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Abstract
We develop autonomous agents fighting with each other, inspired by human wrestling. For this purpose, we
propose a coupled inverted pendula (CIP) framework in which: 1) tips of two inverted pendulums are linked by a
connection rod, 2) each pendulum is primarily stabilized bya PD-controller, 3) and is additionally equipped with
an intelligent controller. Based on this framework, we dynamically formulate an intelligent controller designed to
store dynamical correspondence from initial states to finalstates of the CIP model, to receive state vectors of the
model, and to output impulsive control forces to produce desired final states of the model. Developing a quantized
and reduced order design of this controller, we have a practical control procedure based on an off-line learning
method. We then conduct numerical simulations to investigate individual performance of the intelligent controller,
showing that the performance can be improved by adding a delay element into the intelligent controller. The result
shows that the performance depends not only on quantizationresolutions of learning data but also on delay time of
the delay element. Finally, we install the intelligent controllers into both pendulums in the proposed framework to
demonstrate autonomous competitive behavior between inverted pendulums.
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1. Introduction

Wrestling seems to be composed artificially of two mechanical agents maintaining their balance, coupled via me-
chanical interactions such as contact, connection, collision, etc., and equipped with intelligent controllers competitive
with each other. In this paper, we develop a simple model to create such competitive agents. For this purpose, we propose
a coupled inverted pendula (CIP) framework in which: 1) tipsof two inverted pendulums are linked by a connection rod,
2) each pendulum is primarily stabilized by a PD-controller, 3) and is additionally equipped with an intelligent controller
that individually generates a series of impulsive internalforces to achieve its own desired final states based on knowledge
of correspondence from initial states to the final states.

In general, multiple agents can exhibit competitive and cooperative dynamics when sharing common resources and
environments. Historically, early mathematical insightsinto such mutual interactions seem to have appeared in the filed
of mathematical ecology (Hofbauer and Sigmund, 1998) in which population dynamics of different species sharing a
common environment is described by a system of coupled nonlinear differential equations such as the Lotka-Volterra
equation. Contrary to the ecosystem in which the medium of interaction is given by environments, in our CIP framework,
the medium of interaction is given by a mechanical structure. In our previous study (Yoshida and Ohta, 2008), we
have already demonstrated that the CIP model, even without intelligent controllers, can produce competitive dynamics
comparable to that in the ecosystem such as coexistence and dominance by assigning competitive meanings to the stable
equilibriums of the CIP model. Although quite similar mechanical models have been considered in the field of multiple
manipulator systems (Hsu, 1993; Nakamura et al., 1987; Panwar et al., 2012), they have only focused on cooperative
dynamics because of their aim at developing coordinated motions in those systems.
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In our study mentioned above (Yoshida and Ohta, 2008), each pendulum is PD-controlled to be bistable at the top and
bottom dead points such that the coupled system produces quadra-stability. In absence of additional inputs, this system
converges into one of the four stable positions (equilibriums) depending upon the initial conditions. We then applied a
single impulsive force to one of the pendulums to generate switching behavior from a given stable position to a desired
stable position and considered it as a prototype of fighting-like behavior. In this prototype, however, the behavior is exactly
determined by the initial position and strength of the impulse because of uniqueness of solution of differential equation.
Therefore, it is quite hard to say that this first prototype iscomparable to the wrestling players who seek how to generate
internal forces to achieve desired final positions in autonomous ways.

In order to build such autonomous agents fighting with each other, a certain intelligent motion controller is required.
On such controllers, extensive research has been conductedin the field of multi-robot systems (Maravall et al., 2013;
Pagello et al., 1999). The major issue in this field appears tobe how to obtain cooperative group dynamics of robots
both in algorithm-based approaches (Stone and Veloso, 2000) and in differential-equation-based approaches (Hsu, 1993;
Nakamura et al., 1987; Panwar et al., 2012).

On the other hand, competitive group behavior seems to have been studied mainly based on algorithm-based ap-
proaches. For example, Nelson et al. (2004) studied an evolutionary controller to investigate a form of reinforcement
learning that makes use of competitive tournaments of games(robot capture the flag) played by individuals in a popula-
tion of neural controllers. Moreover, Wu et al. (2013) developed rule or knowledge-based techniques to analyze strategy
in robot soccer game. In this way, in contrast to our approach(Yoshida and Ohta, 2008), differential-equation-based tech-
niques are not always essential in these studies because they seek step-by-step algorithms predicting free space determined
by other robots.

