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Abstract—This paper addresses the problem of collaborative
tracking of dynamic targets in wireless sensor networks. A novel
distributed linear estimator, which is a version of a distributed
Kalman filter, is derived. We prove that the filter is mean square
consistent in the case of static target estimation. When large
sensor networks are deployed, it is common that the sensors do
not have good knowledge of their locations, which affects the
target estimation procedure. Unlike most existing approaches for
target tracking, we investigate the performance of our filter when
the sensor poses need to be estimated by an auxiliary localization
procedure. The sensors are localized via a distributed Jacobi
algorithm from noisy relative measurements. We prove strong
convergence guarantees for the localization method and in turn
for the joint localization and target estimation approach. The
performance of our algorithms is demonstrated in simulation on
environmental monitoring and target tracking tasks.

I. INTRODUCTION

A central problem in networked sensing systems is the
estimation and tracking of the states of dynamic phenomena of
interest that evolve in the sensing field. Potential applications
include environmental monitoring [1], [2], surveillance and
reconnaissance [3], [4], social networks [5]. In most situations,
individual sensors receive partially informative measurements
which are insufficient to estimate the target state in isolation.
The sensors need to engage in information exchange with one
another and solve a distributed estimation problem. To compli-
cate matters, it is often the case that the sensors need to know
their own locations with respect to a common reference in
order to utilize the target measurements meaningfully. Hence,
in general, the sensors face a joint localization and estima-
tion problem. Virtually all existing work in distributed target
estimation assumes implicitly that the localization problem is
solved, while all the literature on localization does not consider
the effect of the residual errors on a common estimation task.
The goal of this paper is to show that the two problems can
be solved jointly, and that, with simple measurement models,
the resulting estimates have strong convergence guarantees.
Assumptions and contributions. We assume that the sensors
obtain linear Gaussian measurements of the target state and
repeated sequential measurements of their relative positions
along the edges of a graph. Our contributions are as follows:
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• We derive a distributed linear estimator for tracking
dynamic targets. We prove that the filter is mean-square
consistent in the case of a static target.

• We provide a distributed algorithm for sensor localization
from sequential relative measurements and prove mean-
square and strong consistency.

• We prove mean-square consistency of the joint localiza-
tion and target estimation procedure.

Related work. Our target estimation algorithm was inspired
by Rahnama Rad and Tahbaz-Salehi [6], who propose an
algorithm for distributed static parameter estimation using
nonlinear sensing models. We specialize their model to het-
erogeneous sensors with linear Gaussian observations, show
stronger convergence results (mean-square consistency instead
of weak consistency), and then generalize the solution to
dynamic targets. Our filter is similar to the Kalman-Consensus
[7], [8] and the filter proposed by Khan et al. [9], [10]. Khan et
al. [9] show that a dynamic target can be tracked with bounded
error if the norm of the target system matrix is less than the
network tracking capacity. Shahrampour et al. [10] quantify
the estimation performance using a global loss function and
show that the asymptotic estimation error depends on its de-
composition. Kar et al. [11] study distributed static parameter
estimation with nonlinear observation models and noisy inter-
sensor communication. Related work also includes [12], which
combines the Jacobi over-relaxation method with dynamic
consensus to compute distributed weighted least squares.

Our localization algorithm follows the lines of the Jacobi
algorithm, first proposed for localization in sensor networks
by Barooah and Hespanha [13], [14]. In contrast with their
approach, we consider repeated relative measurements and
show strong convergence guarantees for the resulting sequen-
tial localization algorithm. Other work in sensor network local-
ization considers nonlinear and less informative measurement
models than those used in this paper. For instance [15], [16],
[17], [18] address the problem of localization using range-
only measurements, which is challenging because a graph
with specified edge lengths can have several embeddings in
the plane. Khan et al. [19] introduce a distributed localization
(DILOC) algorithm, which uses the barycentric coordinates of
a node with respect to its neighbors and show its convergence
via a Markov chain. Diao et al. [20] relax the assmuption of
DILOC that all nodes must be inside the convex hull of the
anchors. Localization has also been considered in the context
of camera networks [21].

Paper organization. The joint localization and estimation
problem is formulated precisely in Sec. II. The distributed
linear estimator for target tracking is derived in Sec. III as-
suming known sensor locations. A distributed Jacobi algorithm
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is introduced in Sec. IV to localize the sensors using relative
measurements when the true locations are unknown. Mean-
square and strong consistency are proven. In Sec. V, we show
that the error of the target estimator, when combined with the
localization procedure, remains arbitrarily small. All proofs
are provided in the Appendix.

II. PROBLEM FORMULATION

Consider a static sensor network composed of n sensors
with configurations {x1, . . . , xn} ⊂ X ∼= Rd. The configura-
tion of a sensor may include its position, orientation, and other
operational parameters but we will refer to it, informally, as the
sensor’s location. The communication network interconnecting
the sensors is represented by an undirected graph G = (V,E)
with vertices V := {1, . . . , n} corresponding to the sensors
and |E| = m edges. An edge (j, i) ∈ E from sensor j to
sensor i exists if they can communicate. The set of nodes
(neighbors) connected to sensor i is denoted by Ni.

