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Adaptive Control of Robot Manipulators With

Uncertain Kinematics and Dynamics

Hanlei Wang

Abstract

In this paper, we investigate the adaptive control problemrébot manipulators with both the
uncertain kinematics and dynamics. We propose two adaptimérol schemes to realize the objective
of task-space trajectory tracking irrespective of the utade kinematics and dynamics. The proposed
controllers have the desirable separation property, andbha@ show that the first adaptive controller
with appropriate modifications can yield improved perfonoe, without the expense of conservative

gain choice. The performance of the proposed controllesh@vn by numerical simulations.
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. INTRODUCTION

The study on the adaptive control of robot manipulators wlighamic parameter uncertainty
has a long and rich history (see, e.g., the early results]inZ], [3]), and the employment of
adaptive control provides robot manipulators with theigbdf performing tasks in the unknown
environment. The recent advances in adaptive robot coatmir in [4], [5], [6], [7], [8] aiming
at handling the kinematic parameter uncertainty. Kinematicertainty is frequently encountered
as the robots perform various work in the task space (e.gte§lan space or image space) (see,
e.g., [4], [9]), among which is the now actively studied \d@bservoing problem (see, e.d.] [9],

[10], [11]). These control schemes (e.qd!, [4], [5], [6],,[18], [10], [11]) are characterized by the

use of an approximate Jacobian matrix (due to the kinematcegrtainty), and the prominent
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part of the control scheme may be the approximate transpasebian control with/without a
kinematic parameter adaptation law.

At the present stage, one may say that the stability pregsedti the adaptive Jacobian control
system under both the uncertain kinematics and dynamic$ullyeaddressed, as can be seen
in the above mentioned results, yet it remains unclear attmuperformance of the system in
the sense that some performance issues regarding, ecingaccuracy and transient response,
are not adequately studied. In fact, the performance of tve commonly adopted transpose
Jacobian feedback (e.d.] [5]] [6]) [7],.]10], ]11]), as ethin [12], is not desirable especially when
the manipulator moves in a large range although the traespasobian feedback for robot task-
space control problem shows excellent stability prope#fe¢ to the pioneering work in [13] on
the regulation problem and tol[5]./[6] on the tracking prabjeAnother commonly adopted task-
space control approach is inverse Jacobian feedback (se€[1€]), and the stability analysis of
the inverse Jacobian feedback for regulation problem isrgim [14], which seems much more
involved than that of its counterpart (i.e., transpose Bacofeedback).

It is well known that the performance of a linear time-ingauti system is ensured by appro-
priately designating the poles of the closed-loop systemnile nonlinear robotic system, this is
almost not achievable except for the known parameter cage f{ee standard computed torque
control can result in a linear error dynamics with guaratiteerformance—seé [15], [16]). Let
us now contemplate the standard control problem for a dmi¢éiss mass that is governed by
mij = u, wherey € R denotes the position of the mass,c R the mass and € R the control
input. From the standard linear system theory, if the cdnirtakes a PD action, the design of
the gains must take into account the mass property of thersyand one advisable design is
to choose mass-dependent gains. This standard idea hadyabppeared in the robot control
problem with or without dynamic uncertainties, e.g., thenpoted torque control actually takes
inertia-matrix-dependent PD control plus certain feedfod terms (see, e.gl, [15], [16]), and
the adaptive control in_[17] chooses the feedback gain basethe estimated inertia matrix
(see [17, Sec. 3.2]). However, it is unclear how to ensureptiréormance of the robot system
under both the kinematic and dynamic uncertainties. Theralso some work addressing the
performance in the robust control framework (e.q., [18Bt the gain selection is conservative.

