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Abstract— In this paper, a simple trajectory generation metod
for biped walking is proposed. The dynamic model ofthe five link
bipedal robot is first reduced using several biologally inspired
assumptions. A sinusoidal curve is then imposed tine ankle of
the swing leg's trajectory. The reduced model is ffially obtained
and solved: it is an homogeneous?order differential equations
with constant coefficients. The algebraic solutionobtained
ensures a stable rhythmic gait for the bipedal robb It's
continuous in the defined time interval, easy to iplement when
the boundary conditions are well defined.

Index Terms— Trajectory Generation, Biped Locomotion,
model reduction.

I. INTRODUCTION

Gait pattern generation [1] is one of key probleais
research devoted to bipedal robots. Two kinds ofkwso
dedicated to the bipedal walking pattern generatian be
distinguished: studies assimilating robots as efdang
models and works considering all morphological daftahe
robot, see [2] and references therein. For the &pproach,
the linear inverted pendulum model concept is tlostin used
concept in order to generate the gait trajectory4|35]. For
the second group of works attention is paid ongéeeration
of a trajectory tracking control using objectivendtion
composed of one or more terms to minimize [2, 6, 7]

In this paper, a simple trajectory generation meth®
proposed. The dynamic model of the five link bided#ot is
first reduced using several biologically inspirezbamptions.
A sinusoidal curve is then imposed to the ankl¢hef swing
leg's trajectory. The reduced model is finally amd and
solved: it is an homogeneou& arder differential equations
with constant coefficients. The solution gives dgehraic
solution for joint desired trajectories that ensume stable
rhythmic gait for the bipedal robot.

Il.  THE FIVE LINK BIPEDAL ROBOT

The planar bipedal robot prototype is composedef links
associated to five DOFFig.1 shows the involved rotations for
each link.All physical parameters involved in the kinematic
and dynamic models are given by Table 1. They rspiied
from [8]. The parametersmy,L;.k; and I, , (i =1..5), design
mass, length, position of center of mass and meatiout
center of mass, respectively.
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Figure 1. The five link bipedal robot

Tablel. Physical parameters of the bipedal robjot [8

. . Right . Left
link Right leg thigh Pelvis thigh Left leg
oint Right Right Right Left Left
! ankle knee hip hip knee
Link number 1 2 3 4 5
Mass (kg) | 5 755 7.000 | 24850 | 7.000 | 3.255
Lenght (m) | 4o¢ 0.42¢ 0.29¢ 0.42: | 0.42¢
Center of 0.164 0.366 1.530 0.366 | 0.164
mass(kg.m)
Inertia about
centre of 0.184 0.184 0.206 0.184|  0.184
mass (Kgrf)




Ill.  KINEMATIC AND DYNAMIC MODELING

The five-link bipedal robotic system with five degs of
freedom can be described by the following directeknatic
model:

X =h(6) @)

o=[6, 0, 0; 0, 65]'00° s joint

displacement vector, X =[x y] 0O%is the Cartesian

where the

position vector and h(9)OO? is a nonlinear function
described by:
(o) = {Ilcosel +1,cost, -1, cost, — |5 costs
l;sinéy +1,siné, +1,sind, +15sind;
The time derivative of the direct kinematic modg) gields
the following differential kinematic model:
X =3(0)0
where  x =[x y['is

&)

the Cartesian

é:[él 0, 6 0, G'SP is the vector of joint velocities and

J(0) is the so-called analytical Jacobian matrix gitsgn
J(H):(_lls"]el _|25|n92 |5$|n65j

I, cos,

0 I,siné,
0 I,cod,

A typical walking cycle may include three phase$ fhe
single support phase (SSP), the impact phase (iR)the
double support phase (DSP), (see Fig.2). In thisepave
focus only on SSP.

