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Controllability Analysis for Multirotor Helicopter Rotor Degradation and Failure

Guang-Xun Du, Quan Quan, Binxian Yang, Kai-Yuan Cai

NOMENCLATURE
h = altitude of the helicopter, m
0,0, = roll, pitch and yaw angles of the helicopter, rad
v, = vertical velocity of the helicopter, m/s
D,q,r = roll, pitch and yaw angular velocities of the helicoptexiis
T = total thrust of the helicopter, N
L,M,N = airframe roll, pitch and yaw torque of the helicopterN
Mg = mass of the helicopter, kg
g = acceleration of gravity, kg/s’
Jz, Jy,J. = moment of inertia around the roll, pitch and yaw axes of the

helicopter frame, kgn?

fi = |ift of the ¢-th rotor, N

K; = maximum lift of the:-th rotor, N

7 = efficiency parameter of theth rotor

T = distance from the center of theth rotor to the center of mass, m
m = number of rotors

k,, = ratio between the reactive torque and the lift of the rotors

I. INTRODUCTION
Multirotor helicopters([1],[[2],[[3] are attracting increiag attention in recent years because of their

important contribution and cost effective application @veral tasks such as surveillance, search and
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rescue missions and so on. However, there exists a poteskab civil safety if a mutirotor aircraft
crashes, especially in an urban area. Therefore, it is @tgneportance to consider the flight safety
of multirotor helicopters in the presence of rotor faultsfaitures [4].

Fault-Tolerant Control (FTC) [5] has the potential to inypgdhe safety and reliability of multirotor
helicopters. FTC is the ability of a controlled system to mt@in or gracefully degrade control
objectives despite the occurrence of a fault [6]. There aaayrapplications in which fault tolerance
may be achieved by using adaptive control, reliable contmoreconfigurable control strategies [7],
[B]. Some strategies involve explicit fault diagnosis, awne do not. The reader is referred to a
recent survey paper|[9] for an outline of the state of art ie field of FTC. However, only few
attempts are known that focus on the fundamental FTC prp@eralysis, one of which is defined
as the (control) reconfigurability [6]. A faulty multirotaystem with inadequate reconfigurability
cannot be made to effectively tolerate faults regardlestheffeedback control strategy used|[10].
The control reconfigurability can be analyzed from the i#ic and performance-based perspectives.
The aim of this Note is to analyze the control reconfiguribilor multirotor systems (4-, 6- and
8-rotor helicopters, etc.) from the controllability ansily point of view

Classical controllability theories of linear systems amt sufficient to test the controllability of
the considered multirotor helicopters, as the rotors cdg provide unidirectional lift (upward or
downward) in practice. In our previous wotk [11], it was shothat a hexacopter with the standard
symmetrical configuration is uncontrollable if one rotoildathough the controllability matrix of
the hexacopter is row full rank. Thus, the reconfigurabiligsed on the controllability Gramian
[10] is no longer applicable. Brammer in [|12] proposed a ssagy and sufficient condition for the
controllability of linear autonomous systems with pogtieonstraint, which can be used to analyze
the controllability of multirotor systems. However, thettems in[[12] are not easy to use in practice.
Owing to this, the controllability of a given system is reddcto those of its subsystems with real
eigenvalues based on the Jordan canonical form_ih [13]. Mesveppropriate stable algorithms to

compute Jordan real canonical form should be used to aveddnlditioned calculations. Moreover,
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a step-by-step controllability test procedure is not givem address these problems, in this Note the
theory proposed in_[12] is extended and a new necessary dficient condition of controllability
is derived for the considered multirotor systems.

Nowadays, larger multirotor aircraft are starting to eneeagnd some multirotor aircraft are con-
trolled by varying the collective pitch of the blade. Thisnk@onsiders only the multirotor helicopters
controlled by varying the RPM (Revolutions Per Minute) ofcleaotor but this research can be
extended to most multirotor aircraft regardless of size tiiethey are controlled by varying the
collective pitch of the blade or the RPM.

