26]. This LiDAR-derived
data is used solely to provide a reference trajectory when
plotting results.

B. Experimental Results

Fig. 2. First experiment field

1) Straight line trajectory:The first experiment field is the
laboratory shown in Figure 2. The robot begins stationary at
the bottom edge of the picture then advances with constant
velocity in a straight line along the marking on the floor
towards the far door, where it comes to a stop. The motion
was commanded in open-loop and the robot’s trajectory
exhibited a slight veer to the left over the full length. The
state estimates by the IEKF are plotted against the LiDAR-
derived reference states in Figure 3.
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Fig. 3. Estimates for linear trajectory: IEKF (solid), reference (dashed)

Figure 3 illustrates that the IEKF provides coherent esti-
mates: both the forward motion and the left veer are correctly
rendered in the estimates. The RMS discrepancy of the
estimates from the reference trajectory is(4.5, 5.3) cm for
the (x, y) positions and0.9◦ for the heading angleψ.



Fig. 4. Second experiment field

2) Circular trajectory: The second experiment consists
of executing a circular trajectory in the environment shown
in Figure 4. The test area was surrounded on all sides
by a bounding wall, and a number of visual landmarks
were placed around the test area to provide better scan
matching conditions during turning maneuvers. The robot
began stationary, executed two concentric counter-clockwise
circles with a constant velocity, and then stopped at its initial
position. The overhead position estimates from the IEKF
are plotted against the LiDAR-derived reference trajectory
in Figure 5.
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Fig. 5. Estimates for circular trajectory: IEKF (solid), reference (dashed)

The IEKF estimates once again follow the LiDAR refer-
ence trajectory; the computed RMS errors for(x, y) andψ
are(5.1, 3.5) cm and2.5◦, respectively.

V. CONCLUSIONS

We have described a scan matching SLAM design based
on an Invariant EKF. The proposed approach guarantees
robustness of the filter to poor state estimatesX̂, which
may lead to degraded performance or even destabilize the
filter in the conventional EKF case. The Invariant EKF
was successfully implemented in hardware and performed
well in experiments, making it a promising candidate for
more complex SLAM applications such as mobile outdoor
cartography.
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