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Abstract

We develop autonomous agents fighting with each other, redgy human wrestling. For this purpose, we
propose a coupled inverted pendula (CIP) framework in whighips of two inverted pendulums are linked by a
connection rod, 2) each pendulum is primarily stabilizect®D-controller, 3) and is additionally equipped with
an intelligent controller. Based on this framework, we dyizally formulate an intelligent controller designed to
store dynamical correspondence from initial states to fitetes of the CIP model, to receive state vectors of the
model, and to output impulsive control forces to producerdddinal states of the model. Developing a quantized
and reduced order design of this controller, we have a maatbntrol procedure based on affi-line learning
method. We then conduct numerical simulations to investigadividual performance of the intelligent controller,
showing that the performance can be improved by adding § é&aent into the intelligent controller. The result
shows that the performance depends not only on quantiza&smutions of learning data but also on delay time of
the delay element. Finally, we install the intelligent cqoliers into both pendulums in the proposed framework to
demonstrate autonomous competitive behavior betweent@/pendulums.

Key words : Multiagent System, Competitive Problem, Intelligent @oh Nonlinear Dynamics, Reachable Set

1. Introduction

Wrestling seems to be composed artificially of two mechdrdgants maintaining their balance, coupled via me-
chanical interactions such as contact, connection, @oiljisetc., and equipped with intelligent controllers cotitpe
with each other. In this paper, we develop a simple modeldatersuch competitive agents. For this purpose, we propose
a coupled inverted pendula (CIP) framework in which: 1) tpswo inverted pendulums are linked by a connection rod,
2) each pendulum is primarily stabilized by a PD-contreBgrand is additionally equipped with an intelligent cofigo
that individually generates a series of impulsive intefoedes to achieve its own desired final states based on kdgele
of correspondence from initial states to the final states.

In general, multiple agents can exhibit competitive andpewative dynamics when sharing common resources and
environments. Historically, early mathematical insigint® such mutual interactions seem to have appeared in #t fil
of mathematical ecology (Hofbauer and Sigmund, 1998) inctviiopulation dynamics of fierent species sharing a
common environment is described by a system of coupled mesulidiferential equations such as the Lotka-\Volterra
equation. Contrary to the ecosystem in which the mediumtefattion is given by environments, in our CIP framework,
the medium of interaction is given by a mechanical structure our previous study (Yoshida and Ohta, 2008), we
have already demonstrated that the CIP model, even witindeitigent controllers, can produce competitive dynamics
comparable to that in the ecosystem such as coexistenceamdahce by assigning competitive meanings to the stable
equilibriums of the CIP model. Although quite similar menfeal models have been considered in the field of multiple
manipulator systems (Hsu, 1993; Nakamura et al., 1987; Bastwal., 2012), they have only focused on cooperative
dynamics because of their aim at developing coordinateébm®in those systems.
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In our study mentioned above (Yoshida and Ohta, 2008), eactiygum is PD-controlled to be bistable at the top and
bottom dead points such that the coupled system producesagstability. In absence of additional inputs, this syste
converges into one of the four stable positions (equilitasy depending upon the initial conditions. We then applied a
single impulsive force to one of the pendulums to generatieking behavior from a given stable position to a desired
stable position and considered it as a prototype of fighlikgbehavior. In this prototype, however, the behavioxiaaly
determined by the initial position and strength of the inggubecause of uniqueness of solution dfeslential equation.
Therefore, it is quite hard to say that this first prototypedmparable to the wrestling players who seek how to generate
internal forces to achieve desired final positions in autooas ways.

In order to build such autonomous agents fighting with eabhbroa certain intelligent motion controller is required.
On such controllers, extensive research has been condinctkd field of multi-robot systems (Maravall et al., 2013;
Pagello et al., 1999). The major issue in this field appeaisetbow to obtain cooperative group dynamics of robots
both in algorithm-based approaches (Stone and Veloso,) 200@Din diferential-equation-based approaches (Hsu, 1993;
Nakamura et al., 1987; Panwar et al., 2012).