The linear dynamical model of the considered multirotoridugiters around hover conditions is
derived first, and then the control constraint is specifiets pointed out that classical controllability
theories of linear systems are not sufficient to test therothability of the derived model (Section
II). Then the controllability of the derived model is studibased on the theory in [12], and two
conditions which are necessary and sufficient for the cdabitity of the derived model are given.
In order to make the two conditions easy to test in practiceAailable Control Authority Index
(ACAI) is introduced to quantify the available control aathy of the considered multirotor systems.
Based on the ACAI, a new necessary and sufficient conditigivin to test the controllability of the
considered multirotor systems (Section Ill). Furthermdine computation of the proposed ACAI and
a step-by-step controllability test procedure is appreddior practical application (Section IV). The
proposed controllability test method is used to analyzectirdrollability of a class of hexacopters to
show its effectiveness (Section V). The major contribugiof this Note are: (i) an ACAI to quantify
the available control authority of the considered multratystems, (i) a new necessary and sufficient
controllability test condition based on the proposed AC&d (iii) a step-by-step controllability test

procedure for the considered multirotor systems.

Il. PROBLEM FORMULATION

This Note considers a class of multirotor helicopters shamrrig[d, which are often used in

practice. From Figl1, it can be seen that there are variquestgf multirotor helicopters with different
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Fig. 1. Different configurations of multirotor helicoptefthe white disc denotes that the rotor rotates clockwisethed

black disc denotes that the rotor rotates anticlockwise)

rotor numbers and different configurations. Despite thiedihce in type and configuration, they can
all be modeled in a general form as equatioh (1). In realitg, dynamical model of the multirotor
helicopters is nonlinear and there are some aerodynamipidgrand stiffness. But if the multirotor
helicopter is hovering, the aerodynamic damping and stiffnis ignorable. The linear dynamical

model around hover conditions is given asl|[14],/[15].] [16]:

&= Az + B(F - G) (1)
——

u

where
c=[h¢0uv,pqr]l eRF=[TLMN|]" €R*G=[mag000]" € R?,

Oa L 8x8 0 8x4 .
A= € R°*° B = € R®%, Jp = diag(—myq, Ju, Jy, J2)

-1
0 0 Jf

In practice, f; € [0, K;],i = 1,---m since the rotors can only provide unidirectional lift (upda

or downward). As a result, the rotor lift is constrained by
feF=1I"10,K. 2

Then according to the geometry of the multirotor system shiowFig[2, the mapping from the rotor
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Rotor 1

Fig. 2. Geometry definition for multirotor system

lift f;,¢=1,---m to the system total thrust/torque is:
F=DByf 3)
wheref =[f; --- fm]T. The matrixBy € R**™ s the control effectiveness matrix and
Bf=[b1 by -+ by (4)

whereb; = n;b;, b; € R*,i € {1,---m} is the vector of contribution factors of theth rotor to the
total thrust/torquér’, the parameters; € [0,1],i = 1,--- ,6 is used to account for rotor wear/failure.
If the i-th rotor fails, theny; = 0. For a multirotor helicopter whose geometry is shown in[Eighe

control effectiveness matrig; in parameterized form is [16]

—mrisin(p1) o0 —Nmrmsin (om)
By = (5)
f
mricos(@1) o Mmrm cos (9m)
771?1}1/@ e nmwmku

wherew; is defined by
1, if rotor ¢ rotates anticlockwise

—1, if rotor 7 rotates clockwise

By (@) and [(3),F is constrained by

Q={F|F=Bsf,feF}. (7
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Thenw is constrained by

U={ulu=F -G, F € Q}. (8)

From (2) [7) and[(B),F, 2, U, are all convex and closed.

Our major objective is to study the controllability of thessgm [1) under the constraiit.

Remark 1. The system[{1) with constraint s&t c R* is called controllable if, for each pair of
pointszo € R® andz; € R, there exists a bounded admissible contug(t) € U/, defined on some
finite interval0 < ¢ < ¢;, which steerse to z;. Specifically, the solution td{1); (¢, (+)), satisfies
the boundary conditions (0,u (+)) = zp andx (t1,u (-)) = z1.

Remark 2. Classical controllability theories of linear systemseaftrequire the origin to be an
interior point of!/ so thatC (A, B) being row full rank is a necessary and sufficient condit/o2].[1
However, the origin is not always inside control constrainbf the system (1) under rotor failures.

ConsequentlyC (A, B) being row full rank is not sufficient to test the controllatyilof the system

@.

IIl. CONTROLLABILITY FOR THE MULTIROTOR SYSTEMS

In this section, the controllability of the systefd (1) isdid based on the positive controllability
theory proposed in[[12]. Applying the positive controllégi theorem in [12] to the systeni](1)
directly, the following theorem is obtained

Theorem 1. The following conditions are necessary and sufficient fag tontrollability of the
system|[(1L):

(i) RankC(A,B) =38, whereC(A,B) = [B AB --- ATB].

