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Experimental Implementation of an Invariant Extended Kalman
Filter-based Scan Matching SLAM

Martin Barczyk, Silvere Bonnabel, Jean-Emmanuel Desdlremd Francois Goulette

Abstract— We describe an application of the Invariant Ex- the Invariant EKF [14], [15], built on the theoretical foun-
tended Kalman Filter (IEKF) design methodology to the scan dations of invariant (symmetry-preserving) observers],[16
matching SLAM problem. We review the theoretical founda- — gecialized to the case of Lie groups in [17], [18]. The
tions of the IEKF and its practical interest of guaranteeing IEKE techni h Ireadv d trated ' tal
robustness to poor state estimates, then implement the filte ec n'que as already demons rag eXpe”m?n a_ per-
on a wheeled robot hardware platform. The proposed design is formance improvements over a conventional EKF in aided
successfully validated in experimental testing. inertial navigation designs [19], [20]. Applying the IEKB t
scan matching SLAM was first demonstrated in [21]. The
_ o _ _ contribution of the present paper is to design and implement

Simultaneous Localization and Mapping or SLAM is anan IEKF-based scan matching SLAM for a wheeled indoor
active area of research in robotics due to its use in emergingbot and experimentally validate the design.

applications such as autonomous driving and piloting,ctear

and-rescue missions and mobile cartography [1]. SLAM is Il. MATHEMATICAL PRELIMINARIES

fundamentally a sensor fusion problem, and as such it js. System Dynamics

typically handled via an Extended Kalman Filter (EKF), The dynamics of a 6 DoF vehicle are governed by

although a number of direct nonlinear designs have also been '

proposed e.g. [2], [3], [4], [5], [6]. R =RS(w)
Applying an EKF to the SLAM problem was first seen p= Ry

in [7], using a state vector which keeps track of landmark . . ) ) )
positions and whose dimension grows as new landmarké'ere 2 € SO(3) is a rotation matrix measuring attitude

enter into view. Using this technique for experimentally°f the vehicle.w € R? is the body-frame angular velocity
validated localization and mapping was seen in e.g. [8Y€ctor, S(-) is the 3 x 3 skew-symmetric matrix such that
An alternative non-EKF-based approach to SLAM was first (*)¥ = Z X ¥, th_eR?’ cross-producty € RS is the position
proposed in [9] relying on matching successive scans &ector of the veh|cle. expressed in coordinates of the ground
the environment from onboard sensors in order to locafixed frame, andu is the velocity vector of the vehicle

ize the vehicle and construct a map of the environmerfgXPressed in body-frame coordinates. We assurardy. are
This second approach was experimentally implemented f{rectly measurable using on-board sensors, e.g. V|a>aatha_
e.g. [10] for autonomously mapping an abandoned mine. TH@&té gyro and odometers on a wheeled vehicle. The vehicle
scan matching-based method uses vehicle odometry to obtS}g!€ Space can be identified as the Special Euclidean group
estimates of the vehicle pose by numerical integration of£(3) = SO(3) x R?, where eachX € SE(3) is written

the dynamics, known as dead-reckoning [11]. The estimat&@§ the4 x 4 homogeneous matrix [22]

poses are then used to localize new scans before matching R p
them with previous scan(s). This procedure can be seen as X = [0 1}
a sensor fusion problem between noisy odometry and scan ) .
matching data, and thus handled by an EKF as proposiythis way dynamicsi(1) can be compactly rewritten as

in [12]. We will employ the EKF-based scan matchin .
[12] s g X =XQ where Q= {S(w) M] (2)

