
ar
X

iv
:1

40
3.

59
86

v3
  [

cs
.S

Y
]  

4 
F

eb
 2

01
5

1

Controllability Analysis for Multirotor Helicopter Rotor Degradation and Failure

Guang-Xun Du, Quan Quan, Binxian Yang, Kai-Yuan Cai

NOMENCLATURE

h = altitude of the helicopter, m

φ, θ, ψ = roll, pitch and yaw angles of the helicopter, rad

vh = vertical velocity of the helicopter, m/s

p, q, r = roll, pitch and yaw angular velocities of the helicopter, rad/s

T = total thrust of the helicopter, N

L,M,N = airframe roll, pitch and yaw torque of the helicopter, N·m

ma = mass of the helicopter, kg

g = acceleration of gravity, kg·m/s2

Jx, Jy, Jz = moment of inertia around the roll, pitch and yaw axes of the

helicopter frame, kg·m2

fi = lift of the i-th rotor, N

Ki = maximum lift of thei-th rotor, N

ηi = efficiency parameter of thei-th rotor

ri = distance from the center of thei-th rotor to the center of mass, m

m = number of rotors

kµ = ratio between the reactive torque and the lift of the rotors

I. INTRODUCTION

Multirotor helicopters [1], [2], [3] are attracting increasing attention in recent years because of their

important contribution and cost effective application in several tasks such as surveillance, search and
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rescue missions and so on. However, there exists a potentialrisk to civil safety if a mutirotor aircraft

crashes, especially in an urban area. Therefore, it is of great importance to consider the flight safety

of multirotor helicopters in the presence of rotor faults orfailures [4].

Fault-Tolerant Control (FTC) [5] has the potential to improve the safety and reliability of multirotor

helicopters. FTC is the ability of a controlled system to maintain or gracefully degrade control

objectives despite the occurrence of a fault [6]. There are many applications in which fault tolerance

may be achieved by using adaptive control, reliable control, or reconfigurable control strategies [7],

[8]. Some strategies involve explicit fault diagnosis, andsome do not. The reader is referred to a

recent survey paper [9] for an outline of the state of art in the field of FTC. However, only few

attempts are known that focus on the fundamental FTC property analysis, one of which is defined

as the (control) reconfigurability [6]. A faulty multirotorsystem with inadequate reconfigurability

cannot be made to effectively tolerate faults regardless ofthe feedback control strategy used [10].

The control reconfigurability can be analyzed from the intrinsic and performance-based perspectives.

The aim of this Note is to analyze the control reconfigurability for multirotor systems (4-, 6- and

8-rotor helicopters, etc.) from the controllability analysis point of view.

Classical controllability theories of linear systems are not sufficient to test the controllability of

the considered multirotor helicopters, as the rotors can only provide unidirectional lift (upward or

downward) in practice. In our previous work [11], it was shown that a hexacopter with the standard

symmetrical configuration is uncontrollable if one rotor fails, though the controllability matrix of

the hexacopter is row full rank. Thus, the reconfigurabilitybased on the controllability Gramian

[10] is no longer applicable. Brammer in [12] proposed a necessary and sufficient condition for the

controllability of linear autonomous systems with positive constraint, which can be used to analyze

the controllability of multirotor systems. However, the theorems in [12] are not easy to use in practice.

Owing to this, the controllability of a given system is reduced to those of its subsystems with real

eigenvalues based on the Jordan canonical form in [13]. However, appropriate stable algorithms to

compute Jordan real canonical form should be used to avoid ill-conditioned calculations. Moreover,
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a step-by-step controllability test procedure is not given. To address these problems, in this Note the

theory proposed in [12] is extended and a new necessary and sufficient condition of controllability

is derived for the considered multirotor systems.

Nowadays, larger multirotor aircraft are starting to emerge and some multirotor aircraft are con-

trolled by varying the collective pitch of the blade. This work considers only the multirotor helicopters

controlled by varying the RPM (Revolutions Per Minute) of each rotor but this research can be

extended to most multirotor aircraft regardless of size whether they are controlled by varying the

collective pitch of the blade or the RPM.