The task of the sensors is to estimate and track the state
y(t) ∈ Y ∼= Rdy of a phenomenon of interest (target), where
Y is a convex set. The target evolves according to the following
target motion model:

y(t+ 1) = Fy(t) + η(t), η(t) ∼ N (0,W ), (1)

where η(t) is the process noise, whose values at any pair of
times are independent. Sensor i, depending on its location xi,
can obtain a measurement zi(t) of the target state y(t) at time
t according to the following sensor observation model:

zi(t) = Hi(xi)y(t)+vi(t, xi), vi(t, xi) ∼ N (0, Vi(xi)), (2)

where vi(t, xi) is a sensor-state-dependent measurement noise
specific to sensor i, which is independent at any pair of
times and across different sensors. The measurement noise is
independent of the target noise η(t) as well. The signals, zi(t),
observed by a single sensor, although potentially informative,
do not reveal the target state completely, i.e. each sensor faces
a local identification problem. We assume, however, that the
target is observable if one has access to the signals received
by all sensors.

The sensors need to know their locations in order to use the
signals zi(t) to estimate the targets state. However, when large
sensor networks are deployed, it is common that the sensors
do not have good knowledge of their positions but instead
only a rough estimate (prior). We suppose that each sensor
has access to noisy relative measurements of the positions
of its neighbors1, which can be used to localize the sensors.
In particular, at time t sensor i receives the following noisy
relative configuration measurement from its neighbor j:

sij(t) = xj − xi + εij(t), εij(t) ∼ N (0, Eij), (3)

where εij(t) is a measurement noise, which is independent at
any pair of times and across sensor pairs. The relative measure-
ment noises are independent of the target measurement and

1The graphs describing the communication and the relative measurement
topologies might be different in practice. However, we assume that they are
the same in order to simplify the presentation.

motion noises too. Since there is translation ambiguity in the
measurements (3) we assume that all sensors agree to localize
themselves in the reference frame of sensor 1. The location
estimates can then be used in place of the unknown sensor
positions during the target estimation procedure. The joint
localization and estimation problem is summarized below.

Problem (Joint Estimation and Localization). The task of
each sensor i is to construct estimators x̂i(t) and ŷi(t) of
its own location xi and of the target state y in a distributed
manner, i.e. using information only from its neighbors and the
measurements {sij(t) | j ∈ Ni} and {zi(t)}.

To illustrate the results, we use two scenarios which fit
our models throughout the paper. The first is environmental
monitoring problem in which a sensor network of remote
methane leak detectors (RMLD), based on tunable diode laser
absorption spectroscopy, is deployed to estimate the methane
concentration in a landfill. The methane field is assumed static
(i.e. F = Idy ,W = 0) and can be modeled by discretizing the
environment into cells and representing the gas concentration
with a discrete Gaussian random field, y ∈ Rdy (See Fig.5).
It was verified experimentally in [22] that the RMLD sensors
fit the linear model in (2). Second, we consider tracking a
swarm of mobile vehicles via a sensor network using range and
bearing measurements (See Fig. 1). The position (y1j , y

2
j ) ∈ R2

and velocity (ẏ1j , ẏ
2
j ) ∈ R2 of the jth target have discretized

double integrator dynamics driven by Gaussian noise:

yj(t+ 1)=

[
I2 τI2
0 I2

]
yj(t) + ηj(t), W := q

[
τ3

3 I2
τ2

2 I2
τ2

2 I2 τI2

]
,

where yj = [y1j , y
2
j , ẏ

1
j , ẏ

2
j ]T is the j-th target state, τ is the

sampling period is sec, and q is a diffusion strength measured
in ( m

sec2 )2 1
Hz . Each sensor in the network takes noisy range

and bearing measurements of the target’s position:

zij(t) =

[ √
(y1j − x1i )2 + (y2j − x2i )2

arctan
(
(y2j − x2i )/(y1j − x1i )

)]+ v(t, xi, yj), (4)

where xi := (x1i , x
2
i ) ∈ R2 is the sensor’s location and the

noise v grows linearly with the distance between the sensor
and the target. The observation model is nonlinear in this case
so we resort to linearization in order to apply our framework.

III. DISTRIBUTED TARGET ESTIMATION

We begin with the task of estimating and tracking the
dynamic state of a target via the sensor network. For now
we assume that the sensors know their positions and con-
centrate on the estimation task. We specializing the general
parameter estimation scheme of Rahnama Rad and Tahbaz-
Salehi [6] to linear Gaussian observation models such as (2).
We show that the resulting distributed linear filter is mean-
square consistent2 when the target is stationary. This result is

2A distributed estimator of a parameter y is weakly consistent if all esti-
mates, ŷi(t), converge in probability to y, i.e. lim

t→∞
P
(
‖ŷi(t)− y‖ ≥ ε

)
= 0

for any ε > 0 and all i. It is mean-square consistent if all estimates converge
in L2 to y, i.e. lim

t→∞
E
[
‖ŷi(t)− y‖2

]
= 0, ∀i.
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Fig. 1: A realization of the target tracking scenario
in which a sensor network with 40 nodes tracks 10
mobile targets via range and bearing measurements
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Fig. 2: Initial and final (after 20 steps) node locations estimated by the distributed
localization algorithm on a randomly generated graph with 300 nodes ans 1288 edges

stronger than the weak consistency2 shown in the general non-
Gaussian case in [6, Thm.1]. Suppose for now that the target
is stationary, i.e. y := y(0) = y(1) = . . .. To introduce the
estimation scheme from [6], suppose also that instead of the
linear Gaussian measurements in (2), the sensor measurements
zi(t) are drawn from a general distribution with conditional
probability density function (pdf) li(· | y). As before, the
signals observed by sensor i are iid over time and independent
from the observations of all other sensors. In order to aggregate
the information provided to it over time - either through
observations or communication with neighbors - each sensor
i holds and updates a pdf pi,t over the target state space Y .
Consider the following distributed estimation algorithm:

pi,t+1(y) = ξi,tli(zi(t+ 1) | y)
∏

j∈Ni∪{i}

(
pj,t(y)