I. INTRODUCTION

1)

approach to SLAM throughout the rest of this paper. 0 0
The EKF works by linearizing a system about its estimated
y gasy assume that the posé of the vehicle can be obtained

trajectory, then using estimates obtained from an observb forming th d ¢ hina ibed i
for this linearized model to correct the state of the origina y performing the procedure of scan matching escribed n
ctionI[-D, such that the output of the system is

system. In this way the EKF relies on a closed loop whicl$e
can be destabilized by sufficiently poor estimates of the Y = X (3)
trajectory, known as divergence [13]. Clearly, reducing or

eliminating the dependence of the EKF on the systemB. Geometry of5E(3)

trajectory would increase the robustness of the overall sys The system dynamicEl(2) evolve on the Lie graip(3),
tem. An emerging methodology to accomplish this goal isvhich provides access to a number of useful results from

. . . ; differential geometry.
The authors are with the Centre de Robotique, Unité Mattigmes E Li h ial ie(C
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Lie(G) 2 T.G, the tangent space @ at the identity element

The mapr is defined everywhere but it is the inverse of

e. The following properties of this map will be used in theexp only whenX € SE(3) is close to identity. In this case

sequel:
o exp is a smooth map from L(&') to G

with X = e¢ we haver(X) = ¢ and by [6) we obtain

X —-I=n(X), X € SE(3) close to identity  (9)

« exp restricts to a diffeomorphism from some neighbour-

hood of0 in Lie(G) to a neighbourhood of in G
o (expX)~! =exp—X)

C. lterative Closest Point algorithm
Assume the vehicle is equipped with sensors which cap-

For the case ofi = SE(3) written in homogeneous matrix ture 3-D scans of the environment, either directly using a
coordinates, LieSE(3)) = se(3) where the Lie algebra time-of-flight LIDAR or indirectly using image-based re-

membersS € se(3) are written as [22]

50 ([ new o

Up

construction e.g. a Kinect. These scans are represented as
sets of points expressed in coordinates of the body-fixed
frame, known as point clouds. The Iterative Closest Point
(ICP) algorithm [23] is an iterative procedure to find the

and exp: se(3) — SE(3) is the standard matrix exponential X € SE(3) transformation which aligns cloud := {a;},

1
efi:I+§+5§2+---

The mapH : RS — se(3) defined in [(#) is a vector space
isomorphism. Remark that the term in [2) can be written

asQ = H([w, u]).

As stated above, exp restricts to a diffeomorphism from

neighborhood of) in Lie(G) = se(3) to a neighborhood

of e in G = SE(3). The inverse of exp is the logarithmic

map log: G — Lie(G) such that log exp(g) = g, Vg € U.

1<i< NytocloudB := {b;}, 1 <i < Np by minimizing
the least-squares cost function

Na
Z |6Xa; —b;||> where b, := argmin ||b; — a;]|*> (10)
1 b;eB

goints {b/} can be found using an approximate nearest-
neighbour search algorithm. The ICP algorithm guarantees

monotonic convergence to a local minimum of the cost

function [10).

The formula for log: SE(3) — se(3) using homogeneous D. Scan Matching algorithms

matrices is [22]

log {R p} _ [S(G) A™'p

. o ] S(a) = 0S(w)

- tracelr — 1 1 _ pT
G_acos<f>, S(w) = 2sin9(R R")
S(a S(a)? .
A=1+39D0 _cosfal) + 29 (] - sin fla])

[lall® llall®

®)

We now discuss approximations which will be employed

in the sequel. Consider the case whefe= ¢ is close

to identity. We know the exponential map restricts to a

diffeomorphism from a neighborhood of zero ie(3) to

a neighborhood of identity it £(3), thus¢ is close to the

matrix 04, 4. This meanst? and all subsequent terms i
can be dropped as higher-order terms, such that

X=~I+¢, X € SE(3) close to identity  (6)
From (expX)~! = exp(—X) we have
X txT—¢, X € SE(3) close to identity (7)

Still consideringX close to identity, in[(b) we have trade~
3= 0~ 0= a~=0, thus||a| is small and so

S(a) ~ %(R—RT) = R;RT
A4 2= 1)+ 20 ol — al) = 1

This leads to the projection map: SE(3) — se(3),

R—R”

X:Hf ﬂ:\,w(){):[ 2 g} ©)

By construction the vehicle pos¥ transforms elements
of the 3-D point cloudA = {a;} from the robot-fixed frame
to the ground-fixed frame.