In this paper, we propose a separation approach to the adagintrol problem for robots

with both the uncertain kinematics and dynamics, and tw@®dacontrollers are proposed. The
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proposed first controller can also ensure, in the sense t@#iogrequivalence, the performance of

the closed-loop system with essentially the same modifinas in [[17]. The superior/desirable

properties of the proposed approach are summarized asvéollo

1)

2)

It realizes the separation of the kinematic and dynanmopdq(i.e., the separation is realized
in the case that the joint velocity tracking error is guaeadtto be square-integrable and
bounded) thanks to the employment of the kinematic paranastaptation law (or the
new definition of the joint reference velocity) and that oé ttontrol law (with the same
structure as the Slotine and Li adaptive scheme in the tas&esf2, Sec. 3]) that does
not use the approximate transpose Jacobian matrix, wreléwb loops are coupled and
mixed in most existing results (e.gl, [51.) [6].! [7]._]19]);

the proposed first controller with appropriate modifioas that follow the result in [17]
improves the performance of the closed-loop system, ekigritie scheme in_[17] to be
capable of handling both the kinematic and dynamic uncdrés, without the expense
of conservative gain selection (e.d., [18]). It is also shdwat even under constant-gain
feedback, the proposed controller tends to give bettelopeence than the approximate

transpose Jacobian feedback.

We would like to emphasize that the separation propertedtat 1) becomes more prominent

in industrial robotic applications in that the joint veltcicontrol mode is very common in

most industrial manipulators. Under the joint velocity ttoh mode, we cannot modify the

joint servoing module and what we can design is the joint cigfocommand. The separation

property of the proposed controllers makes one reducedafager main result serve well for

this application scenario [i.e., taking the joint referen@locity as the joint velocity command

of the joint servoing module (see Remark 3)], while the agtagtanspose Jacobian control does

not fit this circumstance due to the coupling nature of thgptida transpose Jacobian feedback

in the torque input.

1. KINEMATICS AND DYNAMICS

Let x € R™ be the position of the end-effector in the task space (e.gtte€ian space or

image space), and it is relevant to the joint position viaribalinear mapping [12]][15]

r= f(q) (1)
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whereq € R" denotes the joint position, anfl: R — R" is the mapping from joint space to
task space.
Differentiating [1) with respect to time gives the relatibetween the task-space velocity and
joint-space velocity[[12], [15]
&= J(q)g 2)

where J(q) € R™" is the Jacobian matrix. In the case that the kinematic paemare
unknown, we cannot obtain the task-space position/veibgitthe direct kinematics given above.
Instead, we assume that certain task-space sensors (eagnesa) are employed to give the task-
space position/velocity information. The kinematick (a5 lthe following linearity-in-parameters
property [5].

Property 1. The kinematics[(2) depends linearly on a constant paranveteor a;, which

gives rise to
J(q)§ = Yi(q, §)ay 3)

where{ € R" is a vector andvx(q, ¢) is the kinematic regressor matrix.

The equations of motion of the manipulator can be written1&3, [[15]

M(q)i+C(q,4)q +g(q) =T (4)

wherel (q) € R™*™ is the inertia matrix(' (¢, ¢) € R"*" is the Coriolis and centrifugal matrix,
g (q) € R" is the gravitational torque, ande R" is the joint control torque. For the convenience
of later reference, three well-understood properties @ata with the dynamic${4) are listed
as follows (see, e.g., [16], [15]).

Property 2: The inertia matrix} (¢) is symmetric and uniformly positive definite.

Property 3: The Coriolis and centrifugal matri&'(q, ¢) can be appropriately determined such
that M (q) — 2C(q, ¢) is skew-symmetric.

Property 4: The dynamics[(4) depends linearly on a constant parametéorve;, which leads

to

where( € R" is a differentiable vector; is the time derivative of,, and Ya(q,4q, ¢, C) is the

dynamic regressor matrix.

February 16, 2016 DRAFT



Ill. ADAPTIVE CONTROL

In this section, we investigate the adaptive controllenglesor the robot manipulator given
by (@) and[(#), and the control objective is to drive the robd-effector to asymptotically track
a desired trajectory in the task space, i.e., to ensurerthat; — 0 ast — oo, wherex, denotes

the desired task-space trajectory and it is assumedrthat, and i, are all bounded.

A. Adaptive Controller |

Following [5], [6], we define a joint reference velocity ugithe estimated Jacobian matrix as
G = J 7N (@), (6)

wherez, = i,—alAz, Ax = x—x4 denotes the task-space position tracking erras a positive
design constant, and(q) is the estimated Jacobian matrix which is obtained by repdae,
in J(q) with its estimateq,. Differentiating equation[(6) with respect to time give® tjoint

reference acceleration
G = J7a) [ — (@] ™
Let us now define a sliding vector
s=q—q (8)
and using[(R),[(3), and6), we can rewrite equatidn (8) as
s =J7N @) [& = J(@)d,) = T (a) |& = J(@)dr + Yi(g, dr) Aay
=J"(q) [A% + @Az + Yi(q, ¢r) Aay] 9)
which can further be written as [20], [21]
Ai = —alAz —Yi(q, ¢)Aay + J(q)s (10)

where Aay,, = a, — ay is the kinematic parameter estimation error.