In this paper, we first introduce the CIP framework to describe the competitive behavior in differential-equation-
based manners. Next, we develop a competitive intelligent controller that receives state vectors of the CIP model and
outputs impulsive control forces to produce desired final states. After evaluating individual performance of the intelligent
controller and investigating how to improve the performance, we will demonstrate autonomous competitive behavior
between two inverted pendulums equipped with the proposed intelligent controllers.

2. Coupled inverted pendula framework

2.1. Coupled inverted pendula
In order to create wrestler-like mechanical agents maintaining their balance while being coupled mechanically with

each other, we consider a CIP model (Yoshida and Ohta, 2008) as shown in Fig. 1. Each inverted pendulum consists of a
cart moving along the horizontal floor (Y = 0) and a simple pendulum rotating about a point on the cart. For simplicity, a
common physical specification is given to both of the pendulums wheremθ is a mass andr is a length of the pendulum,
andmx is a mass of the cart. Linking the tips of the pendulums with a viscoelastic connection rod of lengthw, we obtain
the CIP model in Fig. 1 whereTi is an input torque onθi, f i is a reaction force acting on the tip ofith pendulum, andkw
andcw are a spring coefficient and a viscous friction coefficient of the rod respectively. We assume that a mass of the rod
is negligible. As configuration of this linkage is uniquely determined by the four variables: horizontal displacementsof
the cartsx1, x2 and slant angles of the pendulumsθ1, θ2, the dynamics of this linkage is described by the eight-dimensional
state vector:

x := (xT
1 , x

T
2 )T , xi :=

(

xi, ẋi, θi, θ̇i
)T (i = 1, 2), (1)

whereAT denotes the transpose of a matrixA. According to Lagrangian mechanics and assuming viscous friction forces
cx ẋi andcθθ̇i on xi andθi respectively, we obtain equations of motion (EOM) of the CIPmodel in Fig. 1 as follows:



















(mx + mθ)ẍi + (mθr cosθi)θ̈i − mθrθ̇2i sinθi = −cx ẋi + (1, 0)f i,

(mθr cosθi)ẍi + (mθr2)θ̈i − mθgr sinθi = −cθθ̇i + r(cosθi,− sinθi) f i + Ti (i = 1, 2),
(2)

whereẊ := dX/dt.

2.2. Reaction force from the connection rod
We calculate the reaction force, sayp, from the connection rod as shown in Fig. 2. The displacementvectorw from

2
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Fig. 1 Coupled inverted pendula model via viscoelastic connection. Fig. 2 Reaction forcep from the connection rod.

the left-hand tip to the right-hand tip of pendulums is givenby

w =













wX

wY













:= X2 − X1, Xi =













Xi

Yi













=













xi + r sinθi
r cosθi













(i = 1, 2), (3)

and the length of rod is expressed as

w = ‖w‖ =
√

{(x2 − x1) + r(sinθ2 − sinθ1)}2 + {r(cosθ2 − cosθ1)}2 (4)

with the time derivative ˙w = (ẇXwX + ẇYwY )/w. Then, we model viscoelasticity of the connection rod as

p = ‖p‖ := −kw(w − w0) − cwẇ, (5)

wherew0 is a natural length of the connection rod. As the force vectorp is parallel to the displacement vectorw, we have
the reaction force:

p = (p/w)w. (6)

Substitutingp into the EOM (2) through,

f 1 = −p, f 2 = p
(

or f i = (−1)i p
)

, (7)

we obtain an analytic expression of the CIP model shown in Fig. 1 via the viscoelastic connection.

2.3. Modeling floor
In the previous study (Yoshida and Ohta, 2008), the pendulumcan fall down freely to the bottom dead point, in other

word, there was no floor in the previous CIP model. In that case, both of forward and backward falling motions converge
to the same equilibrium of the model so that orbital information is required in order to detect the direction of falling. Not
only to simplify the detection process but also to develop more realistic simulator of wrestling, we introduce the floor
model to the CIP model in the following manner.