(i) There is no real eigenvectar of AT satisfyingv” Bu < 0 for all u € U.
It is difficult to test the condition (ii) inTheorem 1, because in practice one cannot checkuall

in U. In the following, an easy-to-use criterion is proposeddst the condition (ii) inTheorem 1.
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Before going further, a measure is defined as:
min {||X — F||: X € Q,F € 9Q}
p(X,00) 2 )
—min {||X — F|| : X € QY F € 00}
where 9Q is the boundary of) and Q¢ is the complementary set @t. If p(X,09Q) < 0, then
X € Q¢ U a9, which means thaK is not an interior point of). Otherwise,X is an interior point
of Q.

According to[(9),0 (G,09Q) = min {||G — F||, F € 992} which is the radius of the biggest enclosed
sphere centered &t in the attainable control sé€k. In practice, it is the maximum control thrust/torque
that can be produced in all directions. Therefore, it is apdrtant quantity to ensure controllability
for arbitrary rotor wear/failure. Thep(G, 092) can be used to quantify the available control authority
of the system((1). Froni{8), it can be seen that all the elesriadt are given by translating the all the
elements irf) by a constan:. As translation does not change the relative position ahallelements
of , the value ofp (0,0U) is equal to the value op (G,0%2). In this Note, the Available Control
Authority Index (ACAI) of system[(l1) is defined by (G, 992) as( is the attainable control set and
more intuitive thari/ in practice. The ACAI shows the ability as well as the contapacity of a
multirotor helicopter controlling its altitude and attite. With this definition, the following lemma
about condition (ii) ofTheorem 1 is obtained.

Lemma 1: The following three statements are equivalent for the syg®):

() There is no non-zero real eigenvectorof A” satisfyingv” Bu < 0 for all w € U or

vIB(F—G)<0forall FeqQ.
(i) G is an interior point of(.
(i) p(G,00) > 0.

Proof: SeeAppendix A. O

By Lemma 1, condition (ii) in Theorem 1 can be tested by the valpdG, 0€2). Now a new necessary
and sufficient condition can be derived to test the contodits of the system[(]l).

Theorem 2: System|(1) is controllable, if and only if the following twmmwditions hold:
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() RankC(A,B)=38.

(i) p(G,00) > 0.

According toLemma 1, Theorem 2 is straightforward fromTheorem 1. Actually, Theorem 2 is a
corollary of Theorem 1.4 presented in [12]. To make this Note more readable and selamed, we
extend the condition (1.6) dfheorem 1.4 presented in[12], and get the condition (ii) Tieorem 2
of this Note based on the simplified structure df B) pair and the convexity af/. This extension
can enable the quantification of the controllability andoatsake it possible to develop a step-by-
step controllability test procedure for the multirotor ®res. In the following section, a step-by-step

controllability test procedure is approached basedlogorem 2.

IV. A STEP-BY-STEP CONTROLLABILITY TESTPROCEDURE

This section will show how to obtain the value of the propos€&hl in Section Ill. Furthermore,
a step-by-step controllability test procedure for the oltability of the system[(l1) is approached for

practical applications.

A. Available Control Authority Index Computation

First, two index matrices; and S, are defined, wheré&; is a matrix whose rows consist of all
possible combinations dof elements ofd/ = [1 2 --- m], and the corresponding rows 6% are the
remainingm — 3 elements of\/. The matrix.S; containss,, rows and3 columns, and the matri%s

containss,, rows andm — 3 columns, where

m)!
"m = — (g — 1) (ng — DI (10)

For the system in equatioql(13,, is the number of the groups of parallel boundary segmeng.in

For example, ifm = 4, nq = 4, thens,, = 4 and

1 2 3 4

1 2 4 3
51: 752:

1 3 4 2

2 3 14 1
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Define By ; and B, ; as follows:

By = [bs, (1) bsi(j2) bsi3) € R

Bz j = [bg,(j,1) *++ bs,(jm—3)] € R**(m=3) (11)

wherej = 1,--- ,sm, S1(J,k1) is the element at thg-th row and thek;-th column of S;, and
Sy (j, ko) is the element at thg-th row and thek,-th column of S;. Herek; = 1,2,3 and ky =
1,---,m—3.