The linear dynamical model of the considered multirotor helicopters around hover conditions is

derived first, and then the control constraint is specified. It is pointed out that classical controllability

theories of linear systems are not sufficient to test the controllability of the derived model (Section

II). Then the controllability of the derived model is studied based on the theory in [12], and two

conditions which are necessary and sufficient for the controllability of the derived model are given.

In order to make the two conditions easy to test in practice, an Available Control Authority Index

(ACAI) is introduced to quantify the available control authority of the considered multirotor systems.

Based on the ACAI, a new necessary and sufficient condition isgiven to test the controllability of the

considered multirotor systems (Section III). Furthermore, the computation of the proposed ACAI and

a step-by-step controllability test procedure is approached for practical application (Section IV). The

proposed controllability test method is used to analyze thecontrollability of a class of hexacopters to

show its effectiveness (Section V). The major contributions of this Note are: (i) an ACAI to quantify

the available control authority of the considered multirotor systems, (ii) a new necessary and sufficient

controllability test condition based on the proposed ACAI,and (iii) a step-by-step controllability test

procedure for the considered multirotor systems.

II. PROBLEM FORMULATION

This Note considers a class of multirotor helicopters shownin Fig.1, which are often used in

practice. From Fig.1, it can be seen that there are various types of multirotor helicopters with different
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Different configurations of multirotor helicopters(the white disc denotes that the rotor rotates clockwise andthe

black disc denotes that the rotor rotates anticlockwise)

rotor numbers and different configurations. Despite the difference in type and configuration, they can

all be modeled in a general form as equation (1). In reality, the dynamical model of the multirotor

helicopters is nonlinear and there are some aerodynamic damping and stiffness. But if the multirotor

helicopter is hovering, the aerodynamic damping and stiffness is ignorable. The linear dynamical

model around hover conditions is given as [14], [15], [16]:

ẋ = Ax+B(F −G)
︸ ︷︷ ︸

u

(1)

where

x = [h φ θ ψ vh p q r]
T ∈ R

8, F = [T L M N ]T ∈ R
4, G = [mag 0 0 0]T ∈ R

4,

A =







04×4 I4

0 0






∈ R

8×8, B =







0

J−1
f






∈ R

8×4, Jf = diag(−ma, Jx, Jy, Jz)

In practice,fi ∈ [0,Ki] , i = 1, · · ·m since the rotors can only provide unidirectional lift (upward

or downward). As a result, the rotor liftf is constrained by

f ∈ F = Πm
i=1 [0,Ki] . (2)

Then according to the geometry of the multirotor system shown in Fig.2, the mapping from the rotor
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Fig. 2. Geometry definition for multirotor system

lift fi, i = 1, · · ·m to the system total thrust/torqueF is:

F = Bff (3)

wheref = [f1 · · · fm]T . The matrixBf ∈ R
4×m is the control effectiveness matrix and

Bf = [b1 b2 · · · bm] (4)

wherebi = ηib̄i, b̄i ∈ R
4, i ∈ {1, · · ·m} is the vector of contribution factors of thei-th rotor to the

total thrust/torqueF , the parametersηi ∈ [0, 1] , i = 1, · · · , 6 is used to account for rotor wear/failure.

If the i-th rotor fails, thenηi = 0. For a multirotor helicopter whose geometry is shown in Fig.2, the

control effectiveness matrixBf in parameterized form is [16]

Bf =















η1 · · · ηm

−η1r1 sin (ϕ1) · · · −ηmrm sin (ϕm)

η1r1 cos (ϕ1) · · · ηmrm cos (ϕm)

η1w1kµ · · · ηmwmkµ















(5)

wherewi is defined by

wi =







1, if rotor i rotates anticlockwise

−1, if rotor i rotates clockwise

. (6)

By (2) and (3),F is constrained by

Ω = {F |F = Bff, f ∈ F} . (7)
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Thenu is constrained by

U = {u|u = F −G,F ∈ Ω} . (8)

From (2) (7) and (8),F ,Ω,U , are all convex and closed.

Our major objective is to study the controllability of the system (1) under the constraintU .

Remark 1. The system (1) with constraint setU ⊂ R
4 is called controllable if, for each pair of

pointsx0 ∈ R
8 andx1 ∈ R

8, there exists a bounded admissible control,u (t) ∈ U , defined on some

finite interval0 ≤ t ≤ t1, which steersx0 to x1. Specifically, the solution to (1),x (t, u (·)), satisfies

the boundary conditionsx (0, u (·)) = x0 andx (t1, u (·)) = x1.