)κij
,

ŷi(t) ∈ arg max
y∈Y

pi,t(y),
(5)

where ξi,t is a normalization constant ensuring that pi,t+1 is a
proper pdf and κij > 0 are weights such that

∑
j∈Ni∪{i} κij =

1. The update is the same as the standard Bayes rule with the
exception that sensor i does not just use its own prior but a
geometric average of its neighbors’ priors. Given a connected
graph, the authors of [6] show that (5) is weakly consistent
under broad assumptions on the observation models li.

Next, we specialize the estimator in (5) to the linear
Gaussian measurement model in (2). Let G(ω,Ω) denote
a Gaussian distribution (in information space) with mean
Ω−1ω and covariance matrix Ω−1. The quantities ω and Ω
are conventionally called information vector and information
matrix, respectively. Suppose that the pdfs pi,t of all sensors
i ∈ V at time t are that of Gaussian distributions G(ωi,t,Ωi,t).
We claim that the posteriors resulting from applying the update
in (5) remain Gaussian.

Lemma 1 ([23, Thm.2]). Let Yi ∼ G(ωi,Ωi) for i = 1, . . . , n
be a collection of random Gaussian vectors with associated
weights κi. The weighted geometric mean,

∏n
i=1 p

κi
i , of their

pdfs pi is proportional to the pdf of a random vector with

distribution G
(∑n

i=1 κiωi,
∑n
i=1 κiΩi

)
.

Lemma 2 ([23, Thm.2]). Let Y ∼ G(ω,Ω) and V ∼
G(0, V −1) be random vectors. Consider the linear transforma-
tion Z = HY + V . The conditional distribution of Y | Z = z
is proportional to G(ω +HTV −1z,Ω +HTV −1H).

Lemma 1 says that if the sensor priors are Gaussian
G(ωi,t,Ωi,t), then after applying the geometric averaging in
(5) the resulting distribution will still be Gaussian and its
information vector and information matrix will be weighted
averages of the prior ones. Lemma 2 says that after applying
Bayes rule the distribution will remain Gaussian. Combining
the two allows us to derive the following linear Gaussian
version of the estimator in (5):

ωi,t+1 =
∑

j∈Ni∪{i}

κijωj,t +HT
i V
−1
i zi(t),

Ωi,t+1 =
∑

j∈Ni∪{i}

κijΩj,t +HT
i V
−1
i Hi,

(6)

where Hi := Hi(xi) and Vi := Vi(xi). The estimate of sensor
i at time t of the true target state y is:

ŷi(t) := Ω−1i,t ωi,t. (7)

In this linear Gaussian case, we prove a strong result about
the quality of the estimates.

Theorem 1. Suppose that the communication graph G is
connected and the matrix

[
HT

1 . . . HT
n

]T
has rank dy .

Then, the estimates (7) of all sensors converge in mean square
to y, i.e. lim

t→∞
E
[
‖ŷi(t)− y‖22

]
= 0 for all i.

The estimation procedure in (6), (7) can be extended to
track a dynamic target as in (1) by adding a local prediction
step, same as that of the Kalman filter, at each sensor. The
distributed linear filter is summarized in Alg. 1 and Thm. 1
guarantees its mean-square consistency for stationary targets.
Its performance on dynamic targets was studied in the target
tracking scenario introduced in Sec. II and the results are
presented in Fig. 1 and Fig. 3.

IV. LOCALIZATION FROM RELATIVE MEASUREMENTS

Target tracking via the distributed estimator in Alg. 1
requires knowledge of the true sensor locations. As mentioned
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Fig. 3: Root mean squared error (RMSE) of the estimated target position and velocity
obtained from averaging 50 simulated runs of the distributed linear estimator in the
target tracking scenario (Fig. 1). The error increases because as targets move away
from the sensor network, the covariance of the measurement noise grows linearly with
distance. The errors of node 1 (blue) are lower because it was always placed at the
origin and thus close to the starting target positions.
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Fig. 4: Root mean squared error (RMSE) of
the location estimates obtained from averaging
50 simulated runs of the distributed localization
alogorithm with randomly generated graphs with
300 nodes (e.g. Fig. 2)

Algorithm 1 Distributed Linear Estimator
Input: Prior (ωi,t,Ωi,t), messages (ωj,t,Ωj,t), ∀j ∈ Ni, and measure-
ment zi(t)
Output: (ωi,t+1,Ωi,t+1)

Update Step: ωi,t+1 =
∑

j∈Ni∪{i}
κijωj,t +HT

i V
−1
i zi(t)

