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Abstract

In this study, we show that a movement policy can be improved efficiently using the
previous experiences of a real robot. Reinforcement Learning (RL) is becoming a popular
approach to acquire a nonlinear optimal policy through trial and error. However, it is
considered very difficult to apply RL to real robot control since it usually requires many
learning trials. Such trials cannot be executed in real environments because unrealistic
time is necessary and the real system’s durability is limited. Therefore, in this study,
instead of executing many learning trials, we propose to use a recently developed RL
algorithm, importance-weighted PGPE, by which the robot can efficiently reuse previously
sampled data to improve it’s policy parameters. We apply importance-weighted PGPE to
CB-i, our real humanoid robot, and show that it can learn a target reaching movement and
a cart-pole swing up movement in a real environment without using any prior knowledge
of the task or any carefully designed initial trajectory.

1 INTRODUCTION

Reinforcement Learning (RL) is becoming a popular approach to acquire a nonlinear optimal
policy through trial and error. However, it is considered very difficult to apply RL to real
robot control since it usually requires many learning trials. Such learning trials cannot be
executed in real environments because unrealistic time is necessary and the real system’s
durability is limited. Therefore, previous studies used prior knowledge or properly designed
initial trajectories to apply RL to a real robot so that the parameters of a robot controller
can be improved within a realistic amount of time [1, 6, 7, 10].

However, since prior knowledge may not be always available, it is desirable to use a learning
method that can improve policies only from limited experiences. In this study, we consider a
recently developed RL algorithm: importanceweighted policy gradients with parameter based
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Figure 1: Humanoid robot CB-i [2] grabbing Wii controller.

exploration (IW-PGPE) [17]. With the IW-PGPE algorithm, we can efficiently use previously
sampled data to improve policies. In other words, a robot can use its previous experiences to
improve the current policy parameters. The usefulness of this approach has been thoroughly
evaluated by comparing with previously proposed RL methods [18, 19, 20, 21] in numerical
simulations. In this study, we evaluate how this RL approach using prevoius experiences can
work efficiently in the real system.

We apply IW-PGPE to our real humanoid robot called CB-i [2] (see Fig. 1) and show
that it can learn a target-reaching movement and a cart-pole swing-up movement in a real
environment within 1.5 hours without using any prior knowledge of the task or any initial
trajectory. For a target-reaching task, we used five degrees of freedom (DOF) composed of
one-DOF torso joint, three-DOF shoulder joints, and one-DOF elbow joint of the humanoid
robot. To use these five DOFs, the policy needs to be improved in ten-dimensional state
space. In this moderately high-dimensional state space, it is usually considered that RL
cannot be directly applied to real systems. However, we show that a target-reaching policy
can be improved within a realistic amount of time by using IW-PGPE.

The rest of this paper is organized as follows. Policy update methods by using the standard
policy gradient method and by using PGPE are explained in Section 2. The extension of PGPE
to efficiently use previous experiences is introduced in Section 3. In Section 4, we evaluate our
approach to improve policies in a real environment. First, we show the performances of policy
updates by the IW-PGPE method with different parameters in a simulation environment.
Then, we apply the learning method to our humanoid robot CB-i to improve a target-reaching
policy. In section 5, we introduce a newly developed experimental setup in which our real
humanoid robot can interact with a virtual environment through a Wii controller. In this



setup, a cart-pole swing-up policy is learned. Finally, Section 6 concludes the paper with
discussion and following work in the future.

2 Policy Gradient Methods

In this section, we first review a standard formulation of policy gradient methods [15, 5,
7]. Then we show an alternative formulation adopted in the PGPE (policy gradients with
parameter based exploration) method [9].

2.1 Standard Policy Update

We assume that the underlying control problem is a discrete-time MDP. At each discrete
time step t, the agent observes a state xt ∈ X , selects an action ut ∈ U , and then receives an
immediate reward rt resulting from a state transition in the environment. The dynamics of the
environment are characterized by p(xt+1|xt, ut), which represents the transition probability
density from the current state xt to the next state xt+1 when action ut is taken, and p(x1)
is the probability density of initial states. The immediate reward rt is given according to the
reward function r(xt, ut,xt+1).