Remark 2. Classical controllability theories of linear systems often require the origin to be an

interior point ofU so thatC (A,B) being row full rank is a necessary and sufficient condition [12].

However, the origin is not always inside control constraintU of the system (1) under rotor failures.

Consequently,C (A,B) being row full rank is not sufficient to test the controllability of the system

(1).

III. C ONTROLLABILITY FOR THE MULTIROTOR SYSTEMS

In this section, the controllability of the system (1) is studied based on the positive controllability

theory proposed in [12]. Applying the positive controllability theorem in [12] to the system (1)

directly, the following theorem is obtained

Theorem 1. The following conditions are necessary and sufficient for the controllability of the

system (1):

(i) Rank C (A,B) = 8, whereC (A,B) =
[
B AB · · · A7B

]
.

(ii) There is no real eigenvectorv of AT satisfyingvTBu ≤ 0 for all u ∈ U .

It is difficult to test the condition (ii) inTheorem 1, because in practice one cannot check allu

in U . In the following, an easy-to-use criterion is proposed to test the condition (ii) inTheorem 1.

February 5, 2015 DRAFT



7

Before going further, a measure is defined as:

ρ (X, ∂Ω) ,







min {‖X − F‖ : X ∈ Ω, F ∈ ∂Ω}

−min
{
‖X − F‖ : X ∈ ΩC , F ∈ ∂Ω

}
(9)

where ∂Ω is the boundary ofΩ and ΩC is the complementary set ofΩ. If ρ (X, ∂Ω) ≤ 0, then

X ∈ ΩC ∪ ∂Ω, which means thatX is not an interior point ofΩ. Otherwise,X is an interior point

of Ω.

According to (9),ρ (G, ∂Ω) = min {‖G− F‖ , F ∈ ∂Ω} which is the radius of the biggest enclosed

sphere centered atG in the attainable control setΩ. In practice, it is the maximum control thrust/torque

that can be produced in all directions. Therefore, it is an important quantity to ensure controllability

for arbitrary rotor wear/failure. Thenρ (G, ∂Ω) can be used to quantify the available control authority

of the system (1). From (8), it can be seen that all the elements inU are given by translating the all the

elements inΩ by a constantG. As translation does not change the relative position of allthe elements

of Ω, the value ofρ (0, ∂U) is equal to the value ofρ (G, ∂Ω). In this Note, the Available Control

Authority Index (ACAI) of system (1) is defined byρ (G, ∂Ω) asΩ is the attainable control set and

more intuitive thanU in practice. The ACAI shows the ability as well as the controlcapacity of a

multirotor helicopter controlling its altitude and attitude. With this definition, the following lemma

about condition (ii) ofTheorem 1 is obtained.

Lemma 1: The following three statements are equivalent for the system (1):

(i) There is no non-zero real eigenvectorv of AT satisfying vTBu ≤ 0 for all u ∈ U or

vTB (F −G) ≤ 0 for all F ∈ Ω.

(ii) G is an interior point ofΩ.

(iii) ρ (G, ∂Ω) > 0.

Proof: SeeAppendix A. �

By Lemma 1, condition (ii) inTheorem 1 can be tested by the valueρ (G, ∂Ω). Now a new necessary

and sufficient condition can be derived to test the controllability of the system (1).

Theorem 2: System (1) is controllable, if and only if the following two conditions hold:
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(i) Rank C (A,B) = 8.

(ii) ρ (G, ∂Ω) > 0.

According toLemma 1, Theorem 2 is straightforward fromTheorem 1. Actually, Theorem 2 is a

corollary of Theorem 1.4 presented in [12]. To make this Note more readable and self-contained, we

extend the condition (1.6) ofTheorem 1.4 presented in [12], and get the condition (ii) inTheorem 2

of this Note based on the simplified structure of (A,B) pair and the convexity ofU . This extension

can enable the quantification of the controllability and also make it possible to develop a step-by-

step controllability test procedure for the multirotor systems. In the following section, a step-by-step

controllability test procedure is approached based onTheorem 2.

