arXiv:1407.7560v1 [cs.RO] 28 Jul 2014

Towards Automatic Migration of ROS Components from
Software to Hardware

DSLRob 2013 — Work-in-progress

Anders Blaabjerg Lange, Ulrik Pagh Schultz and Anders Stengaard Soerensen

I. INTRODUCTION

The use of the ROS middleware is a growing trend in
robotics in general, in particular in experimental branches of
robotics such as modular robotics, fields robotics, and the
vast area of cyber-physical systems (for example applied to
welfare technology). Our main area of interest is in experi-
mental robotics and cyber-physical systems. When building
“robot controllers” for the aforementioned systems there are
numerous suitable technological platforms. Given specific
requirements we can choose an appropriate standardized
approach, for example emphasizing flexibility and ease of de-
velopment by using a generic middleware — such as ROS —
or emphasizing real-time performance and direct hardware
access by using approaches based on dedicated, embedded
hardware. So far ROS and hard real-time embedded systems
have however not been easily uniteable while retaining the
same overall communication and processing methodology at
all levels.

In this paper we present an approach aimed at tackling
the schism between high-level, flexible software and low-
level, real-time software. The key idea of our approach
is to enable software components written for a high-level
publish-subscribe software architecture to be automatically
migrated to a dedicated hardware architecture implemented
using programmable logic. Our approach is based on the
Unity framework, a unified software/hardware framework
based on FPGAs for quickly interfacing high-level software
to low-level robotics hardware. The vision of Unity is to
enable non-expert users to build high-quality interface and
control systems using FPGAs and to interface them to high-
level software frameworks, thereby providing a framework
for speeding up and increasing innovation in experimental
robotics. This paper presents the overall vision and the initial
work on the implementation of an architecture supporting
a generative approach, based on a declarative specification
of how software components are mapped to a hardware
architecture; the actual language design is left as future work.

II. CONTEXT: UNITY AND FPGAS

The traditional approach to building a control system in
experimental robotics is mainly based on microcontrollers
(MCU’s) and PC’s. This approach has numerous advantages,

A. B. Lange, U. P. Schultz and A. S. Soerensen are with the Maersk
McKinney Moeller Institute, University of Southern Denmark, Odense,
Denmark (e-mail: {anlan, ups, anss}@mmmi.sdu‘dk)

mainly: (1) developers are familiar with the programming
methodology; (2) good tools, libraries and frameworks from
commercial vendors and the open-source community; and
(3) the availability of cheap and simple MCU-based systems
like the Arduino, as well as more powerfull ARM based
systems. Despite the advantages of this approach, there are
also inherent limitations to the sequential-style processing
and fixed hardware (HW) architecture, which can signifi-
cantly limit reuse of HW as well as real-time capabilities,
design freedom and flexibility.

We prefer FPGAs and hybrid FPGA-MCU SoC systems
over pure MCUs: we find FPGAs superior to MCUs in
many performance areas relevant to experimental robotics,
except for price and library support. FPGAs can provide
deterministic hard real-time performance no matter the com-
plexity or scale of the implemented algorithms [1], [2], [3].
On an FPGA the architecture is designed by the developer,
providing increased flexibility that can reduce the need for
costly software abstractions on higher levels [4], [5], [6],
[7] and reduce or eliminate the need for external support
logic. FPGAs are however not commonly used; we believe
the reason to be partly historical: people stick to technologies
they know. Moreover, FPGAs suffer from a lack of good,
open-source, vendor-independent HDL-component libraries
suited for robotics, and a high degree of complexity asso-
ciated with FPGA programming, caused partly by complex
tools and a different programming methodology compared
to the traditional Von-Neumann style.