The robot’s decision making procedure at each time step t is characterized by a parameter-
ized policy p(ut|xt,θ) with parameter θ, which represents the conditional probability density
of taking action ut in state xt. We assume that the policy is continuously differentiable with
respect to its parameter θ.

A sequence of states and actions forms a trajectory denoted by

h := [x1, u1, . . . ,xT , uT ],

where T denotes the number of steps called horizon length. In this paper, we assume that
T is a fixed deterministic number. Note that the action ut is chosen independently of the
trajectory given xt and θ. Then the discounted cumulative reward along h, called the return,
is given by

R(h) :=

T∑

t=1

γt−1r(xt, ut,xt+1),

where γ ∈ [0, 1) is the discount factor for future rewards.
The goal is to optimize the policy parameter θ so that the expected return is maximized.

The expected return for policy parameter θ is defined by

J(θ) :=

∫
p(h|θ)R(h)dh,

where

p(h|θ) = p(x1)

T∏

t=1

p(xt+1|xt, ut)p(ut|xt,θ).

The most straightforward way to update the policy parameter is to follow the gradient in
policy parameter space using gradient ascent:

θ ←− θ + ε∇θJ(θ),



where ε is a small positive constant, called the learning rate.
This is a standard formulation of policy gradient methods [15, 5, 7]. The central problem

is to estimate the policy gradient ∇θJ(θ) accurately from trajectory samples.

2.2 PGPE Policy Update

However, standard policy gradient methods were shown to suffer from high variance in the
gradient estimation due to randomness introduced by the stochastic policy model p(a|s,θ)
[16]. To cope with this problem, an alternative method called policy gradients with parameter
based exploration (PGPE) was proposed recently [9]. The basic idea of PGPE is to use a
deterministic policy and introduce stochasticity by drawing parameters from a prior distri-
bution. More specifically, parameters are sampled from the prior distribution at the start of
each trajectory, and thereafter the controller is deterministic1. Thanks to this per-trajectory
formulation, the variance of gradient estimates in PGPE does not increase with respect to
trajectory length T . Below, we review PGPE.

PGPE uses a deterministic policy with typically a linear architecture:

p(u|x,θ) = δ(u = θ⊤φ(x)), (1)

where δ(·) is the Dirac delta function, φ(s) is an ℓ-dimensional basis function vector, and ⊤

denotes the transpose. The policy parameter θ is drawn from a prior distribution p(θ|ρ) with
hyper-parameter ρ.

The expected return in the PGPE formulation is defined in terms of expectations over
both h and θ as a function of hyper-parameter ρ:

J (ρ) :=

∫∫
p(h|θ)p(θ|ρ)R(h)dhdθ.

In PGPE, the hyper-parameter ρ is optimized so as to maximize J (ρ), i.e., the optimal
hyper-parameter ρ∗ is given by

ρ∗ := argmax
ρ
J (ρ).

In practice, a gradient method is used to find ρ∗:

ρ←− ρ+ ε∇ρJ (ρ),

where ∇ρJ (ρ) is the derivative of J with respect to ρ:

∇ρJ (ρ) =

∫∫
p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)R(h)dhdθ. (2)

Note that, in the derivation of the gradient, the logarithmic derivative,

∇ρ log p(θ|ρ) =
∇ρp(θ|ρ)

p(θ|ρ)
,

1Note that transitions are stochastic, and thus trajectories are also stochastic even though the policy is

deterministic.



was used. The expectations over h and θ are approximated by the empirical averages:

∇ρĴ (ρ) =
1

N

N∑

n=1

∇ρ log p(θn|ρ)R(hn), (3)

where each trajectory sample hn is drawn independently from p(h|θn) and parameter θn is
drawn from p(θn|ρ). We denote samples collected at the current iteration as

D = {(θn, hn)}
N
n=1.