Based on penalty methods (Moore and Wilhelms, 1988), we firstmodel a normal forceRi from the floor (Y = 0)
acting on the tip ofith pendulum as

Ri = U(−Yi){−k f Yi − c f Ẏi}, (8)

whereYi is a height of theith tip from the floor in (3),U( · ) is a unit step function, andk f , c f are viscoelastic parameters
representing property of the reaction. In practice, in order to avoid numerical errors, we approximate the step function
with a sigmoid function differentiable, defined by

Uσ(s) :=
{

1+ exp(−σs)
}−1
, (9)

where limσ→∞ Uσ(s) = U(s) holds.
Furthermore, a Coulomb friction forceFi acting on theith tip from the floor can be expressed as

Fi = −µRi sgn(Ẋi), (10)

whereµ is a friction coefficient,Ẋi is a relative horizontal velocity of theith tip from the floor, and sgn(· ) is a unit signum
function whose smooth approximation can be given by sgn(s) ≈ sgnσ(s) := 2Uσ(s) − 1.

Therefore, the CIP model via the viscoelastic connection in(7) on the floor can be obtained by substituting

f i = (−1)i p+ (Fi,Ri)T (i = 1, 2) (11)

into the EOM in (2).

3
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Fig. 3 Competitive interpretation of the equilibriums. Fig. 4 Architecture of the proposed control system to generate
competitive motions.

2.4. Standing control with falling
The CIP framework in absence of intelligent controllers is completed by giving dynamical meanings of winning and

losing to states of the CIP model. To this end, we begin with developing a feedback controller by which each inverted
pendulum on the floor forms three stable equilibriums:θi = 0 for standing or winning andθi = ±π/2 for falling or losing.
This can be done by introducing a feedback controller in the following form:

Ti = upd
i := trapα(θi;∆θ){−Kpθi − Kd θ̇i} (i = 1, 2), (12)

where

trapα(θ;∆θ) := Uα(θ + ∆θ) · Uα(−θ + ∆θ) (13)

is a smooth trapezoidal function of unit height and centeredat θ = 0 made of a product of the sigmoid function in (9),
∆θ > 0 is a half width of the trapezoidal shape, and the shape is getting steeper asα increases.

It follows from the deadband characteristics in (12) thatupd
i simply acts as a PD controller within the limit|θi| < ∆θ

while it rapidly cuts off the output outside of the interval. Therefore, appropriatesetting of the gainsKp,Kd make it
possible for theith pendulum to be stabilized about the standing positionθi = 0 while to be falling down to the floor when
|θi| exceeds the given limit∆θ.

It is worthy to note that in the field of gerontology and related fields, human standing (or falling) limits comparable
to the threshold∆θ have been measured by thefunctional reach test (Duncan et al., 1990) in which the difference between
arm length and maximal forward reach of human subjects is measured to evaluate risk of falls of them.

2.5. CIP framework
In what follows, we compare the inverted pendulums in this model to wrestler-like agents maintaining their standing

balance. Since each agent with the standing control in (12) has the three stable equilibriums, a pair of the agents being
coupled with each other under the suitable conditions can produce 3× 3 = 9 stable equilibriums:

ωi := lim
t→∞

x(t) =
(

x̄1, 0, θ̄1, 0, x̄2, 0, θ̄2, 0
)T (i = 1, · · · , 9), (14)

as shown in Fig. 3 when equating horizontal translations of final position ¯x1, x̄2 without loss of generality. Namely, the
componentsx1(t), x2(t) of the solutionx(t) of (2) are not stable asymptotically but neutrally becauseno restoring forces
on x1(t), x2(t) are assumed by definition. It also should be noted that due tothe penalty method in (8), the gravity force
makes the equilibrium̄θi on the floor slightly exceed the floor, i.e.,|θ̄i| − π/2 > 0, but we formally denoteθi = θ̄i = ±π/2
because this slight exceedance only affects almost converged states and does not change the correspondence from the
initial to final states.

We then attach competitive meanings to the nine equilibriums as listed in Fig. 3 in which the agent that remains
standing is regarded as a winner. Eventually, we have theCIP framework composed of the set of (A) and (B):

(A) The CIP model: the system of equations defined in (2), (11)and (12).
(B) The win-loss matrix: the competitive interpretation ofthe nine equilibriums defined in Fig. 3.
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3. Intelligent controller

Based on the CIP framework in Section 2.5, we develop an intelligent controller (IC) to produce desired final posi-
tions in Fig. 3 from given initial states of CIP by generatingcertain impulsive forces.

3.1. Problem setting and requirements
According to the definition of the state vectorx = (xT

1 , x
T
2 )T in (1), the CIP model in (2) can be expressed as an

eight-dimensional dynamical system:

ẋ = f (x,T), x(0) = x0, T := (T1, T2)
T (15)

that can be divided into a pair of four-dimensional subsystems:


















ẋ1 = f 1(x1, x2, T1),

ẋ2 = f 2(x2, x1, T2).
(16)

We introduce the IC by adding an intelligent control inputuic
i to the torqueTi of CIP model as

T := upd+ uic =
(

upd
1 , u

pd
2

)T
+

(

uic
1 , u

ic
2
)T
, (17)

whereupd
i is the standing control input already given in (12).

