
Towards a Domain Specific Language for a
Scene Graph based Robotic World Model

Sebastian Blumenthal and Herman Bruyninckx

Abstract— Robot world model representations are a vital part
of robotic applications. However, there is no support for such
representations in model-driven engineering tool chains. This
work proposes a novel Domain Specific Language (DSL) for
robotic world models that are based on the Robot Scene Graph
(RSG) approach. The RSG-DSL can express (a) application
specific scene configurations, (b) semantic scene structures and
(c) inputs and outputs for the computational entities that are
loaded into an instance of a world model.

I. INTRODUCTION

Robots interact with the real world by safe navigation and
manipulation of the objects of interest. A digital represen-
tation of the environment is crucial to fulfill a given task.
Although a world model is a central component of most
robotic applications a Domain Specific Language (DSL) has
not been developed yet. One reason for this is the lack of
a common world model approach. The scene graph based
world model approach Robot Scene Graph (RSG) [1] tries
to overcome this hurdle. It acts as a shared resource for
a full 3D environment representation in a robotic system.
It accounts for dynamic scenes by providing a short-term
memory, allows to hierarchically organize scenes, supports
uncertainty for object poses, has semantic annotations for
scene elements and can host computational entities. While
other approaches have a stronger focus on certain world
modeling aspects like probabilistic tracking of semantic
entities [2] or hierarchical representations for geometric data
[3], the RSG emphasizes a holistic view on the world
modeling domain. This work extends the RSG approach by a
RSG-DSL to model the structural and computational aspects
of the scene graph. It is accompanied by a model to text
transformation to generate code for an implementation of
the RSG which is a part of the BRICS_3D C++ open source
library [4].

A DSL is a formal language that allows to express a certain
aspect of a problem domain. It creates an abstraction in order
to quickly create new applications and it imposes constraints
on a programmer to prevent from programming errors. A
structured development of a new DSL is organized in four
levels of abstractions M0 to M3 [5]:

• M0: The M0 level is an instantiation of a DSL model.
Typically this results in generated code for a (generic)
programming language that can be compiled and exe-
cuted.

All authors are with the Department of Mechanical Engineer-
ing, Katholieke Universiteit Leuven, Belgium. Corresponding author:
sebastian.blumenthal@mech.kuleuven.be

• M1: The M1 level comprises models that conform to a
certain DSL that is defined on the M2 level.

• M2: A meta model on the M2 level specifies the DSL
in a formal way. This definition has to conform to the
meta meta model of M3.

• M3: The M3 level defines the meta meta model which
is a generic model to describe DSLs.

The goal of the RSG-DSL for a robotic world model
is manifold. This DSL can describe the structural and be-
havioral parts of a scene that are part of a specific robotic
application. It allows to combine the required world model
elements at design time. The a priori known structure of a
system can include the involved robots with their kinematic
structures and their geometries, previously known parts in
the environment or the places in the structure where to store
online sensor data. Results of the behavioral function blocks,
which can contain any kind of computation, are stored in
the scene graph as well. The selection and the configuration
of the function blocks has an important influence on how
the world model will appear at runtime. For example, the
presence of an object recognition function block can enrich
the scene graph with task-relevant objects. The above items
can be specified on the code level. However, the RSG-DSL
reduces the required number of lines of code to encode
the scene graph. The C++ API assumes a correct order of
creation of scene primitives, while the RSG-DSL does not
have this restriction.

The proposed DSL allows to express input and output
data for the function blocks. This data consists of scene
structures to represent parts of the scene graph. For instance,
a segmentation algorithm module consumes a point cloud
as input structure and generates a set of new point clouds
with associated spatial relations pointing to the center of the
segments.

In addition, the RSG-DSL is able to express prior semantic
knowledge about a scene. It is possible e.g. to encode a
generic version of a table that consists of a table plate and
four legs. This can serve as input for a function block that
analyzes the perceived scene to recognize that particular
structure.

The remainder of the paper is organized as follows:
Section II summaries related work and Section III gives a
brief introduction to the world model concept. Details of the
RSG-DSL are explained in Section IV and its capabilities are
illustrated with examples in Section V. The paper is closed
with a conclusion in Section VI.

ar
X

iv
:1

40
8.