IV. A STEP-BY-STEP CONTROLLABILITY TEST PROCEDURE

This section will show how to obtain the value of the proposedACAI in Section III. Furthermore,

a step-by-step controllability test procedure for the controllability of the system (1) is approached for

practical applications.

A. Available Control Authority Index Computation

First, two index matricesS1 andS2 are defined, whereS1 is a matrix whose rows consist of all

possible combinations of3 elements ofM = [1 2 · · · m], and the corresponding rows ofS2 are the

remainingm− 3 elements ofM . The matrixS1 containssm rows and3 columns, and the matrixS2

containssm rows andm− 3 columns, where

sm =
m!

(m− (nΩ − 1))! (nΩ − 1)!
. (10)

For the system in equation (1),sm is the number of the groups of parallel boundary segments inF .

For example, ifm = 4, nΩ = 4, thensm = 4 and

S1 =















1 2 3

1 2 4

1 3 4

2 3 4















, S2 =















4

3

2

1














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DefineB1,j andB2,j as follows:

B1,j = [bS1(j,1) bS1(j,2) bS1(j,3)] ∈ R
4×3

B2,j = [bS2(j,1) · · · bS2(j,m−3)] ∈ R
4×(m−3) (11)

where j = 1, · · · , sm, S1 (j, k1) is the element at thej-th row and thek1-th column ofS1, and

S2 (j, k2) is the element at thej-th row and thek2-th column ofS2. Here k1 = 1, 2, 3 and k2 =

1, · · · ,m− 3.

Define a sign function sign(·) as follows: for ann dimensional vectora = [a1 · · · an] ∈ R
1×n,

sign(a) = [c1 · · · cn] (12)

whereci = 1 if ai > 0, ci = 0 if ai = 0, andci = −1 if ai < 0. Thenρ (G, ∂Ω) is obtained by the

following theorem.

Theorem 3. For the system in equation (1), if rankBf = 4 then the ACAIρ (G, ∂Ω) is given by

ρ (G, ∂Ω) = sign(min (d1, d2, · · · , dsm))min (|d1| , |d2| , · · · , |dsm |) . (13)

If rank B1,j = 3, then

dj =
1

2
sign

(
ξTj B2,j

)
Λj

(
ξTj B2,j

)T
−
∣
∣ξTj (Bffc −G)

∣
∣ , j = 1, · · · , sm (14)

wherefc = 1
2 [K1 K2 · · ·Km]T ∈ R

m andΛj ∈ R
(m−3)×(m−3) is given by

Λj =















KS2(j,1) 0 0 0

0 KS2(j,2) 0 0

0 0
. . . 0

0 0 0 KS2(j,m−3)















(15)

The vectorξj ∈ R
4 satisfies

ξTj B1,j = 0, ‖ξj‖ = 1 (16)

andB1,j andB2,j are given by (11). If rank B1,j < 3, dj = +∞.

Proof: The proof process is divided into 3 steps and the details can be found inAppendix B. �
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Remark 3. In practice,+∞ is replaced by a sufficiently large positive number (for example, set

dj = 106). If rank Bf < 4, thenΩ is not a 4 dimensional hypercube and the ACAI makes no sense

which is set to−∞. Similarly,−∞ is replaced by−106 in practice). From (13), ifρ (G, ∂Ω) > 0, then

G is an interior point ofΩ andρ (G, ∂Ω) is the minimum distance fromG to ∂Ω. If ρ (G, ∂Ω) < 0,

thenG is not an interior point ofΩ and |ρ (G, ∂Ω)| is the minimum distance fromG to ∂Ω. The

ACAI ρ (G, ∂Ω) can also be used to show a degree of controllability (see [17], [18], [19]) of the

system in equation (1), but the ACAI is fundamentally different from the degree of controllability

in [17]. The degree of controllability in [17] is defined based on the minimum Euclidean norm of

the state on the boundary of the recovery region for timet. However, the ACAI is defined based on

the minimum Euclidean norm of the control force on the boundary of the attainable control set. The

degree of controllability in [17] is time-dependent, whereas the ACAI is time-independent. A very

similar multirotor failure assessment was provided in [16]by computing the radius of the biggest

circle that fits in theL-M plane with the center in the origin (L = 0, M = 0), where theL-M plane

is obtained by cuting the four-dimensional attainable control set at the nominal hovering conditions

defined withT = G andN = 0. This computation is very simple and intuitive. But the radius of

the two-dimensionalL-M plane can only quantify the control authority of roll and pitch control. To

account for this, the ACAI proposed by this Note is defined by the radius of the biggest ball that fits

in the four-dimensional polytopesΩ with the center inG.