Because successive scans contain elements from the same
scene, we can estimate the pose of the robaly repeatedly
using the ICP algorithm to compute the transformatidn
between successive point clouds, known as scan matching.
The algorithm proceeds as follows:

1) Define the initial robot pose a& = I and assign the
initial point cloud to A
2) Whenever a new point cloud is available,

a) Transfer contents of cloud to cloud B
b) Assign the new point cloud td

¢) Computes X aligning A to B via ICP
d) Let X = X6X

3) Goto 2.

There are two issues with this approach. First, if the seanni
rate is not sufficiently fast, the ICP algorithm may compute
an incorrectd X due to convergence to an alternative local
minimum of [10). A second problem is loss of observability:
for certain types of environments e.g. moving along a long
featureless corridor, successive point cloud scans will be
identical such that X = I, and so the estimated pose will
not get updated despite the robot moving.

A more robust pose estimation scheme makes use of the
on-board inertial sensors. We numerically integraie (2) to
obtain an initial estimate of the current pakewhich is used
to pre-align the scans in the body-fixed frame. The algorithm
proceeds as follows:

1) Assign the initial robot pos& = I and initial point

cloud to B



2) Numerically integrateX =
sensor signals

3) Whenever a new point cloud is available,
a) Assign the new cloud td and computeX —*{b;}
b) Computed X aligning A to X~1{b;} via ICP
c) Update estimated pose &s= X§X
d) Using this updated pose compufé{a;} and

store the result a®
4) Goto 2.

X0 using the current propose as a relevant approximation to rescale the above

covariance matrix as

o [ [50 S)

i=1

-1
=C (15)

We then havei ~ N(z,C) = & = = + v wherei =
[or  0p)T andv :i=[vg vyt ~ N(0,C).

Returning to the pose outplif {12) and employing (6) with
¢ := H(#) via (@) denoting the estimate produced by the

In this odometry-aided scan matching algorithm cloudCP from measured (noisy) data, the corresponding estimate
X~1b;} is pre-aligned toA, reducing the risk of the POS€ outputis

ICP converging to an incorrect local minimum even at low

scanning rates. Meanwhile in unobservable environmend§nce 7 is linearé = H (&) = H(z) + H(v) := £+ V thus

where the two clouds are indistinguishab®é, will still get
updated at step 2.

E. Computing covariance of pose estimates

Yo =XI+6+V)=X@6X+V)=X+XV

Note thatXV = X0XV = X(I + &V = XV + X¢V ~
XV since¢V is a second-order term, and so the pose output

For the second algorithm in SectionTl-D, the cost functiog gy, odometry-aided measured scan matching is

to be minimized by the ICP at every new scan is

F(6X) = |[6Xa; — X 'b|? (11)
and the corresponding pose estimate output is
Y =X = X6X (12)

Assuming that theX obtained from odometry integration is

reasonably accurate, the cloufis;} and X ~'{;} in (1)
will be pre-aligned such thaiX will be close to identity.
We can thus employ 16) in_(11):

FE) = llai = X0 + as)? (13)
Expandingéa; via (4) gives
€a; = S(vr)a; +vp = [—S(ai) Ig] {Zﬂ
and by definingB; := [S(a;) — I3], = := [vr v,|" and

y; := a; — X 'b; the cost function[{113) is rewritten as

f@)=>"lyi — Bixl (14)

Vp

Y = X + XV, v_H(u)_[S((V)R> 0] (16)

where coyv) = C is given by [I5).
IIl. ESTIMATOR DESIGN
A. Invariant Observer

We first design an invariant observer for the noise-free
system [(R), [(B) by following the method in [16], [18]; a
tutorial presentation is available in [20]. L&t be a Lie
group acting on the system dynamics= f(z,u) state and
input spaces via the Lie group actiogsg : G X ¢ — x
and ¢, : G x u — wu, respectively. This system is termed
G-invariant if