The control law is given as
T = _KS+}/;I<Q7C]'7Q'T7(.]'7">&d (11)

where K € R"*™ is a symmetric positive definite matrix. The estimated dycaparameteii,

(i.e., the estimate of,) is updated by

ag = — LoV (g, 4, G, ir)s (12)
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where I'; is a symmetric positive definite matrix. The estimated kiagm parameterq, is

updated by the direct adaptation law
ar = TwYy (¢, 6,)[(B/a) Ad: + Ax] (13)

wherel';, is a symmetric positive definite matrix artle [0, 1] is a design constant.

Remark 1: The differences between the adaptive controller here amdle in[5], [6] are that
1) the feedback part il -(11) can be rewritten-a&’J ' (q) [Az + aAx + Yi(q, ¢.)Aax], which
can thus be intuitively interpreted as inverse Jacobiadldaek of both the task-space tracking
error and the kinematic parameter estimation error ratteer the approximate transpose Jacobian
feedback and 2) the kinematic parameter adaptation[lavi§133sed on an adaptive regressor
that depends on the joint reference velogjtyrather than;. The dynamic parameter adaptation
law (12) is actually the same as the one [in [6]. The control @) expands the inverse
Jacobian based task-space adaptive schemil in [2, Sec. 8ditonally include the inverse
Jacobian feedback of the kinematic parameter estimatir, ewvhich supplies our controller
with the ability of handling the kinematic uncertainties.

Substituting the control law_(11) into the dynamits (4) gl

M(q)$+ C(q,q)s = —Ks + Yalq, 4, 4r, 4r) Aag (14)
where Aay = a4 — ay. The closed-loop robotic system can be described by

Az = —aAzx — Yi(q, ¢ )Aar + J(q)s,
#(¢, 4r) Aag + J(q) (15)

M(q)$ + C(q, 4)s = —K's + Ya(q, ¢, 4r, Gr) Aaq,
and the adaptation lawg (12) ard](13).

We are presently ready to formulate the following theorem.

Theorem 1: Suppose that the estimated Jacobian makfix is nonsingular and that all joints
of the manipulator are revolute. Then, the control lawl (g dynamic parameter adaptation
law (12), and the kinematic parameter adaptation [aw (13uenthat the task-space tracking
errors converge to zero, i.eArz — 0 and Az — 0 ast — oc.

Proof: Following [2], [22], we take into account the Lyapunov-likenction candidaté/; =
(1/2)s"M(q)s+ (1/2)AalT; ' Aay, and differentiating/; with respect to time along the trajec-
tories of the second subsystem [n](15) and of the adaptadier{12) and using Property 3, we
obtainV; = —s”Ks < 0, which implies thats € £, N L., anday € L.
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SinceJ(q) is bounded (by the assumption that all joints of the manipulare revolute), we
have that/(q)s € L», and thus, there exists a constant> 0 such thatf; s”J7(¢)J (q)sdr <
for all ¢ > 0. Then, consider the following quasi-Lyapunov function didiate

B ¢
Va :ﬁAxTAx + S {lj\/[ — / s"J"(q)J (q)sdr
2 2c 0

1
+ iAackFl",;lAak (16)

where the second term 6f, follows the result in[[28, p. 118], and taking the derivativiel;
along the first subsystem ih {15) gives

Vo =—a(l - B)Az" Az — (1 — B)Aal YL (¢, ¢,) Az 4+ Adl T} ay

(L= DA I(g)s — T LS (0) (0)s
- %STJT(Q)J(Q)S- (17)

Using J(q)s = Az + aAx + Yi(q, ¢.)Aay, [from (@Q)], we can write[(1]7) as
Vo =—a(l — B)AzTAz — (1 — B)Aar Y (g, ¢) Az + Adl T} Yay,