B. Controllability Test Procedure for Multirotor Systems

From the above, the controllability of the multirotor system (1) can be analyzed by the following

procedure:

Step 1: Check the rank ofC (A,B). If C (A,B) = 8, go to Step 2. If C (A,B) < 8, go to Step 9.

Step 2: Set the value of the rotor’s efficiency parameterηi,i = 1, · · · ,m to getBf = [b1 b2 · · · bm]

as shown in (4). If rankBf = 4, go to Step 3. If rank Bf < 4, let ρ (G, ∂Ω) = −106 and go toStep

9.

Step 3: Compute the two index matricesS1 andS2, whereS1 is a matrix whose rows consist of

February 5, 2015 DRAFT
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1o

o 2o

Fig. 3. (a) Standard rotor arrangement, (b) new rotor arrangement, (c) the 1-st rotor of the PNPNPN system fails, (d) the

1-st rotor of the PPNNPN system fails.

all possible combinations of them elements ofM taken 3 at a time and the rows ofS2 are the

remaining(m− 3) elements ofM , M = [1 2 · · · m].

Step 4: j = 1.

Step 5: Compute the two matricesB1,j andB2,j according to (11).

Step 6: If rank B1,j = 3, computedj according to (14). If rankB1,j < 3, setdj = 106.

Step 7: j = j + 1. If j ≤ sm, go to Step 5. If j > sm, go to Step 8.

Step 8: Computeρ (G, ∂Ω) according to (13).

Step 9: If C (A,B) < 8 or ρ (G, ∂Ω) ≤ 0, the system (1) is uncontrollable. Otherwise, the system

in equation (1) is controllable.

V. CONTROLLABILITY ANALYSIS FOR A CLASS OFHEXACOPTERS

In this section, the controllability test procedure developed in section IV is used to analyze the

controllability of a class of hexacopters shown in Fig.3, subject to rotor wear/failures, to show its

effectiveness.

The rotor arrangement of the considered hexacopter is the standard symmetrical configuration

shown in Fig.3(a). PNPNPN is used to denote the standard arrangement, where “P” denotes that

February 5, 2015 DRAFT
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TABLE I

HEXACOPTER PARAMETERS

Parameter Value Units

ma 1.535 kg

g 9.80 m/s2

ri, i = 1, · · · , 6 0.275 m

Ki, i = 1, · · · , 6 6.125 N

Jx 0.0411 kg·m2

Jy 0.0478 kg·m2

Jz 0.0599 kg·m2

kµ 0.1 -

TABLE II

HEXACOPTER(PNPNPN)CONTROLLABILITY WITH ONE ROTOR FAILED

Rotor failure Rank ofC(A,B) ACAI Controllability

No wear/failure 8 1.4861 controllable

η1 = 0 8 0 uncontrollable

η2 = 0 8 0 uncontrollable

η3 = 0 8 0 uncontrollable

η4 = 0 8 0 uncontrollable

η5 = 0 8 0 uncontrollable

η6 = 0 8 0 uncontrollable

a rotor rotates clockwise and “N” denotes that a rotor rotates anticlockwise. According to (4), the

control effectiveness matrixBf of that hexacopter configuration is

Bf =















η1 η2 η3 η4 η5 η6

0 −
√
3
2 η2r2 −

√
3
2 η3r3 0

√
3
2 η5r5

√
3
2 η6r6

η1r1
1
2η2r2 −1

2η3r3 −η4r4 −1
2η5r5

1
2η6r6

−η1kµ η2kµ −η3kµ η4kµ −η5kµ η6kµ















(17)

Using the procedure defined in Section IV, the controllability analysis results of the PNPNPN
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hexacopter subject to one rotor failure is shown in Table II.The PNPNPN hexacopter is uncontrollable

when one rotor fails, even though its controllability matrix is row full rank. A new rotor arrangement

(PPNNPN) of the hexacopter shown in Fig.3(b) is proposed in [16], which is still controllable when

one of some specific rotors stops. The controllability of thePPNNPN hexacopter subject to one rotor

failure is shown in Table III.