%@q(l‘) = f(soq(x)qu(u))v Vg € G

Finding the actions making the system invariant is non-
systematic, although it is based on the physics of the
problem. For dynamics[{2), choosing = SFE(3) and
pgr = gz, Ygu = u can be directly verified to provide
G-invariance, which we refer to as left invariance since

meaning that as long as the odometry is reasonably accurafe, = Lg¢- Left invariance physically represents applying
the ICP will behave as a linear least-squares estimatar of @ constant rigid-body transformation to ground-fixed frame
Because the ICP aligns successive scans, we first assuyggtor coordinates, for which the governing dynani¢s (@) st
the residualsy; — B;z will have mean zero and be nor- hold. The property ofz-invariance is not unique, for instance
mally distributed with diagonal covariane@I; representing G = SE(3) with pgx = 29, ¢yu = g~ 'ug verifies another
additive Gaussian sensor noise on the point cloud. Undérinvariance of [(2) known as right, which was employed
these conditions the covariance of the least-squaresatstimin [25], [21]. However we will be employing left invariance

# which minimizes[(I}) is given by [24]

A orn)” - 5[ 5]

wherea; are points of the current cloud in the robot-fixed
frame. However the assumption of independent Gaussian
where in our casd[3) with left invariance givegy = gy.

noises is unrealistic, e.g. indicating that sub-millimmede-

for reasons explained in Sectibn 111-B.

The remaining steps for obtaining an invariant observer are
systematic. The actiong,, 1, induce a Lie group action
on the output space, : G x y — y satisfying theG-
equivariance

Pg(y) = hpg(x), Pg(u)),  Vged

curacy can be achieved by scan matching two point cloudshe subsequent design steps consist of computing the mov-

obtained from a Kinect for whickb ~ 5 cm. We thus

ing frame, finding the complete set of invariants, obtaining



the invariant output error, invariant estimation error andnoise-free) trajectory of the system, = f(&,u,0), g =
invariant frame, and obtaining the structure of the invaria h(Z,0), and obtain

observer as well as its associated invariant estimatioor err

dynamics. The details of the steps are fully discussed if [16 o0& = Adz + Bw

[20] and will not be reprinted here due to space constraints. 0y = Céz + Dv

For the present systemi] (2].] (3) under left invariance, we ) o ] ) . ]
obtain the moving frame/(z) = X; the complete set of The Kalman Filter for this linearized time-varying system i

invariants :
nvart 5 = As3 + K(Sy — C8%)
I(@,u) = Yy (u) = Q,  Jn(2,y) = py)(y) = X7'Y K = PCT(DRDT)™! (19)

the invariant output error P = AP+ PAT — PCT(DRDT)"'CP + BQBT

E(&,u,y) = Jn(&, h(i,u)) — Ju(d,y) =1 — XY andéz + z then becomes the estimated state of the original

] ] o nonlinear system. The above EKF possesses the estimation
the invariant estimation error errore = 84 — &2 dynamics

~ _ A _ _ —1 > _
77(1'755) = Spw(m)(x) Spw(m)(x) =X"T"X-1 g — (A . KC)E — Bw + K Dv

redefined ay = X~ X for convenience; the invariant frame ) ) ) )
The Invariant EKF is a systematic approach to computing

[RS(ei) 0] WP — dof — {0 Rel} the gainsK of an invariant observer by linearizing its
0 o i T T 0 o invariant estimation error dynamics. We first introducetinp
and output noise term§ = uw + w, § = y + v such
\ ; that w and v preserve theG-invariance of the system as
3 N RS(e;) 0 0 Re; z = f(z,u —w) andz = F(%,a,y + v). Using these we
X=X+ ZER [ (E ) 0} + Z Ly {0 0 ] compu(teo'y = T(zy, I(Z,u),w, 1()) then Iine)arize about = 7,
=l w = v = 0 to obtain the form