In the present study, the input-output relationship arounduic
i is designed as shown in Fig. 4, in whichuic

i receives all
the state vectorsx1, x2 and outputs a series of impulsive forces given by

uic
i (t) :=

N
∑

j=1
Pi I∆τ(t − t j

i ), (18)

where

I∆τ(t) =



















(∆τ)−1 (0 ≤ t < ∆τ),

0 (otherwise)
(19)

is a rectangular function of unit area of width∆τ ≪ 1, Pi is an angular impulse of the input torqueuic
i (t), and{t1i , · · · , t

N
i }

is a series of rise time satisfying

t1i < t2i < · · · < tN
i , max

j,k
|t j

i − tk
i | ≥ τG ≥ ∆τ, (20)

whereτG is a relaxation time to avoid overlapped outputs.
In practical implementation, the rise timest1i , · · · , t

N
i are supposed to be determined sequentially by a real time

architecture described in Fig. 5, which is composed of threecomponents, a classifierC, a selectorS J, and an impulse
generatorG.

3.2. ClassifierC
We define the classifierC as a function from a state vectorx = (xT

1 , x
T
2 )T at the timet = t0, sayx(t0) = ξ0, to an

index numberν of equilibriumων. The functionC takes the valueC(ξ0) = ν if a solution of the following system:

ẋ = f (x,T), x(t0) = ξ0, T := upd +













P1 I∆τ(t − t0)
0













(21)

converges to the equilibriumων. From this definition in which a single impulse att = t0 is applied only on the left-hand
agent, it is implied that the classifierC is valid only in absence of additional inputs, in other words, it can fail to return
correct equilibriums for more general cases of input as in (18) where both agents can produce impulsive forces for their
own decisions. Despite that, we will proceed with a discussion to build a first prototype of artificial wrestling.

Consider the transition operator of a solution of (21) as

x(t) := φt(ξ0,T), (22)

5
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Fig. 5 Intelligent controller. Fig. 6 Impulse generator.

and define a set of the initial stateξ0 approaching the equilibriumωi as

Φi :=
{

ξ0 ∈ R8
∣

∣

∣

∣
lim
t→∞
φt(ξ0,T) = ωi

}

. (23)

The setΦi is generally called a basin of attraction (Lhommeau et al., 2011) or a reachable set (Bayadi et al., 2013). It
follows from uniqueness of solution of initial value problem in (21) that the reachable set in (23) satisfies,

Φi ∩ Φ j = ∅ (i , j). (24)

Thus, the classifierC is obtained as a single-valued function:

C
(

ξ0
)

:= ν if ξ0 ∈ Φν. (25)

In Section 3.5, we will discuss a numerical approximation ofC because explicit expressions ofC( · ) are hardly
obtainable from nonlinear systems such as (15) and also (21).

3.3. SelectorSJ

In the competitive problem in Fig. 3, some of the equilibriums are selected depending upon strategies of the agent
considered. Such a selection process can be modeled by a selector S J given by

δ = S J(ν) :=



















1 (ν ∈ J ⊂ {1, · · · , 9}),

0 (otherwise),
(26)

whereν = C(x) is an output of the classifier andJ is a given subset of indices of the equilibriumsω1, · · · ,ω9. For
example, the trajectoryx(t) in (21) starting from an initial stateξ0 satisfying

(S J ◦C)(ξ0) := S J

(

C(ξ0)
)

= 1 for J = {2, 3} (27)

converges one of the two equilibriumsω2 andω3.

3.4. Impulse generatorG
The impulse generatorG is designed to receive the binary signalδ(t) = S J(ν(t)) from the selector and output the unit

impulseG(t) as shown in Fig. 6, which is composed of a two-input AND gate and two timer functionsTI andTG. The
timer TI produces a unit impulse as

G(t) = TI(t) := I∆τ(t − tr), (28)

and the timerTG cuts off the binary signalδ(t) = S J(ν(t)) for a given relaxation timeτG discussed in (20) as

TG(t) :=



















0 (tr < t < tr + τG),

1 (otherwise),
(29)

wheretr is the rise time from 0 to 1 of the Boolean productδ̂(t) = S J(ν(t))∧TG(t). Note that although the signalδ̂(t) can be
pulses of infinitesimal width in this continuous time expression, this problem will never arise in discrete time applications
with digital computers.