Ωi,t+1 =
∑

j∈Ni∪{i}
κijΩj,t +HT

i V
−1
i Hi

ŷi(t+ 1) = Ω−1
i,t+1ωi,t+1

Prediction Step: Ωi,t+1 = (FΩ−1
i,t+1F

T +W )−1

ωi,t+1 = Ωi,t+1F ŷi(t+ 1)

earlier this is typically not the case, especially when large
sensor networks are deployed. This section describes a method
for localization from relative measurements (3), whose strong
convergence guarantees can be used to analyze the conver-
gence of a joint localization and estimation procedure. The
relative measurements, received by all sensors at time t, can
be written in matrix form as follows:

s(t) = (B ⊗ Id)Tx+ ε(t),

where B ∈ Rn×m is the incidence matrix of the communica-
tion graph G. All sensors agree to localize relative to node 1
and know that x1 = 0. Let B̃ ∈ R(n−1)×m be the incidence
matrix with the row corresponding to sensor 1 removed.
Further, define E := E[ε(t)ε(t)T ] = diag(E1, . . . , Em), where
{Ek} is an enumeration of the noise covariances associated
with the edges of G. Given t measurements, the least squares
estimate of x leads to the classical Best Linear Unbiased
Estimator (BLUE), given by:

x̂(t) :=
(
B̃E−1B̃T

)−1
B̃E−1

t−1∑
τ=0

s(τ), (8)

where the inverse of B̃E−1B̃T exists as long as the graph G
is connected [13]. Among all linear estimators of x, BLUE
has the smallest variance for the estimation error [24]. The
computation in (8) can be distributed via a Jacobi algorithm for
solving a linear system as follows. Each sensor maintains an
estimate x̂i(t) of its own state at time t and a history of the av-
eraged measurements, σi(t) := 1

t+1

∑t
τ=0

∑
j∈Ni

E−1ij sij(τ),
received up to time t. Given prior estimates (x̂i(t), σi(t)), the

update of the distributed Jacobi algorithm at sensor i is:

x̂i(t+ 1) =

(∑
j∈Ni

E−1ij
)−1(∑

j∈Ni

E−1ij x̂j(t)− σi(t)
)
,

σi(t+ 1) =
1

t+ 1

(
tσi(t) +

∑
j∈Ni

E−1ij sij(t)
)
.

(9)

Barooah and Hespanha [13], [14] show that, with a single
round of relative measurements, the the Jacobi algorithm
provides an unbiased estimate of x. Here, we incorporate
repeated sequential measurements and prove much stronger
performance guarantee.

Theorem 2. Suppose that the communication graph G is con-
nected. Then, the estimates x̂i(t) of the sensor configurations
in (9) are mean-square and strongly consistent estimators of
the true sensor states, i.e.:

lim
t→∞

E
[
‖x̂i(t)−xi‖22

]
= 0, P

(
lim
t→∞

‖x̂i(t)−xi‖2 = 0
)

= 1,∀i

The performance of our distributed localization algorithm
was analyzed on randomly generated graphs with 300 nodes.
The location priors were chosen from a normal distribution
with standard deviation of 5 meters from the true node
positions. An instance of the localization task is illustrated
in Fig. 2, while the estimation error is shown in Fig. 4.

V. JOINT LOCALIZATION AND ESTIMATION

Having derived separate estimators for the sensor locations
and the target state, we are ready to return to the original
problem of joint localization and estimation. At time t, the
location estimates {x̂i(t)} in (9) can be used in the target
estimator (6), (7) instead of the true sensor positions. It is
important to analyze the evolution of the coupled estimation
procedure because it is not clear that the convergence result in
Thm. 1 will continue to hold. Define the sensor information
matrix Mi(x) := Hi(x)TVi(x)−1Hi(x). In an analogy with
the centralized Kalman filter, the sensor information matrix
captures the amount of information added to the inverse of
the covariance matrix during an update step of the Riccati
map. From this point of view, it is natural to describe sensor
properties in terms of the sensor information matrix. A regular-
ity assumption which stipulates that nearby sensing locations
provide similar information gain is necessary.
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Fig. 5: Methane emission monitoring via a sensor network. The true (unknown) sensor locations (red dots), the sensing range (red circle),
and a typical realization of the methane field are shown on the left. The root mean squared error (RMSE) of the location estimates and
of the field estimates obtained from averaging 50 simulated runs of the joint localization and estimation algorithm with continuous sensor
observation models are shown in the two middle plots. In an additional experiment, the sensors were placed on the boundaries of the cells
of the discretized field. As the observation model for each sensor was defined in terms of the proximal environment cells, this made the
model discontinuous. The rightmost plot illustrates that the field estimation error does not vanish when discontinuities are present.

Assumption (Observation Model Continuity). The sensor in-
formation matrices Mi(x) are bounded3 continuous functions
of x for all i.

The following theorem ensures that the target state estimator
retains its convergence properties when used jointly with the
distributed localization procedure.