On the other hand, competitive group behavior seems to hewe btudied mainly based on algorithm-based ap-
proaches. For example, Nelson et al. (2004) studied an @wohry controller to investigate a form of reinforcement
learning that makes use of competitive tournaments of ggrobst capture the flag) played by individuals in a popula-
tion of neural controllers. Moreover, Wu et al. (2013) deypsd rule or knowledge-based techniques to analyze syrateg
in robot soccer game. In this way, in contrast to our appr¢#obkhida and Ohta, 2008),ftierential-equation-based tech-
nigues are not always essential in these studies becayseettlestep-by-step algorithms predicting free space m@ted
by other robots.

In this paper, we first introduce the CIP framework to destie competitive behavior in fiiérential-equation-
based manners. Next, we develop a competitive intelligentroller that receives state vectors of the CIP model and
outputs impulsive control forces to produce desired firetkest After evaluating individual performance of the iligeint
controller and investigating how to improve the performmnee will demonstrate autonomous competitive behavior
between two inverted pendulums equipped with the propagedigent controllers.

2. Coupled inverted pendula framework

2.1. Coupled inverted pendula

In order to create wrestler-like mechanical agents maiigitheir balance while being coupled mechanically with
each other, we consider a CIP model (Yoshida and Ohta, 2@0&)@vn in Fig. 1. Each inverted pendulum consists of a
cart moving along the horizontal flooY (= 0) and a simple pendulum rotating about a point on the cartsifaplicity, a
common physical specification is given to both of the penahslwheremy is a mass and is a length of the pendulum,
andmy is a mass of the cart. Linking the tips of the pendulums witlisaoelastic connection rod of lengih we obtain
the CIP model in Fig. 1 wher§; is an input torque o#;, f; is a reaction force acting on the tip i pendulum, and,,
andc, are a spring cdécient and a viscous friction céiicient of the rod respectively. We assume that a mass of the rod
is negligible. As configuration of this linkage is uniquelgtdrmined by the four variables: horizontal displacemehts
the cartsq, x, and slant angles of the pendulugss,, the dynamics of this linkage is described by the eight-disienal
state vector:

x:= (%), xi= (% %.6,6)" (i=12), 1)

whereAT denotes the transpose of a mathixAccording to Lagrangian mechanics and assuming viscactgfn forces
CxX andcyd; on x; andé; respectively, we obtain equations of motion (EOM) of the @I&del in Fig. 1 as follows:

{(mx +My)% + (Myr costh)é; — myré? sing, = —cx% + (1, 0)f;, @)

(Mmyr cos8)% + (Myr)é; — Mygr sinG, = —cy6; + r(coss;, -sing)f;+Ti (i=12),

whereX := dX/dt.

2.2. Reaction force from the connection rod
We calculate the reaction force, spyfrom the connection rod as shown in Fig. 2. The displacemectbrw from
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Fig. 1 Coupled inverted pendula model via viscoelastic ection. Fig. 2 Reaction forcep from the connection rod.

the left-hand tip to the right-hand tip of pendulums is gitsn

Clwx| oy P& _[xi+rsing |
| e T o] B i N R e
and the length of rod is expressed as
w = [l = V{(X2 — X2) + r(sin6; — sin61)}2 + {r(cCostz — costy)}? (4)

with the time derivativev = (wxwx + wywy)/w. Then, we model viscoelasticity of the connection rod as
p = llpll := —ku(w — wo) — Cyw, (5)

whereuwy is a natural length of the connection rod. As the force veptisrparallel to the displacement vectoywe have
the reaction force:

p=(p/ww. (6)
Substitutingp into the EOM (2) through,
fi=-p. fy=p (or fi=(-1)p) (7)

we obtain an analytic expression of the CIP model shown inFiga the viscoelastic connection.

2.3. Modeling floor

In the previous study (Yoshida and Ohta, 2008), the pendelmfall down freely to the bottom dead point, in other
word, there was no floor in the previous CIP model. In that dagth of forward and backward falling motions converge
to the same equilibrium of the model so that orbital inforiorais required in order to detect the direction of fallingotN
only to simplify the detection process but also to developeamealistic simulator of wrestling, we introduce the floor
model to the CIP model in the following manner.