TABLE III

HEXACOPTER(PPNNPN)CONTROLLABILITY WITH ONE ROTOR FAILED

Rotor failure Rank ofC(A,B) ACAI Controllability

No wear/failure 8 1.1295 controllable

η1 = 0 8 0.7221 controllable

η2 = 0 8 0.4510 controllable

η3 = 0 8 0.4510 controllable

η4 = 0 8 0.7221 controllable

η5 = 0 8 0 uncontrollable

η6 = 0 8 0 uncontrollable

From Table II and Table III, the value of the ACAI is 1.4861 forthe PNPNPN hexacopter subject

to no rotor failures, while the value of the ACAI is reduced to1.1295 for the PPNNPN hexacopter.

It can be observed that the use of the PPNNPN configuration instead of the PNPNPN configuration

improves the fault-tolerance capabilities but also decreases the ACAI for the no failure condition.

Similar to the results in [16], changing the rotor arrangement is always a tradeoff between fault-

tolerance and control authority. That said, the PPNNPN system is not always controllable under a

failure. From Table III, it can be seen that if the 5-th rotor or the 6-th rotor fails the PPNNPN system

is uncontrollable.

The following provides some physical insight between the two configurations. For the PPNNPN

configuration, if one of the rotors (other than the 5-th and 6-th rotor) of that system fails, the remaining

rotors still comprise a basic quadrotor configuration that is symmetric about the mass center (see

Fig.3(d)). In contrast, if one rotor of the PNPNPN system fails, although the remaining rotors can

February 5, 2015 DRAFT
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1
2

5

1

2

1

5 5

2

(a) Controllable rotor efficiency region

(a) controllable rotor efficiency region

(b) Projection on plane 1 2 5, 1

(c) Projection on plane 1 5 2, 1 (d) Projection on plane 2 5 1, 1

Fig. 4. Controllable region of different rotors’ efficiencyparameter for the PNPNPN hexacopter

make up a basic quadrotor configuration, the quadrotor configuration is not symmetric about the

mass center (see Fig.3(c)). The result is that the PPNNPN system under most single rotor failures

can provide the necessary thrust and torque control, while the PNPNPN system cannot.

Therefore, it is necessary to test the controllability of the multirotor helicopters before any fault-

tolerant control strategies are employed. Moreover, the controllability test procedure approached can

also be used to test the controllability of the hexacopter with differentηi, i ∈ {1, · · · , 6}. Let η1, η2,

η5 vary in [0, 1] ⊂ R, namely rotor 1, rotor 2 and rotor 5 are worn; then the PNPNPN hexacopter

retains controllability whileη1, η2, η5 are in the grid region (where the grid spacing is 0.04) in Fig.4.

The corresponding ACAI at the boundaries of the projectionsshown in Fig. 4 is zero or near to zero

(because of error in numerical calculation).

VI. CONCLUSIONS

The controllability problem of a class of multirotor helicopters was investigated. An Available Con-

trol Authority Index (ACAI) was introduced to quantify the available control authority of multirotor
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systems. Based on the ACAI, a new necessary and sufficient condition was given based on a positive

controllability theory. Moreover, a step-by-step procedure was developed to test the controllability of

the considered multirotor helicopters. The proposed controllability test method was used to analyze

the controllability of a class of hexacopters to show its effectiveness. Analysis results showed that the

hexacopters with different rotor configurations have different fault tolerant capabilities. It is therefore

necessary to test the controllability of the multirotor helicopters before any fault-tolerant control

strategies are employed.

APPENDIX

A. Proof of Lemma 1

In order to make this Note self-contained, the following lemma is introduced:

Lemma 3 [20]. If Ω is a nonempty convex set inR4 andF0 is not an interior point ofΩ, then

there is a nonzero vectork such thatkT (F − F0) ≤ 0 for eachF ∈ cl (Ω), wherecl (Ω) is the

closure ofΩ.