Theorem 3. Let {x̂i(t)} be strongly consistent estimators
of the sensor configurations, i.e. x̂i(t)

a.s.−−→ xi,∀i. Suppose
that the communication graph G is connected and the matrix[
H1(x1)T . . . Hn(xn)T

]T
has rank dy . Let δ > 0 be ar-

bitrary. If each sensor i updates its target estimate (ωi,t,Ωi,t)
as follows:

ωi,t+1 =
∑

j∈Ni∪{i}

κijωj,t + ĤT
i,tV̂

−1
i,t zi(t),

Ωi,t+1 =
∑

j∈Ni∪{i}

κijΩj,t + ĤT
i,tV̂

−1
it Ĥi,t,

ŷi(t+ 1) =
(
Ωi,t+1 + (t+ 1)δId

)−1
ωi,t+1,

(10)

where Ĥi,t := Hi(x̂i(t)) and V̂i,t := Vi(x̂i(t)), then the
asymptotic mean-square error of target estimates is O(δ2):

lim
t→∞

E
[
‖ŷi(t)− y‖22

]
= δ2yT

( n∑
j=1

πjMj(xj) + δI
)−2

y,

for all i, where y is the true target state and xj is the true
position of sensor j.

The combined procedure specified by (9) and (10) provides
a mean-square consistent way to estimate the sensor locations
and the target state jointly. The performance of the joint algo-
rithm was evaluated on the methane concentration estimation
problem and the results are summarized in Fig. 5.

VI. CONCLUSION

This paper studied the problem of joint target tracking
and node localization in sensor networks. A distributed linear
estimator for tracking dynamic targets was derived. It was

3There exists a constant q such that ‖Mi(x)‖ ≤ q <∞ for all i and x.

proven that the filter is mean-square consistent when esti-
mating static states. Next, a distributed Jacobi algorithm was
proposed for localization and its mean-square and almost sure
consistency were shown. Finally, the combined localization
and target estimation procedure was shown to have arbirarily
small asymptotic estimation error.

Future work will focus on strengthening the result in Thm.
3 to mean-square consistency and relaxing the assumption of
a strongly consistent localization procedure. Studying the rela-
tionship between our distributed linear estimator, the Kalman-
Consensus filter [8], and the filter proposed by Khan et al. [9]
is of interest as well.

APPENDIX A: PROOF OF THEOREM 1
Define the following:

ωt :=
[
ωT1t . . . ωTnt

]T
Ωt :=

[
ΩT1t . . . ΩTnt

]T
Mi := Hi(xi)

TV −1i (xi)Hi(xi) M :=
[
MT

1 . . . MT
n

]T
ζ(t) :=

[
H1V

−T
1 v1(t)T . . . HnV

−T
n vn(t)T

]T
.

The update equations of the filter (6) in matrix form are:

ωt+1 =
(
K ⊗ Idy

)
ωt +My + ζ(t),

Ωt+1 =
(
K ⊗ Idy

)
Ωt +M,

(11)

where K = [κij ] with κij = 0 if j /∈ Ni ∪ {i} is a stochastic
matrix. The solutions of the linear systems are:

ωt =
(
K ⊗ Idy

)t
ω0 +

t−1∑
τ=0

(
K ⊗ Idy

)t−1−τ(
My + ζ(τ)

)
,

Ωt =
(
K ⊗ Idy

)t
Ω0 +

t−1∑
τ=0

(
K ⊗ Idy

)t−1−τ
M.

Looking at the i-th components again, we have:

ωit
t+ 1

:=
1

t+ 1

n∑
j=1

[
Kt
]
ij
ωj0+

1

t+ 1

t−1∑
τ=0

n∑
j=1

[
Kt−τ−1

]
ij

(Mjy +HT
j V
−1
j vj(τ)),

Ωit
t+ 1

:=
1

t+ 1

n∑
j=1

[
Kt
]
ij

Ωj0 +
1

t+ 1

t−1∑
τ=0

n∑
j=1

[
Kt−τ−1

]
ij
Mj .



Define the following to simplify the notation:

git := 1
t+1

∑n
j=1

[
Kt
]
ij
ωj0,

Git := 1
t+1

∑n
j=1

[
Kt
]
ij

Ωj0,

φit := 1
t+1

∑t−1
τ=0

∑n
j=1

[
Kt−τ−1

]
ij
HT
j V
−1
j vj(τ),

Cit := 1
t+1

∑t−1
τ=0

∑n
j=1

[
Kt−τ−1

]
ij
Mj ,

bit := git −Gity, Bit := 1
t+1Ωit.

(12)

With the shorthand notation:

ωit
t+ 1

= git+φit+City, Bit =
Ωit
t+ 1

= Git+Cit, (13)

where φit is the only random quantity. Its mean is zero because
the measurement noise has zero mean, while its covariance is:

E[φitφ
T
it] =

1

(t+ 1)2
E
[(t−1∑

τ=0

n∑
j=1

[
Kt−τ−1

]
ij
HT
j V
−1
j vj(τ)

)

×
(t−1∑
s=0

n∑
η=1

[
Kt−s−1

]
iη
HT
η V
−1
η vη(s)

)T]

=
1

(t+ 1)2

n∑
j=1

t−1∑
τ=0

[
Kt−τ−1

]2
ij
HT
j V
−1
j E[vj(τ)vj(τ)T ]V −1j Hj

=
1

(t+ 1)2

n∑
j=1

t−1∑
τ=0

[
Kt−τ−1

]2
ij
Mj �

1

t+ 1
Cit, (14)

where the second equality uses the fact that vj(τ) and
vη(s) are independent unless the indices coincide, i.e.
Evj(τ)vη(s)T = δτsδjηVj . The Löwner ordering inequality
in the last step uses that 0 ≤

[
Kt−τ−1

]
ij
≤ 1 and Mj � 0.