Based on penalty methods (Moore and Wilhelms, 1988), werfislel a normal forc® from the floor {f = 0)
acting on the tip ofth pendulum as

R = U(=Y){-kiYi - cr i), ®)
whereY; is a height of theth tip from the floor in (3)U(-) is a unit step function, ankk, c; are viscoelastic parameters

representing property of the reaction. In practice, in otdeavoid numerical errors, we approximate the step functio
with a sigmoid function dterentiable, defined by

Ue(9) = {1+ explo9))™, )

where lim,_,. U(s) = U(s) holds.
Furthermore, a Coulomb friction fordg acting on thath tip from the floor can be expressed as

Fi = —uR sgn), (10)
wherey is a friction codficient, X; is a relative horizontal velocity of thi¢h tip from the floor, and sgn( is a unit signum

function whose smooth approximation can be given by ga@sgn,(s) := 2U,(s) — 1.
Therefore, the CIP model via the viscoelastic connectiqf@)ron the floor can be obtained by substituting

fi=(-1)p+ (Fi,R)T (i=12) (11)
into the EOM in (2).
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Fig. 3 Competitive interpretation of the equilibriums. Fig. 4 Architecture of the proposed control system to gerera

competitive motions.

2.4. Standing control with falling

The CIP framework in absence of intelligent controllersaspleted by giving dynamical meanings of winning and
losing to states of the CIP model. To this end, we begin witretiping a feedback controller by which each inverted
pendulum on the floor forms three stable equilibriushs: O for standing or winning anél = +r/2 for falling or losing.
This can be done by introducing a feedback controller in tlewwing form:

Ti = U™ := trap, (6; A0)(—Kpbi — Kabi) (i = 1,2), (12)
where
trap,(6; A6) := U, (6 + A6) - U, (-0 + A) (13)

is a smooth trapezoidal function of unit height and centertsd= 0 made of a product of the sigmoid function in (9),
A8 > 0 is a half width of the trapezoidal shape, and the shape imgeteeper as increases.

It follows from the deadband characteristics in (12) nhfzgtsimply acts as a PD controller within the linpf| < A8
while it rapidly cuts df the output outside of the interval. Therefore, approprigiting of the gainkp, Kq make it
possible for theéth pendulum to be stabilized about the standing positien0 while to be falling down to the floor when
|6;| exceeds the given limi6.

It is worthy to note that in the field of gerontology and rethfeelds, human standing (or falling) limits comparable
to the threshold\d have been measured by thuactional reach test (Duncan et al., 1990) in which theftBrence between
arm length and maximal forward reach of human subjects isuored to evaluate risk of falls of them.

2.5. CIP framework

In what follows, we compare the inverted pendulums in thislel®o wrestler-like agents maintaining their standing
balance. Since each agent with the standing control in (&2)tthe three stable equilibriums, a pair of the agents being
coupled with each other under the suitable conditions cadyme 3x 3 = 9 stable equilibriums:

w; = lim x(t) = (5.0, 61,0, %,0,6,,0)" (i=1,---,9), (14)

as shown in Fig. 3 when equating horizontal translationsnafl fpositionx;, x, without loss of generality. Namely, the
components; (t), xo(t) of the solutionx(t) of (2) are not stable asymptotically but neutrally becauseestoring forces
on x(t), xo(t) are assumed by definition. It also should be noted that dtieetpenalty method in (8), the gravity force
makes the equilibriung on the floor slightly exceed the floor, i.¢8 — 7/2 > 0, but we formally denoté; = 6 = +x/2
because this slight exceedance onffieets almost converged states and does not change the andese from the
initial to final states.
We then attach competitive meanings to the nine equilibsias listed in Fig. 3 in which the agent that remains

standing is regarded as a winner. Eventually, we hav€tRdramework composed of the set of (A) and (B):

(A) The CIP model: the system of equations defined in (2), étit) (12).