02
00

v1
 [

cs
.R

O
]

 1
 A

ug
 2

01
4

II. RELATED WORK

Recently interest has been risen in robotics to create DSLs
for various sub-aspects of robotic systems. The Task Frame
Formalism DSL [6] has been proposed to describe the control
and coordination aspects of robotic software systems. A
DSL to express geometric relations between rigid bodies
[7] helps to correctly set up spatial relations as constraints
will be automatically evaluated on the M1 level. Two DSL
variants are discussed: one version is embedded into the
Prolog programming language and the second one uses
the Eclipse Modeling Framework (EMF) [8]. The Prolog
approach results in a directly executable code while the EMF
variant benefits from the Eclipse tool chain including an
editor that supports syntax highlighting and auto-completion.
The Grasp Domain Definition Language [9] is developed in
the EMF framework as well. It demonstrates that multiple
dedicated robotic languages can be further composed into
more complex ones.

DSL approaches in the 3D computer animation domain
have been recently developed for 3D scenes. The streaming
approach for 3D data [10] uses a meta model for scene
elements to cope with various 3D scene formants. In a similar
way the SSIML [11] approach tries to abstract from the
existing 3D formats and APIs method calls. It is meant
as a DSL for development of 3D applications. However, in
contrast to a robotic world model the complete access to the
world state is given. To the best of the authors knowledge a
DSL for a robotic world model does not exist yet.

III. WORLD MODEL PRIMITIVES

The goal of the world model is to act as a shared resource
among multiple involved processes in an application. Such
processes could be related to the various robotic domains
like planning, perception, control or coordination. To be
able to satisfy the needs of the different domains the world
model has to offer at least the following set of properties: It
appears as shared and possibly distributed resource. It takes
the dynamic nature and imprecision of sensing of real-world
scenes into account, allows for multi-resolution queries and
supports annotations with semantic tags.

The scene graph based world model RSG consists of
objects and relations among them [1]. These relations are
organized in a Directed Acyclic Graph (DAG) similar as
for approaches used in the computer animation domain.
The directed graph allows one to structure a scene in a
hierarchical top-down manner. For instance, a table has
multiple cups, whereas multiple tables are contained in a
room, multiple rooms in a building and so on. Traversals on
such a hierarchical structure can stop browsing the graph at
a certain granularity to support multi-resolution queries. The
graph itself supports four different types of nodes. All node
types have in common that each instance has a unique ID, a
list of attached attributes for semantic tags and one or more
parent nodes. Details of the four node types are given below:

• Node: The Node is a generic leaf in the graph. It can
be seen as a base class for the other node types.

• GeometricNode: A GeometricNode is a leaf in the
graph that has geometric data like a box, a cylinder, a
point cloud or a triangle mesh. The data is time stamped
and immutable i.e. once inserted the data connote be
altered until deletion to prevent inconsistencies in case
multiple processes consume the same geometric data at
the same time.

• Group: The Group can have child nodes. These parent
child relations form the DAG structure.

• Transform: The Transform is a special Group node
that expresses a rigid transform relation between its
parents and its children. Each transform node in the
scene graph stores the data in a cache with associated
time stamps to form a short-term memory.

The Transforms are essential to capture the dynamic
nature of a scene as changes over time can be tracked
by inserting new data into the caches. Moreover, such a
short-term memory enables to make predictions on the near
future. This requires dedicated algorithms to be executed
by the word model as described later. In contrast to the
Transforms, geometric data is defined to be immutable.
Hence, changes on the geometric data structures do not have
to be tracked. In case a geometry of a part of a scene does
change over time a new GeometricNode would have to be
added. The accompanying time stamps still allow to deduce
the geometric appearance of a scene at a certain point of
time. All temporal changes in the world model are explicitly
represented.

The RSG approach uses a graph structure. Thus, it is
possible to store multiple paths formed by the preceding
parents to a part of a scene. This case expresses that multiple
information to the same entity is available. For example,
an object could be detected by two sensors at the same
time. Different policies for resolving such situations are
possible. Selection of the most promising path like the latest
path denoted by the latest time stamps associated with the
transforms is one possibility, while choosing a path with
the help of the semantic tags is another one. Probabilistic
fusion strategies [12] are an alternative, given covariance
information on the transform data is available. This kind of
uncertainty data can be stored in the temporal caches as well.
The details of representing uncertainty and fusion strategies
are planned as future work.