Following [9], in this paper we employ a Gaussian distribution as the distribution of the
policy parameter θ with the hyper-parameter ρ. When assuming a Gaussian distribution,
the hyper-parameter ρ consists of a set of means {ηi} and standard deviations {τi}, which
determine the prior distribution for each element θi in θ of the form

p(θi|ρi) = N (θi|ηi, τ
2
i ),

where N (θi|ηi, τ
2
i ) denotes the normal distribution with mean ηi and variance τ2i . Then the

derivative of log p(θ|ρ) with respect to ηi and τi are given as

∇ηi log p(θ|ρ) =
θi − ηi
τ2i

,

∇τi log p(θ|ρ) =
(θi − ηi)

2 − τ2i
τ3i

,

which can be substituted into Eq.(3) to approximate the gradients with respect to η and τ .
These gradients give the PGPE update rules.

An advantage of PGPE is its low variance of gradient estimates: Compared with a standard
policy gradient method REINFORCE [15], PGPE was empirically demonstrated to be better
in some settings [9, 16]. The variance of gradient estimates in PGPE can be further reduced
by subtracting an optimal baseline.

3 Efficient Reuse of Previous Experiences

The original PGPE is categorized as an on-policy algorithm [12], where data drawn from the
current target policy is used to estimate policy gradients. On the other hand, off-policy algo-
rithms are more flexible in the sense that a data-collecting policy and the current target policy
can be different. In this section, we introduce an off-policy algorithm for PGPE proposed by
[17]. In this algorithm, importance-weighting is used so that we can reuse previously collected
data (experience) in a consistent manner.

3.1 Importance-Weighted PGPE

Let us consider an off-policy scenario where a data-collecting policy and the current target
policy are different in general. In the context of PGPE, we consider two hyper-parameters, ρ
for the target policy to learn and ρ′ for data collection. Let us denote data samples collected
with hyper-parameter ρ′ by D′:

D′ = {
(
θ′
n, h

′
n

)
}N

′

n=1
i.i.d
∼ p(h,θ|ρ′) = p(h|θ)p(θ|ρ′).



If we naively use data D′ to estimate policy gradients by Eq.(3), we have an inconsistency
problem:

1

N ′

N ′∑

n=1

∇ρ log p(θ
′
n|ρ)R(h

′
n)

N ′→∞
9 ∇ρJ (ρ).

Importance sampling [3] is a technique to systematically resolve this distribution mismatch
problem. The basic idea of importance sampling is to weight samples drawn from a sampling
distribution to match the target distribution, which gives a consistent gradient estimator:

∇ρĴIW(ρ) := 1
N ′

∑N ′

n=1w(θ
′
n)∇ρ log p(θ

′
n|ρ)R(h

′
n)

N ′→∞
−→ ∇ρJ (ρ), (4)

where

w(θ) =
p(θ|ρ)

p(θ|ρ′)

is called the importance weight.
An intuition behind importance sampling is that if we know how “important” a sample

drawn from the sampling distribution is in the target distribution, we can make adjustment
by importance weighting. This extended method is called importance-weighted PGPE (IW-
PGPE) [17].

3.2 Variance Reduction by Baseline Subtraction for IW-PGPE

To further reduce the variance of gradient estimates in IW-PGPE, we use variance reduction
technique which uses a constant baseline [11, 14, 4, 13] as suggested in [17].

A policy gradient estimator with a baseline b ∈ R is defined as

∇ρĴ
b
IW(ρ) :=

1

N ′

N ′∑

n=1

(R(h′n)− b)w(θ
′
n)∇ρ log p(θ

′
n|ρ).

It is well known that ∇ρĴ
b
IW(ρ) is still a consistent estimator of the true gradient for any

constant b [4]. Here, the constant baseline b is determined so that the variance is minimized.
Let b∗ be the optimal constant baseline for IW-PGPE that minimizes the variance:

b∗ := argmin
b

Var[∇ρĴ
b
IW(ρ)].