F = 9)A I g)s ~ L) T()s
- % (A + aAz)" (Ad + aAx)
— Aay Yi(q,4,)[(8/a) AT + fAz]

B

" 2a
Using the inequalityAzT J(q)s < (a/2)AxTAz + [1/(2a)] sTJT(q)J(q)s from the standard
result concerning the basic inequalities and substitutiregadaptation law[ (13) into equation

(d8) yields

AaZYkT(% qT’)Yk(Q> %’)Aak- (18)

Vy < —waTAa: - % (Aw’ + aAa?)T(Ax' + an) <0 (29

which directly gives the result thal, € £, and thatAz € £, N L in the cases < 1. In

the cases = 1, we obtain from [(IB) that\i:: + « Az € L,, and further that\z € £, N L

according to the input-output properties of exponentisthble and strictly proper linear systems

[24, p. 59].
From equation[{6), if the estimated Jacobian mafr@;) is nonsingular, we have that € £

sincez, € L. Then, we obtain tha§ € L., sinces € L., and thatz € £, based on[(2).
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Therefore,Az must be uniformly continuous, and from the properties ofasgtintegrable and
uniformly continuous functions [23, p. 117], we obtalx: — 0 ast — co. From [13), we have
thata, € Lo sinceYy(q, ¢,) and Az are both bounded, which then implies the boundedness
of j(q). Thus, from [[¥), we obtain thaj, € £.. From [14), we obtain that € £, by
using Property 2. This leads us to obtain that §. + s € L., and thati € £, from the
differentiation of equation{2), i.es = J(q)j + J(q)¢. Therefore,AZ € L., and thenAs is
uniformly continuous. Due to the result thatr — 0 ast — oo, we obtain from Barbalat’'s
Lemma [16] thatAz — 0 ast — oo. u

B. Adaptive Controller 11

We now present an adaptive controller that also has the a@pauproperty but uses different
joint reference velocity and kinematic parameter adamtataw. This controller relies on the

joint reference velocity defined as

~

G = J N (q)ia — aJ" (q) A, (20)

We then have that
Ai = —ad(g) " (9) Az = Yi(g, ) Aay, + J(q)s. (21)

The control law and the dynamic parameter adaptation lavstteIT) and [I2) yet withy,
given by [20). The kinematic parameter adaptation law i®mgias

i = I, (g, 4)Ax. (22)

Theorem 2: The control law[(1ll) and dynamic parameter adaptation [&y \{dth ¢, given by
(20), and kinematic parameter adaptation law (22) enswedlr — 0 and Az — 0 ast — oo
provided that the estimated Jacobian matfiy) is nonsingular.

Proof: For the dynamic loop, we can directly obtain that £, N L., anday € L., by
following similar procedures as in the proof of Theorem leiihthere exists a positive constant
l;; such thatf, s”(r)s(r)dr < I3, ¥t > 0. Consider the following quasi-Lyapunov function
candidate

t
V) = leTAx + S [l}kw —/ ST(T)S(T)dT] + lAa;}CP;Aak (23)
2 20 ; 2

and we obtain
Vi < —(a/2)Az" J(q)J  (¢)Ax <0 (24)
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where we have used the following result from the standaritbasqualities
AzTJ(q)s < ()/2)AzT J(q)JF (q) Az + 1/(20)s"s. (25)

Then, we can show the convergence of the task-space traekiags, using similar procedures
as in the proof of Theorem 1. [ |

Remark 2: The second adaptive controller achieves separation bg asstrong feedback of the
tracking errorAx in the definition of the joint reference velocity (this forrhreference velocity
appears in the context of global task-space control withwknkinematic parameters [25]). This
can be noticed more clearly frofi{21) and the final equivaleedback gain is.J(¢).J7 (¢) at the
task-space velocity level. Due to this, the second adaptweroller is applicable to robots with
prismatic joints, in contrast with the proposed first adaptiontroller. The kinematic parameter
adaptation lawl(22) is the same as the direct version of thi]i(i.e., with the prediction error
being removed), and the separation of the kinematic andrdinkbops is mainly attributed to
the new definition of the joint reference velocify 120) ané trontrol law [(111).