Besides the structural and temporal aspects, the world
model contains function blocks to define any kind of compu-
tation. A function block consumes and produces scene graph
elements. Algorithms for estimating near future states are
one example of such a computation. A function block can
be loaded as a plugin to the world model and is executed
on demand. This allows to move the computation near to
the data to improve efficiency of the executed computa-
tions. Conceptually the scene graph is a shared resource
among all function blocks. Concurrent access to the scene
is possible since geometric data is defined to be immutable.
Transforms provide a temporal cache such that inserting
new data will not affect retrieval of transform data by another
function block as long as queries are within the cache limits.

Fig. 1. Excerpt from Ecore model of the structural part of the world model. For the sake of readability some elements are not shown: the quantities for
the geometries and transformation matrix are omitted and the Mesh definition is skipped because it is defined analogous to the PointCloud type.

The RSG can be used as a shared resource in a multi-
threaded application. However crossing the system bound-
aries of a process or a computer requires additional commu-
nication mechanisms. Many component-based frameworks in
robotics including ROS [13], OROCOS [14] and YARP [15]
provide a communication layer for distributed components.
These frameworks are mostly message-oriented and do not
support a shared data structure like a world model well.
Thus, we allow the RSG to create and maintain local copies
of the scene graph [16]. Subsequent graph updates need to
be encapsulated in the framework specific messages. Further
details on the RSG world model and its primitives can be
found in [1].

For a robotic application a set of design decisions has to
be made to deploy the shared world model approach. Thus,
a DSL for such a world model facilitates the development
efforts for a specific application.

IV. A DSL FOR A SCENE GRAPH BASED WORLD MODEL

A. Choice of modeling framework

This work uses the Eclipse Modeling Framework (EMF)
[8] as DSL framework. For two reasons: first, it allows
one to make use of the Eclipse tool chain to generate an
editor with syntax highlighting. Second, other robotic DSLs
that already exist in this framework could be potentially re-
used. A candidate is the geometric relations DSL [7]. The
integration into the world model DSL is left as future work.

In addition to the proposed DSL, a model to text trans-
formation is provided that generates code to be used in
conjunction with the C++ implementation of the RSG which

is part of the BRICS_3D library. Hence, this work mainly
contributes to the M2 and M0 levels.

B. M2: DSL definition

The RSG-DSL for the scene graph based world model
is defined with the Xtext grammar language [17]. The
corresponding Ecore meta model representation as part of the
EMF is completely generated from that Xtext definition. The
RSG-DSL re-uses an existing DSL for units of measurements
that is defined with Xtext as well. This is achieved via
grammar mixins.

The overall design approach is to find a minimal set
of DSL primitives and their relations that are sufficient to
represent the domain of an environment representation that
is based on the RSG approach. The core primitives are the
different node types and the function blocks. The graph
structure allows to relate nodes to each other. The function
blocks relate to the graph in the sense that graph structures
serves as input and output data structure.

One central element of the RSG-DSL are the node types
as shown in Section III. As depicted in Fig. 1 the Ecore
model represents the common properties for all node types
within the AbstractNodeProperties that can have a
list of Attributes. An attribute is a key value pair. The
Group and the Transform are the only node types that
have children by referencing to the AbstractNode. The
other two node types Node and GeometricNode are thus
leaves in the scene graph.

The RSG-DSL identifies and references all node types by
their names. This seems to be in conflict with the requirement
that nodes have unique IDs but the description of a world
model on M1 level can be seen as a generic template for a

Fig. 2. Ecore model of function blocks for data processing. Input and
output data is specified via hooks and structure definitions. Hooks describe
where the data is located at run time, while structure definition describes
how the data looks like.

scene of an application [11]. The constraint of unique IDs
has to hold on the M0 instance level and can be considered as
an implementation detail. The world model implementation
has facilities to provide and maintain unique IDs.

Each geometric data that can be contained in a
GeometricNode has its dedicated representation within
the RSG-DSL. Special attention has to be paid to the
PointCloud and Mesh types as legacy data types shall
be supported on M0 level. The PointCloudType collects
all necessary information to be able to generate code for
any point cloud representation used in an application. The
Mesh representation follows analogously. On the M0 level
this variability is mapped to a template based class.