Then according toLemma 3,

(i)⇒(ii): Suppose that (i) holds. It is easy to see that all the eigenvalues ofAT are zero. By solving

the linear equationAT v = 0, all the eigenvectors ofAT are expressed in the following form

v = [0 0 0 0 k1 k2 k3 k4]
T (18)

wherev 6= 0, k = [k1 k2 k3 k4]
T ∈ R

4, andk 6= 0. With it,

vTBu = −k1
T −mag

ma

+ k2
L

Jx
+ k3

M

Jy
+ k4

N

Jz
. (19)

By Lemma 3, if G is not an interior point ofΩ, thenu = 0 is not an interior point ofU . Then, there

is a nonzeroku = [ku1 ku2 ku3 ku4]
T satisfying

kTu u = ku1 (T −mag) + ku2L+ ku3M + ku4N ≤ 0

for all u ∈ U . Let

k = [−ku1ma ku2Jx ku3Jy ku4Jz]
T (20)
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thenvTBu ≤ 0 for all u ∈ U according to (19), which contradictsTheorem 1.

(ii)⇒(i): As all the eigenvectors ofAT are expressed in the form expressed by equation (18), then

vTBu = kTJ−1
f u

according to equation (1) and (18) wherek 6= 0. Then there is no nonzerov ∈ R
8 expressed by

(18) satisfyingvTBu ≤ 0 for all u ∈ U is equivalent to that there is no nonzerok ∈ R
4 satisfying

kTJ−1
f u ≤ 0 for all u ∈ U . Supposing that (ii) is valid, thenu = 0 is an interior point ofU . There

is a neighbourhoodB (0, ur) of u = 0 belonging toU , whereur > 0 is small and constant. (ii)⇒(i)

will be proved by counterexamples.

Supposing that condition (i) does not hold, then there is ak 6= 0 satisfyingkTJ−1
f u ≤ 0 for all

u ∈ U . Without loss of generality, letk = [k1 ∗ ∗ ∗]T wherek1 6= 0 and∗ indicates an arbitrary

real number. Letu1 = [ε 0 0 0]T andu2 = [−ε 0 0 0]T whereε > 0; thenu1, u2 ∈ B (0, ur) if ε

is sufficiently small. AskTJ−1
f u ≤ 0 for all u ∈ B (0, ur), thenkTJ−1

f u1 ≤ 0 and kTJ−1
f u2 ≤ 0.

According to equation (1),

−
k1ε

ma
≤ 0,

k1ε

ma
≤ 0.

This implies thatk1 = 0 which contradicts the fact thatk1 6= 0.

Then, condition (i) holds.

(ii)⇔(iii): According to the definition ofρ (G, ∂Ω), if ρ (G, ∂Ω) ≤ 0, thenG is not in the interior

of Ω, and if ρ (G, ∂Ω) > 0, thenG is an interior point ofΩ.

This completes the proof.

B. Proof of Theorem 3

Theorem 3 will be proved in the following 3 steps.

Step 1. Obtain the equations (25), which are the projection of parallel boundaries in F by the map

Bf .

The results in [17] are referred to in order to complete this step. First, (3) is rearranged as follows:
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F =

[

B1,j B2,j

]







f1,j

f2,j







(21)

where f1,j = [fS1(j,1) fS1(j,2) fS1(j,3)]
T ∈ R

3, f2,j = [fS2(j,1) · · · fS2(j,m−3)]
T ∈ R

m−3, j =

1, · · · , sm. Write (21) more simply as

F = B1,jf1,j +B2,jf2,j (22)

If the rank ofB1,j is 3, there exists a 4 dimensional vectorξj such that

ξTj B1,j = 0, ‖ξj‖ = 1.

Therefore, multiplyingξTj on both sides of (22) results in

ξTj F − ξTj B2,jf2,j = 0. (23)

According to [17],∂Ω is a set of hyperplane segments, and each hyperplane segmentin ∂Ω is the

projection of a 3 dimensional boundary hyperplane segment of F . Each 3 dimensional boundary of

the hypercubeF can be characterized by fixing the values off2,j at the boundary value, denoted by

f̄2,j, where

f̄2,j ∈ Πm−3
i=1

{
0,KS2(j,i)

}
(24)

and allowing the values off1,j to vary between their limits given byF , wheref1,j ∈ Π3
i=1

[
0,KS1(j,i)

]
.