Define a sign function sign) as follows: for ann dimensional vectot = [a; - -- a,] € R1*™,
sign(a) =[c1 - ¢ (12)

wherec; = 1if a; > 0, ¢; =0 if a; =0, and¢; = —1 if a; < 0. Thenp (G, 09) is obtained by the
following theorem.

Theorem 3. For the system in equatiohl (1), if radk; = 4 then the ACAlp (G, 09) is given by

p(G,00Q) = sign(min (dy,da, -+ ,ds, ) min (|dq],|dz|,- - ,|ds,|) - (13)
If rank By ; = 3, then
dj = %Sign(@TBw) A (€7 Bay) = |E (Byfe—G)]j =1, 5m (14)
where f. = 3[K Ky -+ K,]T € R™ andA; € R0m=3)*(m=3) s given by
- Ks, (1) 0 0 0 _
A 0 Kgga O 0 s
0 0 0
I 0 0 0 Ks,(jm-3) |
The vector¢; € R* satisfies
& By =0l =1 (16)

and By ; and By ; are given by[(Il)If rank By ; < 3, d; = +oo.

Proof: The proof process is divided into 3 steps and the details eafound inAppendix B. O
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Remark 3. In practice,+oo is replaced by a sufficiently large positive number (for epamset
d; = 109). If rank By < 4, thenQ is not a 4 dimensional hypercube and the ACAlI makes no sense
which is set to-oo. Similarly, —occ is replaced by-10° in practice). From[(13), ib (G, 9Q) > 0, then
G is an interior point of2 andp (G, 9%2) is the minimum distance frort/ to 992. If p (G,09) < 0,
then G is not an interior point of2 and |p (G, 99)| is the minimum distance frond to 9Q2. The
ACAI p(G,09) can also be used to show a degree of controllability (seg [18], [19]) of the
system in equatior{1), but the ACAI is fundamentally diier from the degree of controllability
in [17]. The degree of controllability in [17] is defined bdsen the minimum Euclidean norm of
the state on the boundary of the recovery region for timdowever, the ACAI is defined based on
the minimum Euclidean norm of the control force on the boundd the attainable control set. The
degree of controllability in[[17] is time-dependent, whaesehe ACAI is time-independent. A very
similar multirotor failure assessment was provided[inl [b§] computing the radius of the biggest
circle that fits in theL-M plane with the center in the origir.(= 0, M = 0), where theL-M plane
is obtained by cuting the four-dimensional attainable rmrget at the nominal hovering conditions
defined withT = G and N = 0. This computation is very simple and intuitive. But the tadof
the two-dimensionalL-M plane can only quantify the control authority of roll andcpitcontrol. To
account for this, the ACAI proposed by this Note is definedHhwy tadius of the biggest ball that fits

in the four-dimensional polytope3 with the center inG.

B. Controllability Test Procedure for Multirotor Systems

From the above, the controllability of the multirotor syst¢ll) can be analyzed by the following
procedure:

Step 1: Check the rank of (A, B). If C(A,B) =8, gotoSep 2. If C(A, B) < 8, go toSep 9.

Step 2: Set the value of the rotor’s efficiency parameijgi = 1,--- ,mto getBs = [by by - by
as shown in[{4). If rankB; = 4, go to Sep 3. If rank By < 4, let p (G, 90) = —10° and go totep
9.

Sep 3: Compute the two index matrices, and Ss, where S; is a matrix whose rows consist of
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Fig. 3. (a) Standard rotor arrangement, (b) new rotor agamet, (c) the 1-st rotor of the PNPNPN system fails, (d) the

1-st rotor of the PPNNPN system fails.

all possible combinations of the: elements ofM taken 3 at a time and the rows &b are the
remaining(m — 3) elements ofM, M =[12 --- m].

Sep 4. j=1.

Step 5: Compute the two matriceB; ; and B, ; according to[(If1).

Sep 6: If rank B; ; = 3, computed; according to[(I4). If rankB; ; < 3, setd; = 10°.

Sep7:j=5+1.1f j<s,,gotoep 5. If j > s,,,, gO toSep 8.

Sep 8: Computep (G, 992) according to[(IB).

Sep 9: If C(A,B) <8 or p(G,00) <0, the system[{1) is uncontrollable. Otherwise, the system

in equation|[(1L) is controllable.