R _ R _
wi' = dpgv;” =

and the invariant observer

=1

— X0+ [R p} [S(ﬁR) ﬂ — XQ+ XL (17)
0 1 0 0 51 = (A— KC)on — Bw + KDv
Wh(?reER € R? LP € RY are smooth functions of (2, u), We then read off th¢ A, B, C, D) matrices and employ the
E(&,u,y) such thatse(3) > L(1,0) = 0., . conventional EKF formulag{19) to compute stabilizing gain
We cannot directly employ? - I—X"'Y toform the ;e ¢4 the invariant observer. The interest of the Invariant

gain termL in (}ﬂ) sincel — X*AYlg_f SE(3). Instead we  EkF s the reduced dependence of the linearized system on
take L = m(X~'Y) since by [[9), X~ 'Y = I ‘:’GLGZ 0as  the estimated system trajectory of the original systentiépe
required. We add the observer gain mathixe R**® as ically only through the latter's estimated invariarfts:, «).

L=HoKoH [r(X"1Y)] In our present casd(Z,u) = Q thus the (4, B,C, D)
A matrices are guaranteed not to depend on the estimated state
With this L the dynamics of) = X !X compute to which increases the filter's robustness to poor state ewsna

o X-lxOX-1% 4 X-1R0 4 X-1RL and precludes divergence (c.f. Sectibn I).
" " 1 N L (18) Returning to [(2), [(B), we first need to introduce
=M +nQ+nHoKoH “[r(n ) and v noise terms which preserv€-invariance andG-

and stabilizing the (nonlinear) dynamids)(18)7o= I by equivariance. As discussed in Sectml—A the Igft invari
choice of gaings leads to an asymptotically stable nonlinea2Nce Case corresponds to transforming ground-fixed frame
observer[(177). The stabilization process is simplified[H) (1 VECtor coordinates, and so introducing noise terms expedess
not being dependent on the estimated skatendeed the fun- N the body-f!xed .frame will not aﬁgct the invariance of the
damental feature of the invariant observer is that it gueen system. For inertial sensors we write
7 ="(n,I(Z,u)) [16, Theorem 2] withl (%, u) = Q in the
. N . ; Sw) p S(vw) vul
present example, which simplifies gain selection over the Q= { 0 O} + [ 0 0] =Q+W
general case, but does not make it systematic. For thismeaso
we will use the Invariant EKF method to obtain stabilizingi.e. use an additive sensor noise model, which is standard in
gains. inertial navigation design [11] since ¢@¥) can be directly
. identified from logged sensor data. This is precisely the

B. Invariant EKF reason why we chose to use the left-invariant version of the

We first recall the continuous-time EKF algorithm. Givenobserver in Section Il[-A. For the output equation we have
the nonlinear systent = f(x,u,w), y = h(z,v) wherew  obtained [(I6) wherd’ represents body-frame noise terms
and v are the process and output Gaussian noise vectotsje to the ICP alignment being performed in the body-fixed
we linearize aboutz, u, w,y,v) = (&,u,0,§,0), a nominal frame.



Introducingw andv asi = f(z, i—w), & = F(&, @, y+v)
into dynamics[{R) and observér {17) we have
X =X(Q, -W)
X = X + XL, L= HoKoH ' n(X~1Y,)]
and computing) wheren = XX gives
M= XX (Qn - W)X X + X (XU + XLp)
=1y — Qun +Wn+nLn,

Linearizing the above aroung = 7, w = v = 0 we have
neI+&n = 1—¢by @), @) and so
E=T+EVn — (I +E+WUI+E) + (I +E)Ln,
=EQm — Qé+W +Ho Ko H ' [x(X1Y,,)]
and
X W) =X, —IT=9'I+V)-1
=I-9HI+V)-I=V—-¢