(B) The win-loss matrix: the competitive interpretationtioé nine equilibriums defined in Fig. 3.
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3. Intelligent controller

Based on the CIP framework in Section 2.5, we develop anligeelt controller (IC) to produce desired final posi-
tions in Fig. 3 from given initial states of CIP by generato@gtain impulsive forces.

3.1. Problem setting and requirements
According to the definition of the state vector= (x], xg)T in (1), the CIP model in (2) can be expressed as an
eight-dimensional dynamical system:

x=f(xT), x(0)=xo, T:=(TeT)" (15)

that can be divided into a pair of four-dimensional subsyste

X1 = fq(Xq, X2, Ty),
.1 1(X1, X2, T1) (16)
X2 = fo(x2, X1, T2).

We introduce the IC by adding an intelligent control inpiﬁtto the torqueT; of CIP model as

T = uPd 0 = (%W + (U, U9, (17)

Whereu{)d is the standing control input already given in (12).
In the present study, the input-output relationship arauj‘hm designed as shown in Fig. 4, in whiuﬁ receives all
the state vectors;, x, and outputs a series of impulsive forces given by

) N .
uc() == 3 Pilac(t - t), (18)
ji=1
where
A7)t (0<t< A7),
(= {47 ©0=t<AD 19)
0 (otherwise)
is a rectangular function of unit area of widtlr < 1, P; is an angular impulse of the input torqugé(t), and{t!, - ,tN}

is a series of rise time satisfying

th<t?<.<th, mf|i1x|tij ~t > 76 > Ar, (20)
i
whererg is a relaxation time to avoid overlapped outputs.
In practical implementation, the rise timgs--- ,tN are supposed to be determined sequentially by a real time
architecture described in Fig. 5, which is composed of tls@aponents, a classifi€l, a selectoiS;, and an impulse
generatolG.

3.2. ClassifierC
We define the classifigE as a function from a state vectar= (x/, x;)T at the timet = to, sayX(to) = &, to an

index numbew of equilibriumw,. The functionC takes the valu€(&,) = v if a solution of the following system:

Pﬂmﬂ—bq

(21)

x=f(xT), Xto) =&, T::upd+[ 0

converges to the equilibriuw,. From this definition in which a single impulsetat t; is applied only on the left-hand
agent, it is implied that the classifi€ris valid only in absence of additional inputs, in other wgitigan fail to return
correct equilibriums for more general cases of input as &) {lhere both agents can produce impulsive forces for their
own decisions. Despite that, we will proceed with a discus$d build a first prototype of artificial wrestling.

Consider the transition operator of a solution of (21) as

X() = ¢(&o. T), (22)
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Fig. 5 Intelligent controller. Fig. 6 Impulse generator.

and define a set of the initial stafg approaching the equilibriura; as
= {¢ € R | im g (&0, T) = @i} (23)

The setd; is generally called a basin of attraction (Lhommeau et @112 or a reachable set (Bayadi et al., 2013). It
follows from uniqueness of solution of initial value proivién (21) that the reachable set in (23) satisfies,

ONDd =0 (i #]) (24)
Thus, the classifie€ is obtained as a single-valued function:
C(&p) :=v if & e, (25)
In Section 3.5, we will discuss a humerical approximatiorColbecause explicit expressions @f-) are hardly

obtainable from nonlinear systems such as (15) and also (21)

3.3. Selectors;
In the competitive problem in Fig. 3, some of the equilibraiare selected depending upon strategies of the agent
considered. Such a selection process can be modeled byctos&8lggiven by

1 (velcil---.9),
(S = S = 26
10) {0 (otherwise) (26)

wherev = C(x) is an output of the classifier anfdis a given subset of indices of the equilibriums, - - - , wg. For
example, the trajectory(t) in (21) starting from an initial stat&, satisfying

(S10C)(&) :=Si(C(&p)) =1 for J=1{2.3) (27)
converges one of the two equilibriuras andws.
3.4. Impulse generatorG
The impulse generat@ is designed to receive the binary sigaé) = Sy(v(t)) from the selector and output the unit

impulseG(t) as shown in Fig. 6, which is composed of a two-input AND gatd &wo timer functionsl, andTg. The
timer T, produces a unit impulse as