The temporal cache for the Transform node is mod-
eled by the TransformCache. It consists of a list of
RigidTransforms while a single entry is formed by a
HomogeneousTransformationMatrix and an associ-
ated TimeStamp. The values for the geometric data, the
transformation matrix and the time stamps are accompanied
with units of measurements.

The FunctionBlock model (cf. Fig. 2) to represent
the behavioral aspect of the world model consists of four
references to AbstractNodes: An inputHook,
an inputStructure, an outputHook and an
outputStructure. The hooks reefer to a subgraph
at run-time that is to be consumed for further processing
or it defines where to add the results of a computation to
the scene graph. The structure property represents at design
time the expected structure of a scene that is required for an
encapsulated algorithm. For example, a function block that
implements an algorithm for segmentation of point cloud
data can have a PointCloud node as structural input. As
output structure it provides any number of Transform
nodes pointing to the centroids of the segmented point
clouds. Each Transform has a PointCloud as child
node to represent a single segment. To be able to express
such multiplicities in the input and output structures the
DSL foresees a cardinality attribute that is available in the
AbstractNodeProperties.

Function blocks can be used to create processing chains.
All intermediate results of such a chain are stored in the
scene graph. The input and output structures allows to check
on the M1 level if the output of one function block matches
as input for a successor function block. A trigger mechanism
that can execute function blocks based on changes in the
scene or based on signaling by other function blocks is
planned as future work.

C. M0: Code generation

Xtend is used to realize the model to text transformation
from the M1 to the M0 level. As the world model primitives
are available in the RSG implementation the code generation
for them is a straight forward mapping to the respective API
calls. The RSG-DSL has no assumptions on the order of
primitives. On the implementation level, children can not be
added to parents that will be created afterwards. To overcome
this hurdle the transformation uses a depth-first search based
graph traversal for the model primitives to ensure correct
order of creation.

Adding a new primitive with the help of the API will
return a unique ID which will be kept in a variable that
is labeled with the same name as in the model. These
corresponding variables improve readability of the generated
code on the one hand and keep the unique ID property on
the other hand.

The primitives that are in the subgraph of the root node
of the WorldModel will be stored in a SceneSetup.h file
to represent the application specific scene. This file can be
included and used within the application.

All FunctionBlocks result in dedicated header files for
each generated interface. An implementation for a function
block has to inherit from such an interface. This strategy
is inspired by the Implementation Gap Pattern [18] and
it separates generated code from hand-written code via
inheritance.

V. EXAMPLES

To illustrate the capabilities of the RSG-DSL a set of
examples on the M1 and the M0 level is given below.

A. A robot application scene

Listing 1 demonstrates an application scene that consists
of a subgraph for a sensor and a kitchen table attached
to the group1 Group. The table could be a part of the
environment that is expected to be there but its exact position
has to be further deduced by some function block. The root
keyword defines the application scene subgraph. For the
sake of readability the structure for the robot carrying the
sensor is omitted and subsumed by a single worldToCamera
Transform. Note that the transform data is accompanied
by units of measurements (cf. lines 20 to 22). In case of
a moving sensor with respect to the world frame further
transform data has to be inserted into the cache. Here the
provided information given by the RSG-DSL can be seen as
an initial value. The sensor Group is supposed to be the

place where online sensor data will be hooked in that might
serve as input for a function block.

An excerpt of the resulting model to text transformation
is presented in Listing 2. The respective API method invoca-
tions for group1 Group and worldToCamera Transform
are shown. Lines 2 to 4 indicate the mapping of M1 level
node names to IDs on the M0 level.