6
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3.5. Numerical approximation of the classifierC
Explicit expression ofC(x) is hardly obtainable from nonlinear systems such as (15). It seems that there are two

types of solutions: solving (15) in process or making a numerical table of the mappingC : x 7→ ν in advance. We take the
latter approach in the following manner.

For practical applications, we introduce a linear measurement equation:

y = Hx, y ∈ RM, x ∈ R8, (30)

whereM ≤ 8 andH is a M × 8 matrix of rankM, and define a reduced-order reachable set in the following sense:

Ψi = H(Φi) :=
{

η0 ∈ RM
∣

∣

∣ ξ0 = h(η0) ∈ R8, lim
t→∞
φt(ξ0,T) = ωi

}

, (31)

wherex′ = h(y) (, x in general) is a certain inverse ofy = Hx. An actual example ofh will be given in Section 3.6.
Firstly, we take aM-dimensional cubic regionD of measuring range within a direct sum of the reachable sets as

9
⊕

i=1

Ψi ⊃ D := [a1, b1] × · · · × [aM, · · · , bM] (32)

where
⊕

represents a direct sum (disjoint union) and [a, b] denotes an interval. We divide it into a direct sum of uniform
subcubesDi as

D =
⊕

{

Di
∣

∣

∣ i ∈ I = [1, · · · ,m1] × · · · × [1, · · · ,mM]
}

, (33)

whereI is a space ofM-dimensional indices andm j is the number of subcubes in thejth direction. We then define center
points of the subcubesyi ∈ Di (i ∈ I) whosejth component is given by

(yi) j := a j +

(

(i) j −
1
2

)

b j − a j

m j
, (34)

where (u) j denotes thejth component of a vectoru.
The setup above allows us to build a numerical method as follows:

( 1 ) As an offline learning procedure, the mappinḡC:
C̄(i) := ν if lim

t→∞
φt

(

h(yi),T
)

= ων, (35a)

is numerically stored by solving (21) fromξ0 = h(yi).
( 2 ) Within the IC in process, the classifierC is quantized byC∗ as

C(x) ≈ C∗(x) := C̄(i) for i such thatHx ∈ Di. (35b)
In this method, accuracy of the classifierC∗ depends on the dimension of measurementM, the size and placement of
measuring range [a j, b j], and the resolution of quantization of reachable setm j ( j = 1, · · · ,M).

In summary, we have obtained the IC for the left-hand agent asa composed function of the quantized classifierC∗,
the selectorS J, and the impulse generatorG, which results in the closed-loop form:

uic
1 = uic

1
(

x(t); J
)

:= P1 · (G ◦ S J ◦C∗)
(

x(t)
)

. (36)

If M = 8 andτG is sufficiently large, it is implied that the solutionx(t) in (21) starting from any initial states in
D undergoes an impulsive force at the timet = t0 that uic

1 decides autonomously and that it converges to the stable
equilibriums specified byJ, under the resolution limit, minj(m j)→ ∞.

3.6. Reduced-order design of measurement for rigid connection
The connection rod can behave like a rigid rod if the viscoelastic parameterskw, cw are sufficiently large. For the rest

of this paper, we restrict our problem to this nearly rigid connection. Although human wrestling involves more flexible
interactions between agents, this allows us substantiallyto reduce the computational efforts as follows. In this case,
dependency between displacements and velocities of the left-hand and right-hand carts is imposed in the following form:

x2 = x2(x1, θ1, θ2) = x1 − r(sinθ2 − sinθ1) +
√

w2
0 − r2(cosθ2 − cosθ1)2, (37a)

ẋ2 = ẋ2(ẋ1, θ1, θ̇1, θ2, θ̇2) = ẋ1 − r(θ̇2 cosθ2 − θ̇1 cosθ1) +
r2(cosθ2 − cosθ1)(θ̇2 sinθ2 − θ̇1 sinθ1)

√

w2
0 − r2(cosθ2 − cosθ1)2

, (37b)

7
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Table 1 Parameter setting of the CIP model.