Remark 3: From the separation analysis in the proofs of Theorem 1 ambrBm 2, we can
obtain two adaptive kinematic schemes. One is given by th# jeference velocity[(6) and
kinematic parameter adaptation ldw](13), and the othenisngby [20) and[(22). Both of them
are expected to serve well for industrial robotic applmasi. In fact, the joint velocity servoing
module can generally ensure that the joint velocity tendBcgently fast to the joint reference
velocity in the sense that the joint velocity tracking erkot= ¢ — ¢, is square-integrable and
bounded. Hencel(q)s € L2NL,, ands € L2NL,,. Consider the same quasi-Lyapunov function
as [16) or [[(2B), and then the tracking error convergence eaabitained by following similar
analysis as in the proof of Theorem 1 or Theorem 2.

Remark 4: The assumption that the manipulator is away from the simgrdafiguration and
the use of the parameter projection algorithms ensure Heaestimated Jacobian matrﬁS(q)

is nonsingular in the parameter adaptation process (sge |, [6], [8]).

V. PERFORMANCE OF THESYSTEM

In this section, we show how the first adaptive controlleregivin Sec. Il improves the
performance of the robotic system under both the uncertaienkatics and dynamics by a
suitable nonconservative modification. This modificatiolioivs [17], yet in the context of task-

space robot control with kinematic uncertainties. The msiten turns out to be direct thanks
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10

to the formulation in the previous section, yet, here, oupleasis is on demonstrating why
this modification implies potentially good performance. riglaver, it will be shown that even
under constant-gain feedback, inverse Jacobian feedhatdspotentially better performance
than transpose Jacobian feedback.
Following [17], we specify the feedback gaid in (1) as
K = \M(q) (26)
with )\, being a positive design constant and meanwhile modify tteptadion law [(IR) as
aq=—Ta¥] (4,4.4.)s (27)
where M(q) is the estimated inertia matrix obtained by replacimgin M(q) with a,, and
G = G- — A\.s. The selection[(26) and the modificatidn(27) yields (the s@n the case in [17])
V, = —AesTM(q)s < 0. Then, the same result as in Theorem 1 follows.
Let us now focus on interpreting the performance issues ftwm perspectives. First, the

derivative ofV; can further be written as

Vi= -2y I (q)M(q) ] (q)¥ (28)
V*
with ) = Az 4+ aAx+Yy(q, ¢.)Aag, which implies the exponential convergence/of + oAz +

Yi(q, 4-)Aax with the rate). in the case that the dynamic parameter is known [in this case,
Vi = (1/2)V*] and further the exponential convergence/of with the ratemin {\., o} in the
case that the kinematic parameter is known (i.e., the pedaoce is quantified in the sense of

certainty equivalence). On the other hand, based bn (9),ane@write the definitions of,, g,
in (@) and [7) as
Gr =J7(q) [ — Yi(a, 4) Ay (29)
G =J7(0) [ = Yila, d) Aoy — Yila, 4)ie| = I (0) (0)dy. (30)
With the above new formulation af. and,, the control law can now be written as

~

™ =M(q)J " (g) [ — (a + A)Ad — XAz
- (Yk(Q> dr) + A Yi(q, CL«)) Aay, — Yi(q, qr)élk]

+|Clad) I ) = ()T (@) ()T (@)

X [&r = Yilq, 4) Aar] + §(q).- (31)
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11

which is quite similar to the certainty-equivalence fornmtlo¢ task-space inverse dynamics (see,
e.g., [26], [12], [15]) and thus ensures the performancehan gense of certainty equivalence,
where a and ). act as the quantification of the performance (e.g., speedegpponse and
robustness). We now present the following theorem to sumzmane above result.

Theorem 3: The adaptive controllei (31)_(R7), arld (13) ensures theraptial convergence
of the task-space position tracking error with the ratea{\., a} in the sense of certainty
equivalence.

To further clarify the potential benefit of the choice of tleedback gair(26), let us consider
a scenario that a convergence rate of the task-space tgaekiarv* (in the sense of certainty
equivalence) is required by certain task. To serve thisirement, we only need to specify.
anda as)\. = a = ~* as using the control scheme here. In contrast, if still uiilegconstant gain
feedback (similar to the case in [18]), the convergenceahtebecomes\ i { K}/ Amax{ M (q)}
and thus the best choice is perhaps to speéifyand o such thata = +* and A\, {K} >
7 Amax{M (q)}. Due to the uncertainty o/ (q), conservativeness is generally inevitable.