G(t) = T () = Iac(t - tr), (28)

and the timefTg cuts df the binary signab(t) = Sy(v(t)) for a given relaxation timeg discussed in (20) as

0t <t<t +70),
Te(®) = {1 (otherwise) (29)

wheret; is the rise time from 0 to 1 of the Boolean prodaitt) = S;(v(t)) A Te(t). Note that although the sign&(t) can be
pulses of infinitesimal width in this continuous time exsies, this problem will never arise in discrete time applmas
with digital computers.
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3.5. Numerical approximation of the classifierC

Explicit expression ofZ(x) is hardly obtainable from nonlinear systems such as (1t53eeéms that there are two
types of solutions: solving (15) in process or making a nuicaétable of the mappin@ : x — v in advance. We take the
latter approach in the following manner.

For practical applications, we introduce a linear measergraquation:

y=Hx, yeR" xeR, (30)
whereM < 8 andH is aM x 8 matrix of rankM, and define a reduced-order reachable set in the followingese
i = H(@) = {1 € R" | & = (o) € R, im (&, T) = i}, (31)

wherex’ = h(y) (# x in general) is a certain inverse pf= Hx. An actual example df will be given in Section 3.6.
Firstly, we take av-dimensional cubic regioB of measuring range within a direct sum of the reachable sets a

9
P wi>D:=lanbul x--- x[aw, -, bu] (32)
i=1

whered] represents a direct sum (disjoint union) aagh] denotes an interval. We divide it into a direct sum of urifor
subcube®' as

Dz@{Di|ie]l:[l,---,ml]x---x[l,---,mM]}, (33)

wherel is a space oM-dimensional indices anah; is the number of subcubes in tljia direction. We then define center
points of the subcubeg € D' (i € T) whosejth component is given by
bj —aj

W)=+ (- 3) 252 (34)

mj

where ¢); denotes thgth component of a vector
The setup above allows us to build a numerical method asaisllo
(1) As an diline learning procedure, the mappi@g
Cli):=v if lim #(h@).T) = w, (352)
is numerically stored by solving (21) frog = h(y').
(2) Within the IC in process, the classifieris quantized byC* as

C(x) ~ C*(x) := C(i) for i suchthatHx e D'. (35b)
In this method, accuracy of the classiftét depends on the dimension of measuremdnthe size and placement of
measuring rangeaj, b;], and the resolution of quantization of reachablersg(j = 1,- - - , M).

In summary, we have obtained the IC for the left-hand ageat@smposed function of the quantized classi@ér
the selectofsy, and the impulse generat@; which results in the closed-loop form:

U = Uf(x(t); J) := P1- (G o Sy o C*)(X(1)). (36)

If M = 8 andrg is suficiently large, it is implied that the solutiox(t) in (21) starting from any initial states in
D undergoes an impulsive force at the time tp that uif decides autonomously and that it converges to the stable
equilibriums specified by, under the resolution limit, mjm;) — co.

3.6. Reduced-order design of measurement for rigid conneion

The connection rod can behave like a rigid rod if the viscetedgparameterk,, ¢, are stficiently large. For the rest
of this paper, we restrict our problem to this nearly rigichection. Although human wrestling involves more flexible
interactions between agents, this allows us substantialleduce the computationafferts as follows. In this case,
dependency between displacements and velocities of thkdefl and right-hand carts is imposed in the following form

Xo = Xo(X1, 01, 02) = X1 — r(Sinfy — sinéy) + \/wg —r2(cosf, — cosh1)?, (37a)

r2(cosf, — cosy)(62 Sind, — 61 sinéy)

Xo = Xo(Xa, 61, 01, 62, 62) = %1 — 1 (6 COSH, — 61 COSHy) + . (37b)

\/wg — r2(cosb, — cost;)?