Parameters Values
mθ mass of pendulum 0.68 kg
mx mass of cart 0.067 kg
g acceleration of gravity 9.8 m/s2

r length of pendulum 0.3 m
cx viscous coefficient alongx 0.01 Ns/m
cθ viscous coefficient aboutθ 0.01 Ns/m
w0 natural length of connection rod 1 m
kw spring coefficient of connection rod 5000 N/m
cw viscous coefficient of connection rod 50 Ns/m
k f spring coefficient of floor 500 N/m
c f viscous coefficient of floor 10 Ns/m
µ Coulomb friction coefficient of floor 0
σ steepness of step function 106

α steepness of trapezoidal function 25
Kp proportional gain of standing control 1
Kd derivative gain of standing control 0.01
∆θ threshold of standing control π/6 rad

Table 2 Parameter setting of the four-dimensional IC
and numerical integration.

Parameters Values
Qmax maximal strength of impulse 0.06 Nms
P1 strength of impulse of the 1st IC = Qmax

P2 strength of impulse of the 2nd IC = −Qmax

∆τ width of impulse = ∆t
τG relaxation time of impulse generator= ∆t
D region of measurement [−0.13, 0.43]× [−3.28, 10.58]

×[−0.35, 0.31]× [−3.80, 5.15]
∆t step size of numerical integration 5× 10−4 s

Free parameters
m resolution of numerical classifier (m j := m for all j)
Q strength of impulsive disturbance
τd delay time of delay element

wherew = w0 ≫ 2r is a constant length of the rigid rod. Then, a loss-less statefeedback to IC can be done by the
following measurement:

y = Hx = (x1, ẋ1, θ1, θ̇1, θ2, θ̇2)T , H =
[

e(6)
1 , e

(6)
2 , e

(6)
3 , e

(6)
4 , o

(6), o(6), e(6)
5 , e

(6)
6

]

, (38a)

wheree(d)
i , o(d) denote theith standard basis vector and the zero vector in Euclidean spaceRd respectively. A corresponding

inverse satisfying the rigid constraint can be defined by

h(y) := H+y + x2(x1, θ1, θ2)e(8)
5 + ẋ2(ẋ1, θ1, θ̇1, θ2, θ̇2)e(8)

6 , (38b)

whereH+ is the Moore-Penrose pseudoinverse ofH. This measurement reduces computational efforts to obtain the
quantized reachable sets ofC̄ in (35a) fromO(m8) to O(m6) with respect to the resolution of quantizationm.

In the following numerical examples, we perform a further reduction of order given by

y = Hx = (θ1, θ̇1, θ2, θ̇2)T , H =
[

o(4), o(4), e(4)
1 , e

(4)
2 , o

(4), o(4), e(4)
3 , e

(4)
4

]

, (39a)

h(y) := H+y + x1e(8)
1 + ẋ1e(8)

2 + x2(x1, θ1, θ2)e(8)
5 + ẋ2(ẋ1, θ1, θ̇1, θ2, θ̇2)e(8)

6 with x1 = ẋ1 = 0. (39b)

Although this measurement suffers complete loss of information about the cart motionx1, ẋ1 (and x2, ẋ2 via (37)), it
reduces the computational efforts intoO(m4). In this paper, we employ this four-dimensional measurement in priority to
reducing the computational efforts. Moreover, in this four-dimensional measurement, thecontrolleruic

1 (x; J) originally
designed for the left-hand agent can symmetrically be reused for the right-hand agent by a transformation:

uic
2 (x; J′) := uic

1 (x′; J), P2 := −P1, x′ := −(xT
2 , x

T
1 )T , (40)

whereJ′ = {4, 7} for J = {2, 3} due to the transpose of the 3× 3 matrix ofωi in Fig. 3.

4. Numerical investigation

We conduct numerical experiments to evaluate performance of the four-dimensional IC of the measurement in (39).
For simplicity, in what follows, we set the resolutionm j of quatization to a common valuem for all j. The parameter values
used in the following examples are listed in Table 1. The physical dimensionsmθ,mx andr are roughly collected from the
commercially available inverted pendulum (ZMP INC., 2011). For numerical integration, the fourth-order Runge-Kutta-
Gill method is employed with the time step∆t listed in Table 2.