Then for eachj, if rankB1,j = 3, a group of parallel hyperplane segmentsΓΩ,j =
{
lΩ,j,k, k = 1, · · · , 2m−3

}

in Ω is obtained, and eachlΩ,j,k is expressed by

lΩ,j,k =
{
X|ξTj X − ξTj B2,j f̄2,j = 0,X ∈ Ω, f̄2,j ∈ Πm−3

i=1

{
0,KS2(j,i)

}}
(25)

whereξj is the normal vector of the hyperplane segments.

Step 2. Compute the distances from the center Fc to all the elements of ∂Ω.

It is pointed out that, not all the hyperplane segments inΓΩ,j specified by equations (25) belong

to ∂Ω. In fact, for eachj, only two hyperplane segments specified by equations (25) belong to ∂Ω,
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denoted byΓΩ,j,1 andΓΩ,j,2, j ∈ {1, · · · , sm}, which are symmetric about the centerFc of Ω. The

center ofF is fc, thenFc is the projection offc through the mapBf and is expressed as follows

Fc = Bffc (26)

wherefc = 1
2 [K1 K2 · · · Km]T ∈ R

m. Then the distances fromFc to the hyperplane segments given

by (25) are computed by

dΩ,j,k =
∣
∣ξTj Fc − ξTj B2,j f̄2,j

∣
∣

=
∣
∣ξTj B2,j

(
f̄2,j − fc,2

)∣
∣

=
∣
∣ξTj B2,j z̄j

∣
∣ (27)

wherek = 1, · · · , 2m−3, fc,2 = 1
2 [KS2(j,1) KS2(j,2) · · · KS2(j,m−3)]

T ∈ R
m−3, f̄2,j is specified by

(24), andz̄j = f̄2,j − fc,2.

Remark 4. The distances fromFc to the hyperplane segments given by (25) are defined bydΩ,j,k =

min {‖X − Fc‖ ,X ∈ lΩ,j,k}, k = 1, · · · , 2m−3.

The distances from the centerFc to ΓΩ,j,1 andΓΩ,j,2 are equal, which is given by

dj,max = max
{
dΩ,j,k, k = 1, · · · , 2m−3

}
(28)

Sincez̄j ∈ Z = 1
2Π

m−3
i=1

{
−KS2(j,i),KS2(j,i)

}
, k = 1, · · · , 2m−3,

dj,max =
1

2
sign

(
ξTj B2,j

)
Λj

(
ξTj B2,j

)T
(29)

according to (12) (27) and (28), whereΛj is given by (15).

Step 3. Compute ρ (G, ∂Ω).

As G andFc are known, the vectorFGc = Fc − G is projected along the directionξj and the

projection is given by

dGc = ξTj FGc. (30)

Then if G ∈ Ω, the minimum of the distances fromG to bothΓΩ,j,1 andΓΩ,j,2 is

dj = dj,max − |dGc| (31)
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But if G ∈ ΩC , dj specified by (31) may be negative. So the minimum of the distances fromG to

bothΓΩ,j,1 andΓΩ,j,2 is |dj |. According to (26) (29) (30) and (31),

dj =
1

2
sign

(
ξTj B2,j

)
Λj

(
ξTj B2,j

)T
−
∣
∣ξTj (Bffc −G)

∣
∣ , j = 1, · · · , sm.

But if rankB1,j < 3, the 3 dimensional hyperplane segments are planes, lines, or points in∂Ω or Ω

and |dj | will never be the minimum in|d1|, |d2|, · · · , |dsm |. The distancedj is set to+∞ if rank

B1,j < 3. The purpose of this is to excludedj from |d1|, |d2|, · · · , |dsm |. In practice,+∞ is replaced

by a sufficiently large positive number (for example,dj = 106). If min (d1, d2, · · · , dsm) ≥ 0, then

G ∈ Ω andρ (G, ∂Ω) = min (d1, d2, · · · , dsm) . But if min (d1, d2, · · · , dsm) < 0, which implies that

at least one ofdj < 0, j ∈ {1, · · · , sm}, thenG ∈ ΩC andρ (G, ∂Ω) = −min (|d1| , |d2| , · · · , |dsm |)

according to (9).

Thenρ (G, ∂Ω) is computed by

ρ (G, ∂Ω) = sign(min (d1, d2, · · · , dsm))min (|d1| , |d2| , · · · , |dsm |) . (32)

This is consistent with the definition in (9).
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