Remark 5: The adaptive controller given by (81}, (27), and](13) yields

At = —aAx —Yi(q, ¢;)Aay, + J(q)s,

M(q)$ + C(q. 4)s (32)

= —AM(q)s +Yalq, 4, G, GF) Aaq.
The feedback gains in both the systems[of (32) are inerfi@mident (the apparent inertia of the
first subsystem in(32) can be considered,gs This gives the additional demonstration on why
the adaptive scheme given ty {31),1(27), dnd (13) impliesigask-space tracking performance.
The approximate transpose Jacobian feedback adoptéd ifi.d5]—J% (¢)KJ(q)s] with the
gain selection[(26) and appropriate modification of the dyiagparameter adaptation law would
render the feedback gain (with respectjan the closed-loop dynamics as\.J” (¢)M (q)J(q),
which, in most cases, cannot matéfi(¢). This also suggests that for the task-space tracking
problem, approximate transpose Jacobian control (€.5.[@5 may not be preferred.

Remark 6: The assertion in Remark 5 holds even for the case of congtantfeedback (i.e.,

K is chosen to be constant). It is well known that the task-sgaertia /=7 (q)M(q)J(q)
involves the inversion of the Jacobian matrix. In the caseusihg approximate transpose

Jacobian feedback as is the caselin [5], [6], the inversiotheftranspose of the approximate
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12

Jacobian matrix would cancel the transpose of the apprdgidacobian matrix and render
the feedback gain to bé&’, which implies that we have to rely on the constant g&into
compensate for the task-space inettid (¢) M (q)J(q). In the case of using inverse Jacobian
feedback without involving the transpose of the approxen#cobian matrix as in our result,
the task-space formulation renders the inverse Jacobatbéek premultiplied by =7 (q), i.e.,
using the Jacobian-dependent varying gair (¢) K.J~(¢) to compensate for the varying task-
space inertia/ =7 (q) M (q)J~*(q), which tends to be much easier. The performance superiority
of inverse Jacobian feedback control is thus obvious.

Remark 7: In the visual tracking problem for robots with uncertaistia the camera model
and/or manipulator kinematics, most results, elg.] [2Z0],[ |28], [29], [11], are fully/partly
based on the approximate transpose Jacobian feedback.sEhef iconstant-gain feedback in
the joint space (i.e., in the form-Ks) occurs [30] [which employs the indirect kinematic
parameter adaptation law, and additionally require thesipiemt excitation of the kinematic
regressor(q, ¢) so that the convergence of the tracking error is ensured],adsp appears in
[7], [10], [28], [29] as part of the overall feedback actiahd use of—K's alone in this case,
yet, cannot ensure stability), which is the same as the oogoged in our result and may also
be interpreted as inverse Jacobian feedback, yet the aditigmterpretation of doing so and the
performance issues associated with the closed-loop syatenmot adequately addressed. The
adaptive kinematic regressor used in the first adaptiveralbert is the same as the work in_[20],
[21] (where the work in[[20] handles the control of attituctentrolled space manipulators using
adaptive Jacobian technique with a coupled stability aslfor the kinematic and dynamic
loops), and furthermore if we removed the velocity trackargor Az in (13), the kinematic
parameter adaptation lai _(13) would be the same as the o28Jn[21]. It is worth remarking
that the adaptive controller given Hy (11),112), ahd (13hwi = 0 is quite similar to the one in
[20] (with its journal version in[[31], which is mainly pured in the Chinese control literature),
and due to the reason of language, it passed out of the kngevtgidthe international community.
The main novel points of our first result given in Sec. IlI-A,domparison with[[20], lies in the
proposed more general direct kinematic parameter adaptédiv, the separation analysis (by
using a quasi-Lyapunov analysis), and the clarificatiorhefgeparation property (rationality) of
using inverse Jacobian feedback as well as the adaptivenkith@ regressor matrix (which then

implies its potential applications to robots having an udifiable joint servoing controller yet
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admitting the design of the joint velocity command). In duah, the first adaptive controller is

demonstrated to be convenient for accommodating the pegioce issues.