4.1. Individual performance of IC
In order to investigate individual performance of IC, we first consider impulse responses of the CIP model in (15)

equipped with the IC in the left-hand only given by

T = upd+ uic + u = upd+













uic
1

(

x(t); J1
)

0













+













v(t)
0













, v(t) := QI∆τ(t), J1 := {2, 3}, (41)
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whereupd is the standing controller in (12),Q is an impulse of initial disturbance,uic
1 is the four-dimensional IC developed

in (39), andI∆τ(t) is the unit impulse function defined in (19).
In the following numerical examples, we assume the maximal strength of impulseQmax = 0.06 so thatv(t) cannot

produce switching motions from the trivial initial statex(0) = o(8) + w0e(8)
5 (or ω1) to the other stable states in order to

avoid trivial switching motions. Following this assumption, the region of measurementD is taken as listed in Table 2
so that it circumscribes at least all the trajectoriesy(t) = Hx(t) for the maximal disturbanceQ = Qmax. We also set the
strength of impulse of IC to a common valueP1 = −P2 = Qmax to avoid the trivial switching motions mentioned above.
Note that under the conditions ofkw andcw listed in Table 1 and forQ ≤ Qmax, dynamic change of length of the connection
rod in (41) is limited to|w(t) − w0|/w0 < 0.01 so that the measurement in Section 3.6 is expected to work.

Solving (15) with (41) numerically from a trivial initial statex(0) = o(8) + w0e(8)
5 for a givenQ, we have the corre-

sponding final positionων and obtain correspondence fromQ to ν as plotted in Fig. 7 for the resolutionm = 50 whereQ
is taken atNQ = 100 points with uniform increment over the interval [0,Qmax]. The small circles represent the results of
ν(Q) in presence of the IC’s outputs and the cross marks represent those in absence of the outputs due to weakv(t).

To evaluate the performance, we define a success rate in the following form:

E = E(J) := NJ/(NQ − N0) (0 ≤ E ≤ 1), (42)

whereNJ is the number of points onQ at which limt→∞ x(t) = ων for all ν ∈ J andN0 is the number of points in absence
of the IC’s outputs. The success rate of the result form = 50 shown in Fig. 7 is calculated asE = 0.165. Also, the rate for
m = 100 can be obtained asE = 0.305 in the same manner. Therefore, it appears that our IC has low performance.

4.2. Performance improvement with a delay element
One of the reasons of the low performance above can be explained in Fig. 8. The colored areas represent the quantized

reachable sets:

Ψ∗ν :=
⊕

{

Di
∣

∣

∣

∣

C̄(i) = ν, i ∈ I
}

(ν = 1, · · · , 9), (43)

plotted on the hyper plane that contains the pointx(t1) on the phase trajectory at which the IC’s output occurs (indicated
by the cross mark). The resolutions of quantization of reachable sets arem = 50 for Fig. 8 (a) andm = 1000 for Fig.
8 (b). In the low resolution case in Fig. 8 (a), it can numerically be clarified thatx(t1) belongs to the reachable setΨ∗2
(in red) ofω2 while x(t) (t > t1) actually converges toω4 (, ω2). Such misclassification can be refined by the high
resolution as shown in Fig. 8 (b). In this case, the pointx(t1) is primly classified intoΨ∗4 (in blue) ofω4. Although
in theory, taking a sufficiently large resolutionm provides nearly exact reachable sets, it greatly enlarges computational
efforts. Another approach to reduce the misclassification is toreplace the quantized reachable setΨ∗i in (43) ofωi with a
subsetΨ◦i := Ψ∗i −∆Ψ

∗
i where∆Ψ∗i ⊂ Ψ

∗
i is a set of border points neighboring the other setsΨ∗j ( j , i). However, extracting

the border points is not necessarily easy because the reachable sets sometimes exhibit nested structures as discussed by
one of the authors (Yoshida, 2009). Actually, in Fig. 8 (b), quite narrow region ofΨ∗1 (in white) appears betweenΨ∗2 (in
red) andΨ∗4 (in blue).

Therefore, let us take yet another approach by replacing theIC with a delayed IC (DIC) in the following form:

udic
i

(

x(t); J, τd
)

:= uic
i

(

x(t − τd); J
)

(i = 1, 2), (44)

whereτd is a delay time. It seems reasonable to expect that a trajectory about to crossing a course-grained border of a
reachable set reaches the true border soon. Figure 9 shows the success rateE corresponding to this replacement given by

T = upd+















udic
1

(

x(t); J1, τ
d
)

0















+ u, J1 := {2, 3}, (45)

whereE is averaged over the two types of initial disturbance:u(t) =
(

v(t), 0
)T and

(

0, v(t)
)T , and the other procedures of

obtainingE are the same as in Fig. 7. In Fig. 9, the triangles and the circles representE as functions of the delay timeτd

of DIC in (44) for m = 50 and 100 respectively. It is clearly seen that the functions E(τd) are nearly concave down. The
maximal values areE = 0.392 atτd = 0.0045 andE = 0.683 atτd = 0.0025 form = 50 and 100 respectively. Therefore,
the DIC roughly doubles the success rate, namely, 0.392/0.165≈ 2.38 form = 50 and 0.683/0.305≈ 2.24 form = 100.