MQVIC2014 VoLX, No.X, XXXX

Table 1 Parameter setting of the CIP model. Table 2 Parameter setting of the four-dimensional IC
and numerical integration.
Parameters Values
my mass of pendulum 0.68 kg Parameters Values
m, mass of cart 0.067 kg Qmax Maximal strength of impulse 0.06 Nms
g acceleration of gravity 9.8/ P;  strength of impulse of the 1st IC = Qmax
r length of pendulum 0.3m P, strength of impulse of the 2nd IC = —Qmax
Cx Viscous cofficient alongx 0.01 Ngm At width of impulse = At
cy Viscous cofficient about) 0.01 Ngm 7c relaxation time of impulse generator= At
wo natural length of connection rod 1m D  region of measurement —.13,0.43] x [-3.28,10.58]
k, spring codficient of connection rod ~ 5000/k x[-0.35,0.31]x[-3.80,5.15]
c, Viscous cofficient of connection rod 50 N®m At step size of numerical integration ~ »510™* s
ki spring codicient of floor 500 Nm
¢t viscous co#icient of floor 10 Ngm Free parameters
1 Coulomb friction coéicient of floor 0 m  resolution of numerical classifier m{ := mfor all j)
o steepness of step function 10 Q strength of impulsive disturbance
a steepness of trapezoidal function 25 79 delay time of delay element

Kp proportional gain of standing control 1
Ky derivative gain of standing control ~ .@L
A6 threshold of standing control n/6 rad

wherew = wg > 2r is a constant length of the rigid rod. Then, a loss-less $esdback to IC can be done by the
following measurement:

y = HX = (X].» ).(19 017 ély 027 éZ)Tv H = [eg(s)» e(26)7 e:(ge)y 6516)9 0(6)9 0(6)9 e(56)7 e((se)] ) (38a)

Whereel(d), 09 denote théth standard basis vector and the zero vector in Euclidearefdaespectively. A corresponding
inverse satisfying the rigid constraint can be defined by

h(y) = H*y + Xo(X1. 01, 62)€ + %o(%1, 61, 61, 62, 2)€Y, (38b)

whereH™" is the Moore-Penrose pseudoinversetbf This measurement reduces computatiortédres to obtain the
quantized reachable sets®in (35a) fromO(mP) to O(mP) with respect to the resolution of quantization
In the following numerical examples, we perform a furthetuetion of order given by

y=Hx=(01,01,0,,0)", H=[0 0% e e o d el e, (39a)

(8)

h(y) = H+y + X167 + Xlegg) + XZ(X]_, 61, 92)8538) + 5(2(5(1, 01, 91, 92,92)6%8) with x; = X1 = 0. (39b)

Although this measurement ffers complete loss of information about the cart moti@nx; (and x,, X, via (37)), it
reduces the computationaterts intoO(nt*). In this paper, we employ this four-dimensional measurgrirepriority to
reducing the computationatferts. Moreover, in this four-dimensional measurement,cdmatrolleruif(x;J]) originally
designed for the left-hand agent can symmetrically be ktmethe right-hand agent by a transformation:

UG T) == US (X3 ), Ppi= P, X =4, x)T, (40)

where]’ = {4, 7} for J = {2, 3} due to the transpose of the<33 matrix ofw; in Fig. 3.
4. Numerical investigation

We conduct numerical experiments to evaluate performahtteedour-dimensional IC of the measurement in (39).
For simplicity, in what follows, we set the resolution of quatization to a common valuefor all j. The parameter values
used in the following examples are listed in Table 1. The mayslimensionsry, m, andr are roughly collected from the
commercially available inverted pendulum (ZMP INC., 201B)r numerical integration, the fourth-order Runge-Kutta
Gill method is employed with the time stey listed in Table 2.

4.1. Individual performance of IC
In order to investigate individual performance of IC, wetftensider impulse responses of the CIP model in (15)

equipped with the IC in the left-hand only given by

Uif(X(t)Jl)] N

T=u+u+p=uPd+ 0

Ug)}’ o(t) = Qlac(t), J1:=1{23}, (1)
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whereuPd is the standing controller in (12Q is an impulse of initial disturbanceilc is the four-dimensional IC developed
in (39), andi s (t) is the unit impulse function defined in (19).