Listing 1. Application scene setup represented with the RSG-DSL.
1 root rootNode // application scene
2

3 Group rootNode {
4 child group1
5 child worldToCamera
6 }
7

8 Group group1 {
9 Attribute ("name", "scene_objects")

10 child kitchenTable
11 }
12

13 Transform worldToCamera {
14 Attribute ("name", "wm_to_sensor_tf")
15 child sensor
16 transforms {
17 RigidTransform t1 {
18 stamp TimeStamp (0.0 s)
19 value HomogeneousTransformationMatrix (
20 [1.0, 0.0, 0.0, 0.0 m],
21 [0.0, 1.0, 0.0, 0.0 m],
22 [0.0, 0.0, 1.0, 1.0 m],
23 [0.0, 0.0, 0.0, 0.0])
24 }
25 }
26 }
27

28 Group sensor {
29 Attribute ("name", "sensor")
30 }

B. Scene structure for a semantic entity

As an example for a semantic entity a table is defined
in Listing 3. It relates the geometric parts into a scene
structure. All legs have a spatial relation from the center
of the tablePlate defined by the Transform node that
is a child of the kitchenTable Group node. The example
shows only one table leg but the other definitions follow
analogously. The results are depicted in the Fig. 3 and Fig.
4. The used visualization functionality for the graph structure
and the 3D visualization are part of the RSG implementation
and demonstrate that the model to text transform of the
example works as expected.

Listing 3. Kitchen table represented with the RSG-DSL.
1 Group kitchenTable {
2 Attribute ("name", "kitchen_table")
3 Attribute ("affordance", "pushable")
4 child tablePlate
5 child leg1tf
6 child leg2tf
7 child leg3tf
8 child leg4tf
9 }

10

Fig. 3. 3D visualization of the kitchen table.

11 GeometricNode tablePlate {
12 Attribute ("name", "table_plate")
13 geometry tablePlateGeometry
14 }
15

16 Box tablePlateGeometry {
17 sizeX 1.80 m
18 sizeY 0.90 m
19 sizeZ 5.0 cm
20 }
21

22 Box tabelLegGeometry {
23 sizeX 0.1 m
24 sizeY 0.1 m
25 sizeZ 0.76 m
26 }
27

28 Transform leg1tf {
29 Attribute ("name" , "plate_to_leg1_tf")
30 child leg1geom
31 transforms {
32 RigidTransform t1 {
33 stamp TimeStamp (0.0 s)
34 value HomogeneousTransformationMatrix (
35 [1.0, 0.0, 0.0, 0.85 m] ,
36 [0.0, 1.0, 0.0, 0.40 m] ,
37 [0.0, 0.0, 1.0, -0.38 m] ,
38 [0.0, 0.0, 0.0, 0.0])
39 }
40 }
41 }
42

43 GeometricNode leg1geom {
44 Attribute ("name", "leg_1")
45 geometry tabelLegGeometry
46 }
47

48 // The other three table legs
49 // are set up analogously.

C. Interface definition for a function block

A FunctionBlock definition for a point cloud based
segmentation algorithms is depicted in Listing 4. The input
structure reefers to a point cloud node that contains an
internal representation based on the Point Cloud Library
(PCL) [19]. Input and output point clouds are of the same
type as shown in lines 7 and 8. As output structure a
planes Group node is specified that can have zero or more

Listing 2. Excerpt from generated code for M0 level. Some comments and additional line breaks have been added after generation.
1 std::vector<rsg::Attribute> attributes; // Instantiation of list of attributes.
2 unsigned int rootNodeId; // IDs correspond to names in model on M1 level.
3 unsigned int group1Id;
4 unsigned int worldToCameraId;
5 // [...]
6

7 /* Add group1 as a new node to the scene graph */
8 attributes.clear();
9 attributes.push_back(Attribute ("name", "scene_objects"));

10 wm->scene.addGroup(rootNodeId, group1Id, attributes); // group1Id is an output parameter
11 // [...] // and returns a unique ID.
12

13 /* Add worldToCamera as a new node to the scene graph */
14 attributes.clear();
15 attributes.push_back(Attribute ("name", "wm_to_sensor_tf"));
16 brics_3d::IHomogeneousMatrix44::IHomogeneousMatrix44Ptr worldToCameraInitialTf(
17 new brics_3d::HomogeneousMatrix44(// Instantiation of HomogeneousTransformationMatrix primitive.
18 1.0, 0.0, 0.0,
19 0.0, 1.0, 0.0,
20 0.0, 0.0, 1.0,
21 0.0 * 1.0, 0.0 * 1.0, 1.0 * 1.0 // Values are scaled to SI unit [m].
22));
23

24 wm->scene.addTransformNode(rootNodeId, worldToCameraId, attributes, worldToCameraInitialTf,
25 brics_3d::rsg::TimeStamp(0.0, Units::Second) // Value is scaled to SI unit [s].
26);

Fig. 4. Scene graph structure for the application scene including the kitchen table. Yellow nodes show Transforms while green nodes indicate
GeometricNodes. The on M0 level generated IDs are shown in square brackets. Attached attributes are given in brackets. In addition the Transform
nodes indicate the translational values T = (x, y, z) and the size of the temporal cache via the Updates field.