We have proposed the Unity framework as a means
to facilitating FPGA-based development for experimental
robotics [8], [9]. Unity is an open-source framework con-
sisting of reference HW designs, gateware (GW, VHDL) and
SW libraries, all targeted at providing a complete framework
for easy development, with standard cases covered by model-
based code generation of all the necessary FPGA GW and PC
SW needed to interface electronics with a high-level software
framework. The Unity framework is a work-in-progress:
The modular HW designs include single nodes, distributed
nodes, sensor interfaces and generic motor controllers. On
the GW side we have a growing library of VHDL modules,
including servo- and brushless DC motor controllers, a real-
time network based on a shared memory model, a complete
FPGA-based real-time operating system [10], as well as a
modular and reconfigurable FPGA-PC interface called Unity-
Link [9]. The use of Unity compared to a traditional MCU-
based approach, exemplified with a PC connected to low-

Traditional MCU based solution

Properties

e Reusable ROS PC with
generic software interface
based on ROS-serial

e Serial connections

between PC and each

board

Custom board with

software adapted to

protocol and hardware

<<ROS PC>>

User
Application

<<low level>> [__]
Interface [
.

L]

ROSs-Serial
L]
I_ USB (Serial)

USB (Serial) I—

<<microcontroller>>

Interface (Power/Sensor)
Electronics

[]
Runtime Control
[]
HW Interfa -
Interface
[]

Interface (Power/Sensor)
Electronics

Mechanics H ‘ Mechanics H

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<<microcontroller>> |
|
[
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

UNITY FPGA solution

Properties

e Reusable ROS PC with
generated software interface
based on Unity-Link

e Single serial connection to
real-time network shared
memory model

e Generic board with reusable
interface and real-time control

<<ROS PC>>

User
Application

{generated}[|

unitysw [
Interface [

components
USB (Serial)
<<FPGA>> <<FPGA>>
Protocol
Real-Time Network
(TosNet)
[]
Runtime Control
1 Interface (Power/Sensor)
Electronics
L]
HW Interface e —

T
Interface (Power/Sensor)
Electronics

‘ Mechanics H ‘ Mechanics H

. Completely unreusable (application Partially reusable SW, GW or HW Fully reusable, generated or generic SW, GW or
Legend: D specific) SW, GW or HW D Component D HW component.
Fig. 1. Unity Link compared to a traditional MCU-based architecture (UML 2.0 component diagram notation)

level hardware using ROS-serial, is illustrated in Figure
We believe that a generic FPGA or FPGA-MCU SoC based
module will be more flexible and therefore more easily
reused for various tasks, compared to a standard off-the-
shelf MCU system, since the various hardware interfaces
needed are decoupled from (i.e., not locked to) specific pin
locations, and therefore virtually only the pin count limits the
number and types of interfaces that are possible when using
programmable logic. Unity is an evolution of the TosNet
framework, which is the basis for the real-time network and
other specific components [4], [5], [6], [7].

III. AUTOMATIC MIGRATION OF ROS COMPONENTS TO
FPGAS

We are currently investigating the idea of automatically
migrating networks of ROS component{] to our FPGA-
based architecture. The Unity framework already provides
a standardized platform on which gateware components
can be interconnected, and Unity-Link provides automatic
integration on ROS components with gateware components
using a publish-subscribe infrastructure [9]. There is however
no support for migrating a ROS component, or a set of ROS
components, from the PC to the FPGA, without completely
reimplementing the functionality of each of the components,

I'Throughout this paper we consistently use the term “ROS component”
to refer to ROS nodes: we believe our approach is applicable to other
component-based middlewares as well, and hence prefer the technology-
independent term “‘component.”

and furthermore using the Unity framework to connect them
internally on the FPGA. Note that we are not concerned
with dynamic migration: we simply want to make it easy
for the developer to statically change the deployment of
functionality between the flexible PC platform and the real-
time FPGA platform.

We propose that migration of a given ROS component
from the PC-based platform to the FPGA can be done by
recompiling the component to run on either a softcore or
hard-IP CPU embedded in the FPGA. The HartOS real-time
operating system [10] will be used to execute the threads
of the component and to handle external events. A substrate
that provides the ROS API and a few selected parts of the
standard POSIX AP]E] will be used on the embedded CPU,
enabling a ROS component e.g. implemented in C++ to
execute on the CPU after a simple recompilation. Publish-
subscribe messages can be routed between the CPU and a PC
running ROS using Unity-Link. A high performance hard-
IP CPU, like e.g. the dual-core ARM-A9 in a Xilinx Zynq
device, could as a second option also run a full linux system
with ROS, and thereby support native (non-recompiled)
ROS components. By providing the same memory-mapped
publish/subscribe and service-call IP interfaces on both the
small softcore and Hard-IP CPU’s, no matter the software

2Only a small subset of the POSIX API will be relevant, as well as
feasible for a processing system utilizing the HartOS kernel. We assume
our approach is primarily relevant for ROS components having a fairly
small amount of interaction with the operating system.