Since G is connected, K corresponds to the transition
matrix of an aperiodic irreducible Markov chain with a unique
stationary distribution π so that Kt → π1T with πj > 0. This
implies that, as t→∞, the numerators of git and Git remain
bounded and therefore git → 0 and Git → 0. Since Cesáro
means preserve convergent sequences and their limits:

1

t+ 1

t−1∑
τ=0

[
Kt−τ−1

]
ij
→ πj , ∀i,

which implies that Cit →
∑n
j=1 πjMj . The full-rank as-

sumption on
[
HT

1 . . . HT
n

]T
and πj > 0 guarantee that∑n

j=1 πjMj is positive definite. Finally, consider the mean

squared error:

E
[
(ŷi(t)− y)T (ŷi(t)− y)

]
= E

∥∥∥∥( Ωit
t+ 1

)−1
ωit
t+ 1

−
(

Ωit
t+ 1

)−1(
Ωit
t+ 1

)
y

∥∥∥∥2
2

= E
∥∥B−1it (git + City + φit − (Git + Cit)y

)∥∥2
2

= E‖B−1it (bit + φit)‖22

= E
[
bTitB

−T
it B−1it bit + 2bTitB

−T
it B−1it φit + φTitB

−T
it B−1it φit

]
(a)
=== bTitB

−T
it B−1it bit + tr(B−1it E[φitφ

T
it]B

T
it)

(b)

≤ bTitB
−T
it B−1it bit +

1

t+ 1
tr(B−1it CitB

−T
it )→ 0,

where (a) holds because the first term is deterministic, while
the cross term contains E[φit] = 0. Inequality (b) follows
from (14). In the final step, as shown before B−1it →(∑n

j=1 πjMj

)−1
and Cit →

∑n
j=1 πjMj � 0 remain

bounded, while bit → 0 and 1/(t+ 1)→ 0.

APPENDIX B: PROOF OF THEOREM 2

Define the generalized (matrix-weighted) degree matrix D ∈
Rnd×nd of the graph G as a block-diagonal matrix with Dii :=∑
j∈Ni

E−1ij . Since Eij � 0 for all {i, j} ∈ E, the generalized
degree matrix is positive definite, D � 0. Define also the
generalized adjacency matrix A ∈ Rnd×nd as follows:

Aij :=

{
E−1ij if {i, j} ∈ E,
0 else.

The generalized Laplacian and the generalized signless Lapla-
cian of G are defined as L := D − A and |L| := D + A,
respectively. Further, let R := (B ⊗ Id)

T ∈ Rmd×nd and
define the block-diagonal matrix E ∈ Rmd×md with blocks
Eij for {i, j} ∈ E. It is straightforward to verify that
L = RTE−1R � 0 and |L| = (|B| ⊗ Id)E−1(|B| ⊗ Id)T � 0,
where |B| ∈ Rn×m is the signless incidence matrix of G.
Let B̃ ∈ R(n−1)×m and R̃ ∈ Rmd×(n−1)d be the matrices
resulting after removing the row corresponding to sensor 1
from B. Similarly, let D̃, Ã, L̃, |L̃| ∈ R(n−1)d×(n−1)d denote
the generalized degree, adjacency, Laplacian, and signless
Laplacian matrices with the row and column corresponding
to sensor 1 removed. Thm. 2.2.1 in [14] shows that L̃ � 0
provided that G is connected. The same approach can be used
to show that |L̃| � 0. Let x̃ ∈ R(n−1)d be the locations
of sensors 2, . . . , n in the reference frame of sensor 1 and
x̂(t) ∈ R(n−1)d be their estimates at time t obtained from (9).
The update in (9) can be written in matrix form as follows:

D̃x̂(t+ 1) = Ãx̂(t) + R̃TE−1
(
R̃x̃+

1

t+ 1

t∑
τ=0

ε(τ)

)
. (15)

Define the estimation error at time t as e(t) := x̃− x̂(t) and let
u(t) := 1

t+1

∑t
τ=0 ε(τ). The dynamics of the error state can



be obtained from (15):

e(t+ 1) = x̃− D̃−1Ãx̂(t)− D̃−1L̃x̃− D̃−1R̃TE−1u(t)

= x̃− D̃−1Ãx̂(t)− D̃−1
(
D̃ − Ã

)
x̃− D̃−1R̃TE−1u(t)

= D̃−1Ãe(t)− D̃−1R̃TE−1u(t).

The error dynamics are governed by a stochastic linear time-
invariant system, whose internal stability depends on the
eigenvalues of D̃−1Ã. To show that the error dynamics are
stable, we resort to the following lemma.

Lemma 3 ([25, Lemma 4.2]). Let L = D − A ∈ Cn×n be
such that D+D∗ � 0 and Lθ = D+D∗−(eiθA+e−iθA∗) � 0
for all θ ∈ R. Then ρ(D−1A) < 1.

Consider L̃θ := 2(D̃ − cos(θ)Ã). If cos θ = 0, then L̃θ =
2D̃ � 0. If cos θ ∈ (0, 1], then L̃θ � 2 cos θL̃ � 0. Finally,
if cos θ ∈ [−1, 0), then L̃θ � 2| cos θ||L̃| � 0. Thus, we
can conclude that ρ

(
D̃−1Ã

)
< 1. The proof of the theorem

is completed by the following lemma with F := D̃−1Ã and
G := −D̃−1R̃TE−1.