Transforms that are supposed to point to the centroids
of the calculated point cloud segments. Line 21 reflects this
variability by using the optional cardinality keyword.
In this case the "*" terminal symbol has the semantics of
any number.. According to the outputHook in line 44 all
results will be inserted to the scene graph as child node of
the sensor node (cf. Section V-A). An implementation of the
function block can be achieved with functionality offered by
PCL for instance. Algorithmic details are beyond the scope
of this paper. Other point cloud processing libraries could
have been chosen as well. Whatever choice the application
programmer has been made, it is explicitly represented in
the model on the M1 level.

Listing 4. A function block represented with the RSG-DSL.
1 PointCloudType PointCloudPCL {
2 type "pcl::PointCloud<PointType>"
3 sharedPtr "pcl::PointCloud<PointType>::Ptr"
4 library "pcl"
5 }
6

7 PointCloud inputCloud type PointCloudPCL
8 PointCloud planeCloud type PointCloudPCL
9

10 GeometricNode pointCloud {
11 Attribute ("name", "point_cloud")
12 geometry inputCloud
13 }
14

15 Group planes {
16 Attribute ("name", "planes")

17 child tfToPlaneCentroid
18 }
19

20 Transform tfToPlaneCentroid {
21 cardinality *
22 child horizontalPlane
23 transforms {
24 RigidTransform t1 {
25 stamp TimeStamp (0.0 s)
26 value HomogeneousTransformationMatrix (
27 [1.0, 0.0, 0.0, 0.0 m],
28 [0.0, 1.0, 0.0, 0.0 m],
29 [0.0, 0.0, 1.0, 0.0 m],
30 [0.0, 0.0, 0.0, 0.0])
31 }
32 }
33 }
34

35 GeometricNode horizontalPlane {
36 Attribute ("name", "plane")
37 geometry planeCloud
38 }
39

40 FunctionBlock horizontalPlaneSegmentation {
41 inputStructure pointCloud
42 inputHook sensorPointCloud
43 outputStructure planes
44 outputHook sensor
45 }

VI. CONCLUSION

This work has presented the RSG-DSL: a DSL for a
robotic world model based on the Robot Scene Graph (RSG).
It is grounded in executable behavior as code can be gener-
ated to be used with an API for an existing implementation
of the RSG approach. The RSG-DSL allows to express
(a) application specific scene setups, (b) semantic scene
structures and (c) inputs and outputs for the function blocks
which are a part of the world model approach.

The RSG-DSL makes a contribution to improve the robot
development work flow as world model aspects can be
explicitly represented in a model-driven tool chain. Thus,
a developer can create a robotic application quicker and less
error prone.

Future work will include extension of the RSG-DSL
approach by multiple levels of detail representations for
geometries, uncertainty representations and trigger entities
for function blocks. Currently the scene setup definition is
centered around a single robot system. Language support
for distributed and multi-robot applications are important
improvements for the proposed DSL. The inclusion of other
existing DSLs like the geometric relations DSL is a promis-
ing research direction with the goal of contributing to a
robotic DSL that can be composed of a set of languages
representing various robotic subfields like world modeling,
planning, perception, reasoning or coordination.

ACKNOWLEDGEMENTS

The authors acknowledge the fruitful discussions at the 4th International
Workshop on Domain-Specific Languages and models for ROBotic systems
(DSLRob-13) co-located with IEEE/RSJ IROS 2013, Tokyo, Japan. Insights
from the discussions have lead to a clarified version of this paper.