The optimal constant baseline for IW-PGPE is derived as [17]:

b∗ =
Ep(h,θ|ρ′)[R(h)w

2(θ)‖∇ρ log p(θ|ρ)‖
2]

Ep(h,θ|ρ′)[w2(θ)‖∇ρ log p(θ|ρ)‖2]
.



Figure 2: Humanoid robot simulator “SL” [8].
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Figure 3: Learning curve of cumulative reward. The horizontal and vertical axes are number
of update and cumulative reward. Blue and red lines represent the case that parameters were
updated every five trials (N = 5) and ten trials (N = 10), respectively.

4 Experimental Results: Hand reaching task

We applied our proposed approach to a target-reaching task in simulated and real environ-
ments. Fig. 2 shows a setup of the target-reaching task. The end-effector is left-hand of the
humanoid robot and the target is placed in front of the robot.

In this task, the robot controls 5 joints of the upper body, yaw joint of torso, three joints
of left-shoulder, and joint of left-elbow, and learns policy to reach the target. The length of
one trial was 1 sec.

The controller outputs a desired velocities of each joint:

ψ̇des
i (t) = θ⊤φ(x(t)), (5)

where ψdes
i (i = {1, 2, 3, 4, 5}) are the desired trajectory of controlled joint. In this paper, we

employed linear basis function:

φ(x(t)) =
[
ψ1(t) · · · ψ5(t) ψ̇1(t) · · · ψ̇5(t) 1

]⊤
, (6)

where ψi(i = {1, 2, 3, 4, 5}) are the actual joint angle. The PD controller outputs the torque



command τi for each joint to track the desired trajectories,

τi = −KP(ψi − ψ
des
i )−KD(ψ̇i − ψ̇

des
i ), (7)

where KP and KD are positive constant.
We defined the objective function as sum of a state dependent reward q(x(t)) and a cost

of an action c(x(t),u(t)):

r(x(t),u(t)) = q(x(t)) − c(x(t),u(t)). (8)

A state dependent reward is given based on the error between the end-effector and targets:

q(x(t)) = exp
[
− α‖pE(t)− pT‖

2
]
, (9)

where pE(t) and pT = (0.5, 0.7, 0) are the end-effector position and the target position. The
origin is the center of torso joints. The parameter α(= 10) is constant. The cost of control is
given based on the difference between actual angle and desired angle,

c(x(t),u(t)) = β

5∑

i=1

(ψi(t)− ψ
des
i (t))2, (10)

where β(= 0.0005) is constant. To maximize the future cumulative reward, we updated the
parameter θ with the discount factor γ = 0.999 and the learning rate ε = 0.1.

4.1 Simulation

We first apply the proposed approach to the simulated environment. We evaluate the learning
performance of the proposed approach with the different settings of parameters of the learning
algorithm, N and N ′, We tested proposed method using humanoid robot simulator “SL” [8]
(See Fig.2). To evaluate average learning performances of the proposed approach with different
parameter settings, we simulated five runs with different random seeds.

Figure 3 shows the result of learning. The horizontal and vertical axes are number of
update and cumulative reward. Two lines (blue and red) represent the performance for N = 5
and N ′ = 10.

4.2 Real humanoid robot experiment

Finally, we implement proposed approach to real humanoid robot “CB-i” (See Fig. 4).
In this experiment, we updated the parameters θ every five trial and used 10 trials for

policy update (N = 5 and N ′ = 10). The experiment’s conditions are same as simulation
except for the hyper parameters N and N ′.

Figure 5 shows the learning curve of cumulative reward. The horizontal and vertical axes
are number of update and cumulative reward. After 120 iterations, the end-effector reached
target perfectly. Fig. 6 shows acquired behavior at 120th iteration.