V. SIMULATION RESULTS

Let us consider a standard 2-DOF (degree-of-freedom) plaranipulator that grasps an
unknown tool. The physical parameters of the 2-DOF mantpukare not listed for saving space.
The sampling period is chosen as 5 ms. The desired trajeofattye manipulator end-effector
is chosen as; = [1.6754 + 0.3 cos 7t, 3.9950 + 0.3 sin 7]

For the first adaptive controller given in Sec. lll-A, the tmtler parameterds, «, I'y, andl’;,
are chosen a& = 301, a = 10, g = 0.5, 'y = 20014, andI', = 30013, respectively. The initial
parameter estimates are chosemg®) = [O,O,O,O]T and a,(0) = [4.0,5.0,2.0]T, while their
actual values are; = [7.9628, —0.9600, 19.2828, 10.1495]" anda;, = [2.0000, 3.3856, O.SOOO]T.
Simulation results are shown in Fig. 1 and Fig. 2. For the sé@alaptive controller, the controller
parameters are chosen to be the same as the first exceptelussign parameter is decreased
to o = 1.5 (since in this case, the equivalent feedback gain contaaganspose of the estimated
Jacobian matrix). Simulation results are plotted in Fignd &ig. 4.

Under the same context, we also conduct the simulation wiherantroller given in[[5],[6]
is adopted. The control law in this case employs the appraténranspose Jacobian feedback
—JT(q)K J(q)s and the kinematic parameter adaptation law takes the digrm ', Y (¢, 4)[(8/a) Ai+
Az]. The controller parameters are chosen to be the same as ifirdh@daptive controller.
Simulation results in this context are shown in Fig. 5 and Big

One obvious difference between the simulation results utgsfirst controller and those under
the one in[[5], [6] is that the first controller results in eettracking accuracy [approximately
0.0015 m (Fig. 1) versu$.006 m (Fig. 5) aftert = 6 s] and more adequate utilization of the joint
torques (see Fig. 2 as compared with Fig. 6). The trackingracg under the second adaptive
controller (aftert = 6 s) is comparable to that under the onelih [5], [6].

The tracking error with the controller under the estimaitegttia-based feedback actiem\ .M (¢)s
is shown in Fig. 7, where we choosdg = « = 10 so that the closed-loop dynamics is approximate
to a critically damped linear dynamics, and the other pataraeare chosen to be the same as

those in the first adaptive controller. The main superionigy lie in the fact that responses of
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Fig. 1. End-effector position tracking errors (first adeg@tcontroller).
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control torques (N m)

time (s)

Fig. 2. Joint control torques (first adaptive controller).

the tracking errors become more uniform and the trackingrgrconverge faster as compared

with the first adaptive controller using constant-gain fesk (see Fig. 1).

VI. CONCLUSION AND DISCUSSION

In this paper, we consider the adaptive tracking problenrdbiot manipulators subjected to
both the kinematic and dynamic uncertainties. We proposeantaptive controllers that enjoy the
separation property. The performance is then shown to beeodgently ensured under the first

adaptive controller in the sense of certainty equivalentt, essentially the same modification of

February 16, 2016 DRAFT



15

0.06

0.05-

0.04r

0.03r

0.02

0.01

tracking errors (m)

-0.01

-0.02

—-0.03

time (s)

Fig. 3. End-effector position tracking errors (second dglapcontroller).
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Fig. 4. Joint control torques (second adaptive controller)

the control law and of the dynamic parameter adaptation &m §17]. Our study also suggests
that to obtain a potentially good task-space tracking perémce, adaptive inverse Jacobian
feedback seems preferable than the commonly adopted aeldpinspose Jacobian feedback
(e.g., [5], [6]).

One desirable feature of the proposed control schemestishaeparation of the kinematic
and dynamic loops makes one reduced version of our contnehse rather suitable for industrial

robotic applications. This originates from the fact thag¢ #inematic control law (represented
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Fig. 6. Joint control torques (adaptive transpose Jacdigiedback).

by the joint reference velocity) plus the kinematic paramnetdaptation law will ensure the
convergence of the task-space tracking errors so long agoihieservoing loop (commonly
embedded in most industrial robots) can ensure that thé yelocity tends sufficiently fast to
the joint reference velocity in the sense that the joint egjotracking error is square-integrable

and bounded.
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