The authors acknowledge the support from the KU Leuven Gecon-
certeerde Onderzoeks-Acties Model based intelligent robot systems and
Global real-time optimal control of autonomous robots and mechatronic
systems, and from the European Union’s 7th Framework Programme
(FP7/2007–2013) projects BRICS (FP7-231940), ROSETTA (FP7-230902),
RoboHow.Cog (FP7-288533), and SHERPA (FP7-600958).

REFERENCES

[1] S. Blumenthal, H. Bruyninckx, W. Nowak, and E. Prassler, “A Scene
Graph Based Shared 3D World Model for Robotic Applications,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Karlsruhe, Germany, 2013.

[2] J. Elfring, S. van den Dries, M. van de Molengraft, and M. Steinbuch,
“Semantic world modeling using probabilistic multiple hypothesis
anchoring,” Robotics and Autonomous Systems, vol. 61, no. 2, pp.
95 – 105, 2013.

[3] K. Wurm, D. Hennes, D. Holz, R. Rusu, C. Stachniss, K. Konolige,
and W. Burgard, “Hierarchies of octrees for efficient 3D mapping,” in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on. IEEE, 2011, pp. 4249–4255.

[4] S. Blumenthal, “BRICS_3D Documentation pages,” 2013. [Online].
Available: http://www.best-of-robotics.org/brics_3d/

[5] International Organization for Standardization, “ISO/IEC 19502: In-
ternational Standard: Information technology - Meta Object Facility
(MOF),” 2005.

[6] M. Klotzbücher, R. Smits, H. Bruyninckx, and J. De Schutter,
“Reusable hybrid force-velocity controlled motion specifications with
executable Domain Specific Languages,” in Intelligent Robots and
Systems (IROS), 2011 IEEE/RSJ International Conference on, 2011,
pp. 4684–4689.

[7] T. De Laet, W. Schaekers, J. de Greef, and H. Bruyninckx, “Domain
Specific Language for Geometric Relations between Rigid Bodies
targeted to robotic applications,” CoRR, vol. abs/1304.1346, 2013.

[8] Eclipse Modeling Framework Project, “Eclipse Modeling Framework
Project (EMF),” 2013. [Online]. Available: http://www.eclipse.org/
modeling/emf/

[9] S. Schneider and N. Hochgeschwender, “Towards a Declarative Grasp
Specification Language,” in Workshop on Combining Task and Mo-
tion Planning of the IEEE International Conferenceon Robotics and
Automation, 2013.

[10] J. Haist and P. Korte, “Adaptive streaming of 3D-GIS geometries and
textures for interactive visualisation of 3D city models,” 2006.

[11] M. Lenk, A. Vitzthum, and B. Jung, “Model-driven iterative devel-
opment of 3D web-applications using SSIML, X3D and JavaScript,”
in Proceedings of the 17th International Conference on 3D Web
Technology. ACM, 2012, pp. 161–169.

[12] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
relationships in robotics,” Autonomous robot vehicles, vol. 1, pp. 167–
193, 1990.

[13] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in ICRA workshop on open source software, vol. 3,
no. 3.2, 2009.

[14] H. Bruyninckx, “Open robot control software: the orocos project,” in
IEEE International Conference on Robotics and Automation, vol. 3,
2001, pp. 2523 – 2528.

[15] G. Metta, P. Fitzpatrick, and L. Natale, “Yarp: Yet another robot
platform,” International Journal on Advanced Robotics Systems, vol. 3,
no. 1, pp. 43–48, 2006.

[16] M. Naef, E. Lamboray, O. Staadt, and M. Gross, “The blue-c dis-
tributed scene graph,” in Proceedings of the workshop on Virtual
environments 2003. ACM, 2003, pp. 125–133.

[17] Xtext project, “Xtext - Language Development Made Easy! -
Eclipse,” 2013. [Online]. Available: http://www.eclipse.org/Xtext/
documentation.html

[18] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[19] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in

IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

http://www.best-of-robotics.org/brics_3d/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/documentation.html
http://www.eclipse.org/Xtext/documentation.html

	I Introduction
	II Related Work
	III World Model Primitives
	IV A DSL for a Scene Graph based World Model
	IV-A Choice of modeling framework
	IV-B M2: DSL definition
	IV-C M0: Code generation

	V Examples
	V-A A robot application scene
	V-B Scene structure for a semantic entity
	V-C Interface definition for a function block

	VI Conclusion
	References