Figure 4: Humanoid robot “CB-i”. The end-effector of reaching is right hand. The ball
represent the target of reaching.
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Figure 5: Learning curve of cumulative reward in the real humanoid robot experiment. The
horizontal and vertical axes are number of update and cumulative reward.

5 Experimental Result: Cart-pole swing-up task

Next, we tested more challenging motor-control task using a virtual environment. As see
Fig.7, we developed a virtual dynamics simulator and the robot interact with the virtual
environment using a Wii controller. In this task, the robot controls a cart-pole to swing-
up from hanging position by swinging a Wii controller. The dynamics of cart-pole is under
actuated: the robot can apply a force to the cart only.

In this task, the robot also controls five joints of the upper body. The cart-pole has two
joints: horizontal position of the cart and angle of the pole. The length of one trial was 1 sec.

We also employed linear basis function:

φ(x(t)) =
[
s(t)⊤ ṡ(t)⊤ 1

]⊤
, (11)

s = [ψ1(t) · · · ψ5(t) z(t) θ(t)]⊤ , (12)

where z and θ are horizontal position of the cart and angle of the pole.
The controlling force for the cart is generated based on an angular velocity of wii-controller:

F (t) = −k(ż(t)− αω), (13)



Figure 6: Acquired behavior of humanoid robot.

where k = 100 and α = 5 are constant parameters.
We also defined the objective function as sum of a state dependent reward q(x(t)) and a

cost of an action c(x(t),u(t)). A state dependent reward is given based on the angle of the
pole:

q(x(t)) = exp
[
− α(z(t)2 + θ(t)2)

]
, (14)

where the parameter α = 1 is a constant. When the position of the cart is center and the angle
of pole is upright position (z = 0, θ = 0), the state dependent reward becomes maximum
value. The cost of control is given based on the difference between actual angle and desired
angle,

c(x(t),u(t)) = β

5∑

i=1

(ψi(t)− ψ
des
i (t))2, (15)

where β(= 0.0005) is a constant. To maximize the future cumulative reward, we updated the
parameter θ with the discount factor γ = 0.999 and the learning rate ε = 0.1. The parameters
of policy were updated every five trials (N = 5) with sample size N ′ = 10. Note that we
only consider swing-up movement and do not consider stabilizing the pole at upright position
because a Wii controller is not accurate enough to do the pole stabilizing.



Figure 7: (a) Robot controls a cart-pole which is simulated in the virtual environment to
swing-up from hanging position. The angular velocity ω is converted to the driving force of
the cart. (b) A diagram of experimental system. The desired trajectory of controlled joint
(ψdes

i ) is given to the robot, then the angular velocity of wii-controller is given to the cart-pole
simulator. The actual trajectory of the robot and the cart-pole (ψi, z, θ) is feed-backed to
the policy. The policy is optimized to maximize the cumulative reward.
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Figure 8: Learning curve of cumulative reward in the cart-pole swing-up task using the real
humanoid robot.

5.1 Real humanoid robot experiment

Figure 8 shows the learning result of the experiment. The horizontal and vertical axes are
the number of iteration and the mean cumulative reward in each iteration respectively. The
performance was reached maximum value around 20th iteration. The learning speed was faster
than the case of reaching task. It was because that the parameter of reward function (α) was
different. Fig. 9 shows the initial and acquired swing-up movements of the cart-pole at 30th
iteration.

6 CONCLUSIONS

In this study, we show that the target-reaching policies can be efficiently acquired by using
the previous experiences of the robot in the real environment. To improve the target-reaching
policy, we used recently proposed IW-PGPE algorithm [17]. We also evaluated the learning



Figure 9: Acquired behavior of humanoid robot in the cart-pole swing-up task.

performance with different parameter settings. Moreover, we introduced newly developed
real-virtual hybrid experimental setup and showed that the real humanoid were able to swing
up the virtual pole by using Wii controller. As a future study, we will consider to develop a
method to find the appropriate number of previously collected data that is used to improve
the current policy.
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