V. CONTROLLABILITY ANALYSIS FOR A CLASS OFHEXACOPTERS

In this section, the controllability test procedure depeld in section IV is used to analyze the
controllability of a class of hexacopters shown in [Hig.3bjeat to rotor wear/failures, to show its
effectiveness.

The rotor arrangement of the considered hexacopter is @edatd symmetrical configuration

shown in Fid.B(a). PNPNPN is used to denote the standarshgemaent, where “P” denotes that
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TABLE |

HEXACOPTER PARAMETERS

Parameter Value Units
Ma 1.535 kg
g 9.80 m/$é

rii=1,---,6 0275 m

Kii=1,---,6 6.125 N

Ju 0.0411  kgm?

Jy 0.0478  kgm?

J 0.0599 kgm?

k, 0.1 -
TABLE Il

HEXACOPTER(PNPNPN)CONTROLLABILITY WITH ONE ROTOR FAILED

Rotor failure Rank ofC(A,B) ACAI Controllability

No wear/failure 8 1.4861 controllable
m =20 8 0 uncontrollable
n2 =0 8 0 uncontrollable
ns =0 8 0 uncontrollable
M =0 8 0 uncontrollable
n5 =0 8 0 uncontrollable
16 =0 8 0 uncontrollable

a rotor rotates clockwise and “N” denotes that a rotor ratateticlockwise. According td{4), the

control effectiveness matrig, of that hexacopter configuration is

m 2 13 M4 5 M6
0 —§7727“2 —§7737“3 0 ?%% ?%‘%‘
By = (17)
mri %7727“2 —%7737“3 —T4T4 —%7757“5 %7767'6
—mky  mky —nzky,  mak,  —msk, meky

Using the procedure defined in Section 1V, the controllgbifinalysis results of the PNPNPN
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hexacopter subject to one rotor failure is shown in Tabl@&tie PNPNPN hexacopter is uncontrollable
when one rotor fails, even though its controllability matis row full rank. A new rotor arrangement
(PPNNPN) of the hexacopter shown in Eig.3(b) is proposed @), [which is still controllable when
one of some specific rotors stops. The controllability of BNNPN hexacopter subject to one rotor

failure is shown in TabléTlI.
TABLE Il

HEXACOPTER(PPNNPN)CONTROLLABILITY WITH ONE ROTOR FAILED

Rotor failure Rank ofC(A,B) ACAI  Controllability

No wear/failure 8 1.1295 controllable
m =0 8 0.7221  controllable
2 =0 8 0.4510 controllable
13 =0 8 0.4510 controllable
M =10 8 0.7221 controllable
75 =0 8 0 uncontrollable
ne =0 8 0 uncontrollable

From Tablell and TableTll, the value of the ACAI is 1.4861 the PNPNPN hexacopter subject
to no rotor failures, while the value of the ACAI is reducedltd 295 for the PPNNPN hexacopter.
It can be observed that the use of the PPNNPN configuratidedadsof the PNPNPN configuration
improves the fault-tolerance capabilities but also deswsahe ACAI for the no failure condition.
Similar to the results in[[16], changing the rotor arrangetrie always a tradeoff between fault-
tolerance and control authority. That said, the PPNNPNesyss not always controllable under a
failure. From TabI€&Tll, it can be seen that if the 5-th rotortlee 6-th rotor fails the PPNNPN system
is uncontrollable.

The following provides some physical insight between the tenfigurations. For the PPNNPN
configuration, if one of the rotors (other than the 5-th artti 6stor) of that system fails, the remaining
rotors still comprise a basic quadrotor configuration tlsasymmetric about the mass center (see

Fig[3(d)). In contrast, if one rotor of the PNPNPN systenisfaalthough the remaining rotors can
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(a) Controllable rotor efficiency region (b) Projection on plane 7,77, 75 =1

s
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o 01 02 03 04 05 06 07 08 083 1 0 01 02 03 04 05 06 07 08 09 1
Ul n

(c) Projection on plane 7,775,77, =1 (d) Projection on plane 77,775, 77, =1

Fig. 4. Controllable region of different rotors’ efficienparameter for the PNPNPN hexacopter

make up a basic quadrotor configuration, the quadrotor aarafigpn is not symmetric about the
mass center (see Hif.3(c)). The result is that the PPNNP¥mysnder most single rotor failures
can provide the necessary thrust and torque control, wh@dePNPNPN system cannot.