Lemma 4. Consider the discrete-time stochastic linear time-
invariant system:

e(t+ 1) = Fe(t) + G 1
t+1

∑t
τ=0 ε(τ) (16)

driven by Gaussian noise ε(τ) ∼ N (0, E), which is indepen-
dent at any pair of times. If the spectral radius of F satisfies

ρ(F) < 1, then e(t)
a.s.,L2

−−−−→ 0.

Proof. By the strong law of large numbers [26, Thm.2.4.1],
u(t) := 1

t+1

∑t
τ=0 ε(τ) converges to 0 almost surely. Let Ω

be the set with measure 1 on which u(t) converges so that
for any γ > 0, ∃ T ∈ N such that ∀t ≥ T , ‖u(t)‖ ≤ γ. For
realizations in Ω, the solution to (16) with initial time T is:

e(t) = Ft−T e(T ) +
∑t−1
τ=T Ft−τ−1Gu(τ).

Then, ‖e(t)‖ ≤ ‖Ft−T e(T )‖+

t−1∑
τ=T

∥∥Ft−τ−1∥∥‖G‖γ. Taking

the limit of t and using that F is stable, we have

lim
t→∞

‖e(t)‖ ≤
( ∞∑
τ=0

∥∥Fτ∥∥)‖G‖γ.
Since ρ(F) < 1, the system is internally (uniformly) exponen-
tially stable, which is equivalent to

∑∞
τ=0 ‖Fτ‖ ≤ β for some

finite constant β [27, Ch.22]. Thus, limt→∞ ‖e(t)‖ ≤ β‖G‖γ,
which can be made arbitrarily small by choice of γ. We
conclude that e(t)→ 0 on Ω and consequently e(t) a.s.−−→ 0.

Next, we show convergence in L2. First, consider the
propagation of the cross term C(t) := (t + 1)Ee(t)u(t)T .
Note that Eu(t) = 0 and Eu(t)u(t)T = E

t+1 . Using the fact
that ε(t+ 1) is independent of e(t) and u(t) we have

C(t+ 1) = E
(
Fe(t) + Gu(t)

)(
(t+ 1)u(t) + ε(t+ 1)

)T
= FC(t) + (t+ 1)GEu(t)u(t)T = FC(t) + GE .

The solution of the above linear time-invariant system is:

C(t) = FtC(0) +
∑t−1
τ=0 F

t−τ−1GE

and since F is stable: lim
t→∞

Ee(t)u(t)T= lim
t→∞

1

t+ 1

t−1∑
τ=0

FτGE=0.

Now, consider the second moment of the error:

Σ(t+ 1) := Ee(t+ 1)e(t+ 1)T =

FΣ(t)FT +F

(
Ee(t)u(t)T

)
GT +G

(
Eu(t)e(t)T

)
FT+ 1

t+1GEG
T

= FΣ(t)FT +Q(t),

where Q(t) :=
1

t+ 1

(
FC(t)GT + GC(t)TFT + GEGT

)
. As

shown above Q(t)→ 0 as t→∞, i.e. for any δ > 0, ∃ T ′ ∈ N
such that ∀t ≥ T ′, ‖Q(t)‖ ≤ δ. With initial time T ′,

Σ(t) = Ft−T
′
Σ(T ′)(FT )t−T

′
+

t−1∑
τ=T ′

Ft−τ−1Q(τ)(FT )t−τ−1

for t ≥ T ′. Then:

‖Σ(t)‖ ≤
∥∥Ft−T ′∥∥2‖Σ(T ′)‖+

t−T ′−1∑
τ=0

‖Fτ‖2δ

≤ α2µ2(t−T ′) + δα2
t−T ′−1∑
τ=0

µ2τ ,

where the existence of the constants α > 0 and 0 ≤ µ <
1 is guaranteed by the stability of F. We conclude that
limt→∞ ‖Σ(t)‖ ≤ δα2

1−µ2 , which can be made arbitrarily small

by choice of δ. In other words, e(t) L2

−−→ 0.

APPENDIX C: PROOF OF THEOREM 3

We use the same notation and follow the same
steps as in the proof of Thm. 1, except that now
the terms Hi, Vi,Mi,M, ζ(t), φit, Cit, Bit are time-varying
and stochastic because they depend on the location
estimates x̂i(t). To emphasize this, we denote them
by Ĥit, V̂it, M̂it, M̂t, ζ̂(t), φ̂it, Ĉit, B̂it, where for example
M̂it := Mi(x̂i(t)). The same linear systems (11) describe the
evolutions of ωt and Ωt except that they are stochastic now
and (13) becomes:

ωit
t+ 1

= git + Ĉity + φ̂it, B̂it :=
Ωit
t+ 1

= Git + Ĉit.

We still have that Kt → π1T with πj > 0. Also, git, Git, and
bit are still deterministic and converge to zero as t→∞. The
following observations are necessary to conclude that Ĉit still
converges to

∑n
j=1 πjMj .

Lemma 5. If x̂i(t)
a.s.−−→ xi, then M̂it

a.s.,L2

−−−−→Mi.

Proof. Almost sure convergence follows from the continuity
of Mi(·) and the continuous mapping theorem [26, Thm.3.2.4].
L2-convergence follows from the boundedness of Mi(·) and
the dominated convergence theorem [26, Thm.1.6.7].