In the following numerical examples, we assume the maxitmahgth of impulseQmax = 0.06 so thaw(t) cannot
produce switching motions from the trivial initial staxé0) = o® + woeég) (or wy) to the other stable states in order to
avoid trivial switching motions. Following this assumptjdhe region of measuremebtis taken as listed in Table 2
so that it circumscribes at least all the trajectogié3$ = Hx(t) for the maximal disturbanc® = Qmax. We also set the
strength of impulse of IC to a common valBe = —P, = Qmax to avoid the trivial switching motions mentioned above.
Note that under the conditions kyf andc, listed in Table 1 and fo® < Qmax, dynamic change of length of the connection
rod in (41) is limited tquw(t) — wo|/wo < 0.01 so that the measurement in Section 3.6 is expected to work.

Solving (15) with (41) numerically from a trivial initial ate x(0) = o® + woeg” for a givenQ, we have the corre-
sponding final positiom, and obtain correspondence fraddto v as plotted in Fig. 7 for the resolution = 50 whereQ
is taken atNg = 100 points with uniform increment over the interval (da. The small circles represent the results of
v(Q) in presence of the IC’s outputs and the cross marks reprédsese in absence of the outputs due to wegk

To evaluate the performance, we define a success rate inlthwifig form:

E=EQ):=Ny/(No-No) (0<E=<1), (42)

whereNj is the number of points o at which lim_,. X(t) = w, for all v € J andNy is the number of points in absence
of the IC’s outputs. The success rate of the resultier 50 shown in Fig. 7 is calculated &= 0.165. Also, the rate for
m = 100 can be obtained &= 0.305 in the same manner. Therefore, it appears that our I®hagdrformance.

4.2. Performance improvement with a delay element
One of the reasons of the low performance above can be egglairig. 8. The colored areas represent the quantized
reachable sets:

v, = P{0[Cli)=viel (=19 (43)

plotted on the hyper plane that contains the paiftf) on the phase trajectory at which the IC’s output occursi¢ated
by the cross mark). The resolutions of quantization of rabtéhsets aren = 50 for Fig. 8 (a) andn = 1000 for Fig.
8 (b). In the low resolution case in Fig. 8 (a), it can numdlyche clarified thatx(t;) belongs to the reachable SE}
(in red) of w, while x(t) (t > t;) actually converges tw, (# wy). Such misclassification can be refined by the high
resolution as shown in Fig. 8 (b). In this case, the paiftt) is primly classified into¥; (in blue) of ws. Although
in theory, taking a sfliciently large resolutiom provides nearly exact reachable sets, it greatly enlargegpuatational
efforts. Another approach to reduce the misclassification igptace the quantized reachable8gin (43) of w; with a
subsetl? ;= ¥ - A¥ whereA¥; c ¥} is a set of border points neighboring the other ﬁthj # i). However, extracting
the border points is not necessarily easy because the tdad®s sometimes exhibit nested structures as discugsed b
one of the authors (Yoshida, 2009). Actually, in Fig. 8 (h)ite narrow region o] (in white) appears betwee¥; (in
red) and¥’; (in blue).

Therefore, let us take yet another approach by replacintfthath a delayed IC (DIC) in the following form:

ude(x(t); J.7%) = u(x(t - 7% J) (i =1.2), (44)

wherer? is a delay time. It seems reasonable to expect that a trajeatmut to crossing a course-grained border of a
reachable set reaches the true border soon. Figure 9 shewsdbess raté corresponding to this replacement given by

dic . d
T :uPd+[U1 (X(?{Jl’T) vo, I1i=(2,3) 43)