Therefore, it is necessary to test the controllability a# thultirotor helicopters before any fault-
tolerant control strategies are employed. Moreover, therobiability test procedure approached can
also be used to test the controllability of the hexacoptéh differentr;, i € {1,--- ,6}. Letny, 72,
ns vary in [0,1] C R, namely rotor 1, rotor 2 and rotor 5 are worn; then the PNPNRKabopter
retains controllability while;, 12, n5 are in the grid region (where the grid spacing is 0.04) inkig.
The corresponding ACAI at the boundaries of the project&mswn in Fig. 4 is zero or near to zero

(because of error in numerical calculation).

VI. CONCLUSIONS

The controllability problem of a class of multirotor helmers was investigated. An Available Con-

trol Authority Index (ACAI) was introduced to quantify thevalable control authority of multirotor
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systems. Based on the ACAI, a new necessary and sufficieditmnwas given based on a positive
controllability theory. Moreover, a step-by-step procexwas developed to test the controllability of
the considered multirotor helicopters. The proposed codlatrility test method was used to analyze
the controllability of a class of hexacopters to show iteetifzeness. Analysis results showed that the
hexacopters with different rotor configurations have défe fault tolerant capabilities. It is therefore
necessary to test the controllability of the multirotor ibabpters before any fault-tolerant control

strategies are employed.

APPENDIX
A. Proof of Lemma 1

In order to make this Note self-contained, the following teais introduced:

Lemma 3 [20]. If © is a nonempty convex set iR* and F, is not an interior point of?, then
there is a nonzero vectdr such thatk” (F — Fy) < 0 for eachF € cl (), wherecl (Q) is the
closure of2.

Then according td.emma 3,

()= (ii): Suppose that (i) holds. It is easy to see that all theriglues ofA” are zero. By solving

the linear equatiom”v = 0, all the eigenvectors ofi” are expressed in the following form
v=1[0000 ki ko k3 kq]” (18)

wherev # 0,k = [ky ko k3 k47 € R*, andk # 0. With it,

T — m, L M N
=LA Y TR T (19)

T
Bu=—k
v T T, g, T

By Lemma 3, if G is not an interior point of2, thenu = 0 is not an interior point ot/. Then, there

is a nonzerdc, = [ky1 ku2 ku3 kua]? satisfying
ETu = Eyy (T — mag) + kyo L + kyzsM 4 kyaN <0

for all w € U. Let

k= [_kulma k:u2<]m kuBJy ku4<]z]T (20)
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thenv?” Bu < 0 for all u € U according to[(19), which contradic®eorem 1.

(i) =(i): As all the eigenvectors ofi” are expressed in the form expressed by equafian (18), then
v Bu = kTJflu

according to equatiori1) anfd {18) whete# 0. Then there is no nonzero € R® expressed by
(18) satisfyingv” Bu < 0 for all u € U is equivalent to that there is no nonzetrce R* satisfying
kTJflu < 0 for all uw € U. Supposing that (ii) is valid, then = 0 is an interior point of{. There
is a neighbourhood (0, u,.) of w = 0 belonging tol/, whereu, > 0 is small and constant. (#-(i)
will be proved by counterexamples.

Supposing that condition (i) does not hold, then there is-a 0 satisfying ijf‘lu < 0 for all
u € U. Without loss of generality, lek = [k * *]T wherek, # 0 and x indicates an arbitrary
real number. Lety; = [ 0 0 0] anduy = [—£ 0 0 07 wheree > 0; thenuy,us € B(0,u,) if ¢
is sufficiently small. Ask:TJ;lu <0 for all u € B(0,u,), then kTJJc*lul < 0 and kZTJ;1UQ < 0.

According to equation (1),

This implies thatk; = 0 which contradicts the fact that # 0.

Then, condition (i) holds.

(i) < (iii): According to the definition ofp (G, 09), if p (G,092) < 0, thenG is not in the interior
of , and if p (G,09Q) > 0, thenG is an interior point of(2.

This completes the proof.

B. Proof of Theorem 3

Theorem 3 will be proved in the following 3 steps.
Step 1. Obtain the equations (25), which are the projection of parallel boundariesin F by the map
By.