By (@) we define := H([Cr Cp)s Q= H([Wm_ fm])s
W:=H(v, v.)),V:=H(vr vp)) and write{ as

][5 sl 6]+ [

*([2]-12))
Vp Cp
By matching the above with = (A— K C)én— Bw+ K Dv
we read off

A=[50m —ston] 2= Y]

<[t o) o=l

The wheeled robot used for our experiments is shown
in Figure[d. The robot is equipped with an Intel Core
i5-based single-board computer, WLAN 802.11g wireless
networking, all-wheel drive via 12V brushless DC motors,
and a Kinect camera providing 3-D point cloud scans of the
environment. The odometry data & Hz and Kinect point
clouds at5 Hz are passed to the IEKF which estimates the
plane position(z,y) and heading angle of the vehicle.
The robot is also equipped with a Hokuyo UTM-30LX
LiDAR which provides centimeter-level positioning acceya
through proprietary SLAM code [26]. This LiDAR-derived
data is used solely to provide a reference trajectory when
plotting results.

B. Experimental Results

Fig. 2. First experiment field

1) Straight line trajectory:The first experiment field is the
laboratory shown in Figuriel 2. The robot begins stationary at
the bottom edge of the picture then advances with constant
velocity in a straight line along the marking on the floor
towards the far door, where it comes to a stop. The motion

Just as predicted, the linearized system matrices do ngais commanded in open-loop and the robot’s trajectory

depend on the estimated trajectoy but only on Q) =

exhibited a slight veer to the left over the full length. The

I(#,u). Using (4, B, C, D) with (I9) we compute the gain state estimates by the IEKF are plotted against the LiDAR-

K of the invariant observer by
P=AP+PAT —PV'P+W
K=pPv!
IV. EXPERIMENTAL VALIDATION
A. Hardware Platform

Fig. 1. The Wifibot Lab v4 Robot

derived reference states in Figlie 3.

x [m]
<m\ﬁ

B
gt

0 5 10 15 20 25
t[s]

Fig. 3. Estimates for linear trajectory: IEKF (solid), reface (dashed)

Figure[3 illustrates that the IEKF provides coherent esti-
mates: both the forward motion and the left veer are cogrectl
rendered in the estimates. The RMS discrepancy of the
estimates from the reference trajectory(iss, 5.3) cm for
the (z,y) positions and).9° for the heading angle.



(1]

(2]

(3]

Fig. 4. Second experiment field

(4]

2) Circular trajectory: The second experiment consists
of executing a circular trajectory in the environment shown(5]
in Figure[4. The test area was surrounded on all sides
by a bounding wall, and a number of visual landmarks
were placed around the test area to provide better scalfl
matching conditions during turning maneuvers. The robot
began stationary, executed two concentric counter-clgsekw
circles with a constant velocity, and then stopped at itsaihi  [7]
position. The overhead position estimates from the IEKF
are plotted against the LiDAR-derived reference trajgctor
in Figure[5.

— 0.5f

= 0—/\/\/
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& 500¢
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t[s]
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El

[10]

[11]

ES 1z

Fig. 5. Estimates for circular trajectory: IEKF (solid)feeence (dashed)

13
The IEKF estimates once again follow the LiDAR refer-[ )
ence trajectory; the computed RMS errors fery) and
are(5.1,3.5) cm and2.5°, respectively.

[14]

V. CONCLUSIONS [15]

We have described a scan matching SLAM design based
on an Invariant EKF. The proposed approach guarantees
robustness of the filter to poor state estimafés which 16]
may lead to degraded performance or even destabilize the
filter in the conventional EKF case. The Invariant EKF
was successfully implemented in hardware and performéH]
well in experiments, making it a promising candidate for
more complex SLAM applications such as mobile outdooli8]
cartography.
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