9
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Fig. 7 Index of final stateων as a function of the strength of initial disturbanceQ for the resolutionm = 50.
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Fig. 8 Misclassification of reachable sets. Colored areas are quantized reachable sets for (a) m=50 and (b)
m=1000.
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Fig. 9 Success rateE as functions of the delay timeτd of DIC in (44).

4.3. Competitive behavior
In this final section, we install the DICs into both sides of controllers as

T = upd+















udic
1

(

x(t); J1, τ
d
1

)

udic
2

(

x(t); J2, τ
d
2

)















+ u, J1 := {2, 3}, J2 := {4, 7}, (46)

whereupd is the standing controller in (12),udic
1 andudic

2 is the four-dimensional DIC in (44) through (40), andu(t) =
(

v(t), 0
)T ,

(

0, v(t)
)T are initial impulsive disturbances of strengthQ as shown in (41). The competitive meanings ofJ1 and

J2 are shown in Fig. 3.
Figure 10 shows a competitive behavior between the normal IC: udic

1

(

x(t); J1, 0
)

= uic
1

(

x(t); J1
)

for m = 100 and the
DIC with optimal delay time:udic

2

(

x(t); J2, 0.0045
)

for m = 50. The time responses in Fig. 10 (a) are obtained by solving
(15) with (46) fromx(0) = o(8)+w0e(8)

5 under the conditions listed in Table 1 and Table 2 by applyingthe initial disturbance
u(t) =

(

v(t), 0
)T with Q = 0.0186. The same solution is plotted in Fig. 10 (b) as a motion ofthe CIP mechanism. For

convenience, we refer to the former IC as “IC100” and the later as “DIC50”.
It is shown in Fig. 10 that the ICs above generate the impulsive control forces autonomously to make the CIP system

drop intoω2. According to the competitive interpretation in Fig. 3 inspired by some kind of wrestling match, it can be

10
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Fig. 10 Competitive behavior for IC100 vs DIC50 (τd2 = 0.0045).
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Fig. 11 Index of final stateων as functions ofQ for IC100 vs DIC50 (τd2 = 0.0045).

said that “the left agent wins by pulling the right agent.”
Figure 11 shows the result of competition. The plots are obtained in the same manner as those in Fig. 7, except that

in Fig. 11, the open and filled circles represent the results for u(t) =
(

v(t), 0
)T and

(

0, v(t)
)T respectively, and that the cross

marks represent the results in which neither of IC100 and DIC50 produces its own output. Similar to the individual case
in (42), we define the success rate of this competition as

Ei = E(Ji) := NJi/(NQ − N0) (0 ≤ Ei ≤ 1) (i = 1, 2), (47)

whereNQ = 100× 2 is the number of all plots in Fig. 11,N0 is the number of trials in absence of the IC’s outputs (cross
marks), and the definition ofNJi is the same as that ofNJ in (42). From the result in Fig. 11, the success rates are obtained
asE1 = 66/167≈ 0.395 for IC100 andE2 = 96/167≈ 0.575 for DIC50. Therefore, it is shown that at least based on the
present definition of competition and success rate, the performance improvement using time delay is more effective than
that doubling the quantization resolution without the timedelay.

5. Conclusion

In this paper, we discussed a competitive problem in which mechanical agents are fighting with each other and
formulated it as the set of: (A) the nonlinear dynamical model with nine stable equilibriums and (B) the matrix describing
competitive interpretation of these equilibriums. Based on this framework, we proposed a competitive IC that receivesthe
state vector and output the impulsive forces to make the competitor fall down. Developing a quantized and reduced order
design of the controller, we derived a practical control procedure along with an off-line learning method. To investigate
performance of the controller in individual use and also in competition use, we conducted numerical experiments and
obtained the following results:
• The individual performance of IC depends on resolutions of the quantized reachable sets.
• The individual performance of IC can be improved by adding the delay element into the IC.

11
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• To improve the competitive performance of IC, adding the delay element may become more effective than refining
the resolutions.

In future work, we plan to investigate a further order reduction of measurement based on time delayed embedding
methods and to improve classification accuracy by applying machine learning techniques. We also plan to conduct com-
petitions between humans and the proposed ICs. Moreover, application of position control to the carts will be considered
to investigate competitive problems in a bounded area.
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