The results in[[17] are referred to in order to complete tkép sFirst, [(B) is rearranged as follows:
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fl,j
F= BL]' Bg’j (21)
f2,j
where f1; = [fs,j1) fsiG2) fs.Ga] € B3 fo; = [fog1) - faagm-3)’ € R™3, j =

1, , 8m,. Write (21) more simply as
F =By jfi1j+ Ba2jfa; (22)
If the rank of By ; is 3, there exists a 4 dimensional vectgrsuch that
& B = 0,11 = 1.
Therefore, muItipIyingﬁf on both sides of[{22) results in

§F — ¢ Byjfa;=0. (23)

According to [17],092 is a set of hyperplane segments, and each hyperplane segmnigntis the
projection of a 3 dimensional boundary hyperplane segmedi.dEach 3 dimensional boundary of
the hypercubeF can be characterized by fixing the valuesfef; at the boundary value, denoted by
f2.j, where

fo; eI ? {0, KSZ(j,i)} (24)

and allowing the values of; ; to vary between their limits given b¥, wheref; ; € IT?_; [0, Kg, (j,i)] .
Then for eacly, if rank B; ; = 3, a group of parallel hyperplane segmel¢s; = {i jr k=1,--- ,2m3}

in € is obtained, and eadl, ; . is expressed by
lojr= {X\ijX - §J-T32,jf2,j =0,X €Q, fo; €I {0, Ks,ii)}} (25)

where¢; is the normal vector of the hyperplane segments.
Sep 2. Compute the distances from the center F, to all the elements of 0X).
It is pointed out that, not all the hyperplane segment§dr; specified by equations (5) belong

to 09). In fact, for eachy, only two hyperplane segments specified by equations (26nfeo 012,
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denoted byl'n ;1 andl'q 2, 7 € {1, ,sn}, Which are symmetric about the cent&r of Q2. The

center of 7 is f., thenF, is the projection of f. through the map3,; and is expressed as follows
Fc = Bffc (26)

wheref. = %[Kl Ky -+ K,]T € R™. Then the distances frotf. to the hyperplane segments given

by (28) are computed by
dojk = & Fe = €] Ba,jf2,j]
= |¢] Baj (f2.; — fe2)|
= |& B2 (27)
wherek = 1,---,2m73, f.9 = 3[Kg, (1) Ks,2) -+ Ks,(jm-3))" € R™73, fo; is specified by
@24), andz; = fo; — feo.
Remark 4. The distances fronf. to the hyperplane segments given byl (25) are definedhby, =

min{||X — F.||, X €lgjr}, k=1,---,2m73.

The distances from the centéf to I' ;1 andI'g ;» are equal, which is given by
dj7max = mmax {dQ,j,lm k= 17 o 72m—3} (28)
Sincez; € Z = I { =K, (j.), Ks, g } ok =1, 2772,
1 . T T T
dj7max = §S|gn(§j BQJ) AJ (Ej BQJ) (29)

according to[(IR)[(27) and_(P8), wherg is given by [(15).

Step 3. Compute p (G, 090).

As G and F, are known, the vectoFg. = F. — G is projected along the directiof; and the
projection is given by

dG’c = g]TFG’c- (30)
Then if G € , the minimum of the distances fro to bothT'g ;; andI'q ;o is

dj = djmax — |dGe| (31)
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But if G € Q°, d; specified by[(311) may be negative. So the minimum of the digtariromG to

bothT' ;1 andlq ;2 is |d;|. According to [26)[(2P)[(30) and (1),

aj:17”' s Sm-

1
dj = 5sign(&j Baj) A (& B2g)" ~ [€] (Byfe—G)

But if rank By ; < 3, the 3 dimensional hyperplane segments are planes, linggimts in o< or

and|d;| will never be the minimum ind.|, |daf, ---, |ds, |. The distancel; is set to+oo if rank
By ; < 3. The purpose of this is to exclude from |dy|, |dz|, - - -, |ds,,|. In practice,+oco is replaced
by a sufficiently large positive number (for exampte,= 10°). If min (dy,da, - ,ds, ) > 0, then

G e Qandp(G,00) = min (dy,ds, -+ ,ds, ). Butif min (dy,ds,--- ,ds, ) <0, which implies that
at least one ofl; < 0,5 € {1,--- ,s,,}, thenG € Q andp (G,09Q) = —min (|d1|, |d2|,- - - , |ds,.|)
according to[(P).

Thenp (G, 09) is computed by
p(G,09Q) = sign(min (dy, dz, -+ ,ds,,)) min (|d1|, |da],--- ,|ds,,]) - (32)

This is consistent with the definition ifl(9).
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