Using Lagrange approach [9], the dynamical modelthaf
bipedal robot in SSP phase is described by:

M ()6 + H (6,6) + G(6) = DU

|, cosd; ls coss

3)
where é:[él 6, 6y 6, @)},P is the vector of joint

accelera'[ion:tJ:[Ul U, Uz U, UJ is the vector of

velocity  vector,

Figure 2.The three phases of a typical walkingeycl
M3, = md ks cos@; —63)

M3, = md k3 cos@, = 6;)

M 3= mgk§ + I3

Mgy =J35=0

M1 = (myy(l; —Kky) +mdyl,) cosy +6,)

Mgz = (Myl5(14 —ky) + mdly) cosp; +6,)
M43 =0

Maa=my(ly —ks) +myld +1,

M5 = (M4 4(Is —ks)) cos, —05)

Ms; =md;(ls —ks) cos@; +65)

Ms, = md,(ls —ks) cos@, +0s)

Mgz =0

Ms, =md 4(Is —ks) cos@, —0s)

Mss = mg(ls —ks)* +1 5

h;,=0

hyp = (MJ 1Ky +mdyl; +mylil; +mdyl;)sin@, -6;)
hy3 = (MdK3)sin(®, - 65)

hy = =(M4y(l4 —k4) + Mgy, )sin(, +6,)

hy5 = =(mdy(I5 —ks))sin(®, + 05)

hp1 = =(Mdky + (Mg + My + mg)ll; )sin@, - 65)
hy, =0

hp3 = Md )k3sin@; — 65)

torque inputs,M(g)is the symmetric positive definite inertia 24 = ~(Md2(la =Kq) +md2l4)sin@; +06,)

matrix, H(0,0) is the vector of centripetal and Coriolis torque
and G(¢) is the vector of gravitational torques given byml

H(6,6) = [hJ]L G(0) =[G ]]sisS

M(0) =|M;; h<i<s5 , <i<5 ,
©) l ”Jislfss <is

where:

Mg = Mikf + 13 + (M, + My +my +mg)I

My, = (mJdik; + mdyl; + myll; +mdyl;) cos@; - 6,)
M3 =My ks cosp; — ;)

M4 =(m4y(14 —K4)) + md4l5 cOSE; +05)

M5 = md;(ls —ks) cos@y +65)

M1 = (MK, + (M +m, +mg)lyl;) cos@y —6s)
My = Mpk3 + 1, + (Mg +my +me)l 5

M 23 = md 5k c0s@, —05)

Moy =(mf (14 —ky) + mdl, cos@, +6,)

M5 =md,(I5 —ks) cos, +05)

s = —mMd 5(I5 = K5 )sin@, + )
=-mdk;sin@, —0;)
hg, = —md )k, sin@, —65)

s 25

hyy = =My (14 —kg) + md4l4)sin@; +6,)
hyp = =(My2(14 —k4) + md 5l4)sin@, +6,)
hys =0

hy, =0

hys = (Md 4(ls —ks)) sin@, - 0s)

hg; = ~(Mdy(Is —ks))sin(, + 65)

hs; = =(Mg (Is — ks)) sin(@; + 6s)

hs3 =My =0

hsy = =(Md 4(I5 — ks))Sin(®, —b5)



G = g(my +(m, +my +m, +mg ), )cosd,
G, = g(myk; +(my +my +my ), Jeosd,
G; = mygk; coH,
Gy = g(my(l, —k4) + mdl, Jeost,
Gs = g(ms(l5 —ks)) cos
1 -1 0 0O

01 -1 0O
D=lo 0 1 -1 0
00 0 0 1 Figure 3. Biologically inspired assumptions

IV. MODEL REDUCTION AND GAIT TRAJECTORYGENERATION ad(t):[eld(t) szd(t) 93’d(t) 04'd(t) 95,d(t)r
Hd(t):[gld(t) O24(t) G34(t) G44(t) Hs,d(t)]T

The purpose of this section is to reduce the nealimynamic Particularly the following relations are deduced:

model (3) into a solvable differential system irder to give

algebraic solutions of gait trajectories. The rextlmodel will éld(t): éz,d(t) (10)
be obtained as follows: the robotic system (3)irst fwritten _
. : _ b,4(t)=0 (12)
around an equilibrium point,, as [9]: 2 B
X=AX+BvV (4) 04q(t)=014(t) (12)
2
Osxs | x5 O 4 =0y 4 + 2(£] CO{ZEIJ 13
A=l .06 . B:{Of;ﬂ 5d =010 4 T T (13)
90 10 75 J°D By summing all the lines of the system (4) and gsihe
_ [0 U -U r relation (5), (10)-(13), the following reduced hogeaeous %
V=Yg eq order differential equations with constant coeffits is
x:[e—e 6—0 r obtained as:
eq eq