(@

controlMotor

<<component>> E[
Motor Interface (VHDL)

PC (ROS)
<<component>> —O <<component>> gl subscribe (ROS)
SLAM (C++) getPosition Navigate (Python) ﬁ(
tiltEglts
service (ROS) <<component>> @
Filter (C++)
O— < <component>> @
setTarget Maintain Position (C++)
service subscribe
(Unity-Link) (Unity-Link)
FPGA (Unity)
@— <<component>> E[
setGoal PID Controller (VHDL)

internal bus sensor\i’alue?
(Unity)

<<component>> a
Sensor Interface (VHDL)

Hardware Platform

Fig. 2. Example: Robot software before migration of selected components, part of the control loop is implemented in ROS. (UML 2.0)

environment executed on them, Unity will allow both high
and low performance processors, and PC’s using Unity-
link, to communicate with GW components directly utilizing
ROS’ own communication paradigm, thereby enabling easy
migration between execution paradigms.

A set of ROS components that communicate using
publish-subscribe can similarly be migrated to the FPGA.
Each component is placed on a softcore CPU, depending
on the performance requirements they can be placed on the
same or different CPUs. If they are placed on the same
CPU, HartOS is used for scheduling CPU-time between the
components, and communication can be performed directly
between the components (taking care to preserve commu-
nication semantics). If components are placed on different
CPUs, a shared memory component is used to propagate
publish/subscribe messages between the nodes: each topic
uses a specific address in the shared memory, enabling a
complete decoupling of the execution of publishers and
subscribers. Service calls can be handled similarly, however
rather than using a shared memory, a generic address-data
bus can be used to provide a point-to-point connection
between components that need to communicate.

As an example, consider a first revision of the robot soft-
ware architecture for a two-wheeled balancing robot shown
in Fig. 2] Low-level control and hardware interfacing is done
in the FPGA using the Unity framework, and consists of

low-level hardware interface components and a generic PID
controller. Unity-Link connects low-level control and sensor
interfaces to ROS using publish/subscribe and service calls.
High-level control is implemented in ROS, and concerns
navigation, movement, and balancing of the robot. Real-time
operation of the “maintain position” component is ensured
by using a suitably fast PC. Now assume that — although
initial experiments showed that this worked fine — after
experimenting with the robot in a realistic scenario it is
found that control is unstable because real-time deadlines are
sometimes missed. To solve the issue using our approach, the
“maintain position” component is moved to a softcore CPU
on the FPGA, as illustrated in Fig E} Moreover, due to the
use of standard interfaces that are interoperable between ROS
and the FPGA, the software filter component is transparently
replaced by a functionally equivalent gateware component
from the Unity library. All components on the FPGA execute
in hard real-time, making control of the robot predictable.

IV. DISCUSSION AND STATUS

The migration is intended to be automatic, in the sense
that given a declarative specification of how a set of ROS
components should be mapped to a real-time architecture,
our system will generate substrate code, configuration files,
and VHDL components such that the ROS components can
be directly recompiled to run on the FPGA. This declarative

PC (ROS)

<<component>>
SLAM (C++)

& O——

getPosition

<<component>>
Navigate (Python)

2]

subscribe (Unity-Link)

service (Unity-Link)

\

A

FPGA (Unity)

Softcore CPU with HartOS

tiltEvents

2

<<component>>
Filter (VHDL)

g

internal bus

@77 <<component>> gl
setTarget Maintain Position (C++)
service -
(internal b/u|s\),/,>
O— <<component>> El
setGoal PID Controller (VHDL)

sensor%alue

subscribe
(shared memory)

<<component>>
Motor Interface (VHDL)

O— 7

controlMotor

<<component>>
Sensor Interface (VHDL)

8]

Hardware Platform

Fig. 3.
FPGA. (UML 2.0)

specification will thus need to model which components are
to be deployed to which softcore CPU, how much time is to
be assigned to each thread of each component, and how the
components are to communicate with each other and with
the rest of the ROS system.