Lemma 6. If at → a and bt → b, then 1
t

∑t−1
τ=0 at−τ bτ → ab.

Proof. The convergence of at implies its boundedness, |at| ≤
q <∞. Then, notice ab = 1

t

∑t−1
τ=0 ab and∣∣∣∣1t

t−1∑
τ=0

at−τ bτ − ab
∣∣∣∣ =

∣∣∣∣1t
t−1∑
τ=0

(
at−τ (bτ − b) + (at−τ − a)b

)∣∣∣∣
≤
∣∣∣∣1t

t−1∑
τ=0

at−τ (bτ − b)
∣∣∣∣+

∣∣∣∣1t
t−1∑
τ=0

(at−τ − a)b

∣∣∣∣
≤
∣∣∣∣q(1

t

t−1∑
τ=0

bτ − b
)∣∣∣∣+

∣∣∣∣(1

t

t∑
τ=1

aτ − a
)
b

∣∣∣∣,
where both terms converge to zero since Cesáro means pre-
serve convergent sequences and their limits.

Combining Lemma 5,
[
Kt
]
ij
→ πj , and Lemma 6, we have:

1

t+ 1

t−1∑
τ=0

[
Kt−τ−1

]
ij
M̂jτ

a.s.−−→
[
π1T

]
ij
Mj = πjMj .

Moreover, 0 ≤ [Kt]ij ≤ 1 and the boundedness of M̂jt imply,
by the bounded convergence theorem [26, Thm.1.6.7], that the
sequence above converges in L2 as well:

Ĉit
a.s.,L2

−−−−→
∑n
j=1 πjMj � 0. (17)

In turn, (17) guarantees that:

B̂−2it =
(
Git + Ĉit

)−2 a.s.−−→
(∑n

j=1 πjMj

)−2
(18)

but is not enough to ensure that E
[
B̂−2it

]
remains bounded

as t → ∞. The parameter δ > 0 is needed to guarantee the
boundedness. In particular, define B̂it(δ) := B̂it + δIdy . Then

B̂it(δ)
−2 =

(
Git + Ĉit + δIdy

)−2 ≺ 1

δ2
Idy

and by the bounded convergence theorem and (18):

B̂it(δ)
−2 a.s.,L1

−−−−→
(∑n

j=1 πjMj + δIdy
)−2

, (19)

so that limt→∞ E
[
B̂it(δ)

−2] <∞. From (17) and the bound-
edness of B̂it(δ)−1 and Ĉit, we also have:

B̂it(δ)
−1ĈitB̂it(δ)

−T a.s.,L2

−−−−→ (20)( n∑
j=1

πjMj + δIdy

)−1( n∑
j=1

πjMj

)( n∑
j=1

πjMj + δIdy

)−T
.

Since Ĥit and V̂it depend solely on x̂i(t), they are independent
of vi(t). Because E[vj(τ)] = 0, E[ĤT

jτ V̂
−1
jτ vj(τ)] = 0 and as

before E[φ̂it] = 0. Since B̂it(δ) is independent of vi(t) as well,
E
[
B̂it(δ)

−2φ̂it
]

= 0 and a result equivalent to (14) holds:

E[B̂it(δ)
−1φ̂itφ̂

T
itB̂it(δ)

−T ]

= E
[
B̂it(δ)

−1
(

1

(t+ 1)2

n∑
j=1

t−1∑
τ=0

[
Kt−τ−1

]2
ij
M̂jτ

)
B̂it(δ)

−T
]

� 1

t+ 1
E
[
B̂it(δ)

−1ĈitB̂it(δ)
−T ]. (21)

Finally, we can consider the mean squared error:

E
[
‖ŷi(t)− y‖22

]
= E

∥∥∥∥B̂it(δ)−1 ωit
t+ 1

− B̂it(δ)−1B̂it(δ)y
∥∥∥∥2
2

= E
∥∥∥∥B̂it(δ)−1(git + Ĉity + φ̂it − (Git + Ĉit + δIdy )y

)∥∥∥∥2
2

= E‖B̂it(δ)−1(bit + φ̂it + δy)‖22

= E
[
bTitB̂it(δ)

−2bit + φ̂TitB̂it(δ)
−2φ̂it + δ2yT B̂it(δ)

−2y

+ 2bTitB̂it(δ)
−2φ̂it + 2δyT B̂it(δ)

−2φ̂it + 2δbTitB̂it(δ)
−2y

]
= bTitE

[
B̂it(δ)

−2]bit + tr(E
[
B̂it(δ)

−1φ̂itφ̂
T
itB̂it(δ)

−T ])
+ δ2yTE

[
B̂it(δ)

−2]y + 2δbTitE
[
B̂it(δ)

−2]y
(21)
≤ bTitEB̂it(δ)−2bit + 2δbTitEB̂it(δ)−2y + δ2yTEB̂it(δ)−2y

+
1

t+ 1
tr

(
E
[
B̂it(δ)

−1ĈitB̂it(δ)
−T
])

→ δ2yT
( n∑
j=1

πjMj + δIdy
)−2

y.

In the final step, the first two terms go to zero because bit → 0
and limt EB̂it(δ)−2 <∞ from (19), the third term converges
in view of (19) again, while the last term goes to zero because
the trace is bounded in the limit in view of (20).
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