M lé:Ld (t) +H0 4 (t) =-K —=h(t) - s(t)

To generate joint desired joint trajectory vector:
. where:

04(t)= [‘9:Ld (1) 024(t) 024(t) 0aat) O (t)] My = (Myq+ Mgy + Mg+ Mg + M)
we assume, for the bipedal robot, the followingldgically e
inspired assumptions (see Fig.3): +2(M + Mgy + M5+ M5 + M 45)|9eq
Assumption 1: ZMP stability [10] is imposed. This is can be
ensured by assuming that: H, = (0_61 +6& +& +ﬁ]

U, =0 (5) 06, 06, 00, 06
Assumption 2: the supporting leg is kept straight as:

014(t)=0,4(t) O :—(O—Glﬁl+&02+&6’3+&04+%05J
Assumption 3: The bipedal robot must have an upright posture 06, 00, 00, 00, 005

that is to say, it keeps its back straight such tha

0-2 G HaoesZllos | s,
O3all)=5 00, 200, 2 0065 “
Assumption 4: the relationship between the right ankle joint “

and the left hip joint is imposed such that: h(t) =- 9Gs [coszzt)

04q(t)=61q(t)+a ®) 2005 T

wherea is a given constant angle to be chosen. 2

Assumption 5: To generate a rhythmic stable movement, the) :z(lj Mzcos(zltj
relationship between the right ankle joint and ki knee T T
joint is given by [11]: M, =Mc+ Mg+ M 5+ Mc,

- 2,7
054(t)= 0h4(t) =sin (?t) Solving (14) for the boundary conditions:
From the assumptions (6)-(9), we can then easitjude the Hl,d(to) =0,
desired velocity vector and the desired accelaeratiector
defined, respectively, by: 014 (t;) =0

(14)



and for the equilibrium poirit

0 :F ooz ET
B2 22 22
the analytical solution of the differential equatid.4) is given
by [12]:
K

Or4(t) =Ce™ +C7 +Cy co{2$tj -—

H, (15)

where :

K
C1:C2_H_+CS_010
1

1
G = erltf + erztf
2005 AT
T
—| M;-H
Tj 1 1

AJ—M;H
#, M,H,(0

1
To verify the algebraic solution (15) that askemther tedious
calculation two approaches are used: a symbolicpotettion
of the solution (15) using the symbolic toolbox Matlab
software and a numerical integration of the diffeiad
equation (14) using the ode45 function of the saofewvare.
The three solutions were found superimposed fompthesical
parameters given by Table 1.
Using the relations (15) and (6)-(9), the analytexgressions
of the joint trajectories are then deduced. We isepthen to
the robotic model (3) the following second ordeehr input-
output behavior [8]:

(60)- 8 0)+ K0 0) -0 0) + K 01) - 0u (1) =0

where K,00%%and K,00%%are two positive definite

(16)

diagonal matrices chosen to guarantee global gjalikesired
performances and decoupling proprieties for thetrodad

system and such that the desired trajectofigs 6, and are

derived from the solution (15) and the relationy(8. The
control law deduced from (3) and (16) is then gilsgn

U =DM ©){fs (1)~ K, 00~ 04 ) K (00) - 04 1)
+H(0,0) +G(0)]
Using the physical parameters given in tablel, jbiat

trajectories of the controlled biped robot are gatezl as see
by Fig. 4 where the desired joint position is desid by

04(t) =[teta,(t) teta,(t) tatat) teta,(t) tetaglt)]". The
walking cycle is shown by Fig.5.

17)

Compared to previous works [8], this paper giveslgebraic
solution for desired joint trajectories that mustfbllowed by
the robotic system. The result is a stable rhythmavement
for the planar bipedal system.
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Figure 4. Joint trajectories of the bipedal rolwothe swing phase
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Figure 5. The resulting walking cycle

V. CONCLUSION

A simple trajectory generation method is proposedfpedal
gait by imposing a sinusoidal curve to the ankleghef swing
leg's trajectory.
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