We are currently extending the Unity framework to support
multiple ROS components executing and communicating in
real-time on one or more softcore CPUs on one or more
FPGAs connected by a real-time network. Once this frame-
work is complete, we will augment it with a model-based
code generator than can automatically generate the complete
set of code artifacts needed to support the execution of the
ROS components on the FPGA. We expect that the task of
implementing the framework and corresponding generator is
significantly reduced by building on top of the standardized
Unity architecture and using Unity Link to interface the
FPGA-based ROS components to the rest of the ROS system.

REFERENCES

[1] A. Fernandes, R. Pereira, J. Sousa, A. Batista, A. Combo, B. Carvalho,
C. Correia, and C. Varandas, “HDL Based FPGA Interface Library for
Data Acquisition and Multipurpose Real Time Algorithms,” Nuclear
Science, IEEE Transactions on, vol. 58, no. 4, pp. 1526-1530, Aug.
2011.

M. Pordel, N. Khalilzad, F. Yekeh, and L. Asplund, “A component
based architecture to improve testability, targeted FPGA-based vision
systems,” in Communication Software and Networks (ICCSN), 2011
IEEE 3rd International Conference on, May 2011, pp. 601-605.

[2]

[3]

[4

[5]

[6]

[7

—

[8]

[9]

[10]

Example: Robot software after migration of selected components, the “maintain position” and “filter” components have been migrated to the

S. Toscher, T. Reinemann, and R. Kasper, “An adaptive FPGA-
based mechatronic control system supporting partial reconfiguration of
controller functionalities,” in Adaptive Hardware and Systems, 2006.
AHS 2006. First NASA/ESA Conference on, June 2006, pp. 225-228.
S. Falsig and A. Soerensen, “Tosnet: An easy-to-use, real-time commu-
nications protocol for modular, distributed robot controllers,” in Robot
Communication and Coordination, 2009. ROBOCOMM °09. Second
International Conference on, March 31-april 2 2009, pp. 1-6.

——, “An FPGA based approach to increased flexibility, modularity
and integration of low level control in robotics research,” in Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, Oct. 2010, pp. 6119-6124.

A. Soerensen and S. Falsig, “A system on chip approach to enhanced
learning in interdisciplinary robotics,” in Intelligent Robots and Sys-
tems (IROS), 2010 IEEE/RSJ International Conference on, Oct. 2010,
pp. 4050-4056.

R. Ugilt, A. S. Soerensen, and S. Falsig, A step toward ’plug and
play’ robotics with SoC technology. World Scientific, 2010, ch. 52,
pp. 415-422. [Online]. Available: http://www.worldscientific.com/doi/
abs/10.1142/9789814329927_0052

A. B. Lange, U. P. Schultz, and A. S. Sorensen, “Unity: A unified
software/hardware framework for rapid prototyping of experimental
robot controllers using FPGAs,” in Proceedings of the Eigth full-day
Workshop on Software Development and Integration in Robotics (SDIR
VIII) at ICRA 2013, 2013.

——, “Unity-Link: A software-gateware interface for rapid prototyp-
ing of experimental robot controllers on FPGAs,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2013,
accepted for publication.

A. B. Lange, K. H. Andersen, U. P. Schultz, and A. S. Sorensen,
“HartOS - a Hardware Implemented RTOS for Hard Real-time Appli-
cations,” Proceedings., Eleventh IFAC/IEEE Conference on Embedded
Systems and Programmable Devices, 2012., pp. 207-213, May 2012,
iSSN: 1474-6670.

http://www.worldscientific.com/doi/abs/10.1142/9789814329927_0052
http://www.worldscientific.com/doi/abs/10.1142/9789814329927_0052

	I Introduction
	II Context: Unity and FPGAs
	III Automatic Migration of ROS Components to FPGAs
	IV Discussion and Status
	References