whereE is averaged over the two types of initial disturbang@} = (u(t), 0)T and(0, v(t))T, and the other procedures of
obtainingE are the same as in Fig. 7. In Fig. 9, the triangles and thessirelpreser as functions of the delay time
of DIC in (44) form = 50 and 100 respectively. It is clearly seen that the funst®n?) are nearly concave down. The
maximal values ar& = 0.392 atr = 0.0045 ancE = 0.683 atr = 0.0025 form = 50 and 100 respectively. Therefore,
the DIC roughly doubles the success rate, nameB920.165~ 2.38 form = 50 and 0683/0.305~ 2.24 form = 100.
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Fig. 7 Index of final statey, as a function of the strength of initial disturbar@dor the resolutiorm = 50.
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Fig. 9 Success rate as functions of the delay timé' of DIC in (44).
4.3. Competitive behavior
In this final section, we install the DICs into both sides oftollers as
dic . d
uetx(t); J1, v
T=uldy é.( 0: 31 3) +u, J1=1{2,3}, J2:={4,7}, (46)
u2|c(x(t); Jo2, 72)

whereuP? is the standing controller in (12)d° andud® is the four-dimensional DIC in (44) through (40), an(d) =
(v(t),0)", (0,v(t))" are initial impulsive disturbances of strengras shown in (41). The competitive meaninggoaind
J» are shown in Fig. 3.

Figure 10 shows a competitive behavior between the normald€&x(t); J1, 0) = u°(x(t); J1) for m = 100 and the
DIC with optimal delay timeugic(x(t); J2,0.0045 for m = 50. The time responses in Fig. 10 (a) are obtained by solving
(15) with (46) fromx(0) = 0(8)+w0e£.)8) under the conditions listed in Table 1 and Table 2 by applifiegnitial disturbance
o(t) = (u(t),O)T with Q = 0.0186. The same solution is plotted in Fig. 10 (b) as a motiothefCIP mechanism. For
convenience, we refer to the former IC as “IC100” and therlase'DIC50”.

Itis shown in Fig. 10 that the ICs above generate the impeisbntrol forces autonomously to make the CIP system
drop intow,. According to the competitive interpretation in Fig. 3 iivepg by some kind of wrestling match, it can be
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Fig. 10 Competitive behavior for IC100 vs DICng(: 0.0045).
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Fig. 11 Index of final state, as functions ofQ for IC100 vs DIC50 fg = 0.0045).

said that “the left agent wins by pulling the right agent.”

Figure 11 shows the result of competition. The plots areinbthin the same manner as those in Fig. 7, except that
in Fig. 11, the open and filled circles represent the resaits(f) = (v(t), 0)" and(0, o(t))" respectively, and that the cross
marks represent the results in which neither of IC100 anddDIroduces its own output. Similar to the individual case
in (42), we define the success rate of this competition as

Ei=EJi):=N;/(No-No) (0<E <1) (i=12), (47)

whereNg = 100x 2 is the number of all plots in Fig. 1N is the number of trials in absence of the IC’s outputs (cross
marks), and the definition &y, is the same as that of; in (42). From the result in Fig. 11, the success rates arergduta
asE; = 66/167~ 0.395 for IC100 ande, = 96/167~ 0.575 for DIC50. Therefore, it is shown that at least based en th
present definition of competition and success rate, thepeegnce improvement using time delay is moffe&ive than
that doubling the quantization resolution without the tidetay.

5. Conclusion

In this paper, we discussed a competitive problem in whiclehagrical agents are fighting with each other and
formulated it as the set of: (A) the nonlinear dynamical Medth nine stable equilibriums and (B) the matrix descripin
competitive interpretation of these equilibriums. Basedhis framework, we proposed a competitive IC that receives
state vector and output the impulsive forces to make the etitopfall down. Developing a quantized and reduced order
design of the controller, we derived a practical controlgeure along with anféline learning method. To investigate
performance of the controller in individual use and also amgpetition use, we conducted numerical experiments and
obtained the following results:

e Theindividual performance of IC depends on resolutionsiefquantized reachable sets.
e The individual performance of IC can be improved by addirgdklay element into the IC.
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e Toimprove the competitive performance of IC, adding thegelement may become moréextive than refining
the resolutions.

In future work, we plan to investigate a further order reéhutbf measurement based on time delayed embedding
methods and to improve classification accuracy by applyiaghime learning techniques. We also plan to conduct com-
petitions between humans and the proposed ICs. Moreovdicapon of position control to the carts will be considére
to investigate competitive problems in a bounded area.
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