
Formation of General Position by Asynchronous Mobile
Robots

S. Bhagat
ACM Unit

Indian Statistical Institute
Kolkata-700108

subhash.bhagat.math@gmail.com

S. Gan Chaudhuri
Department of Information

Technology
Jadavpur University

Kolkata-700032
srutiganc@it.jusl.ac.in

K. Mukhopadhyaya
ACM Unit

Indian Statistical Institute
Kolkata-700108

krishnendu@isical.ac.in

ABSTRACT
The traditional distributed model of autonomous, homoge-
neous, mobile point robots usually assumes that the robots
do not create any visual obstruction for the other robots,
i.e., the robots are see through. In this paper, we consider
a slightly more realistic model, by incorporating the notion
of obstructed visibility (i.e., robots are not see through) for
other robots. Under the new model of visibility, a robot
may not have the full view of its surroundings. Many of the
existing algorithms demand that each robot should have the
complete knowledge of the positions of other robots. Since,
vision is the only mean of their communication, it is required
that the robots are in general position (i.e., no three robots
are collinear). We consider asynchronous robots. They also
do not have common chirality (or any agreement on a global
coordinate system). In this paper, we present a distributed
algorithm for obtaining a general position for the robots in
finite time from any arbitrary configuration. The algorithm
also assures collision free motion for each robot. This algo-
rithm may also be used as a preprocessing module for many
other subsequent tasks performed by the robots.

Keywords
Asynchronous, oblivious, obstructed visibility, general posi-
tion.

1. INTRODUCTION
The study of a set of autonomous mobile robots, popularly

known as swarm robots or multi robot system, is an emerg-
ing research topic in last few decades. Swarm of robots is a
set of autonomous robots that have to organize themselves
in order to execute a specific task in collaborative manner.
Various problems in several directions, have been studied
in the framework of swarm robots, among the others dis-
tributed computing is an important area with this swarm
robots. This paper explores that direction.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1.1 Framework
The traditional distributed model [12] for multi robot sys-

tem, represents the mobile entities by distinct points located
in the Euclidean plane. The robots are anonymous, indistin-
guishable, having no direct means of communication. They
have no common agreement in directions, orientation and
unit distance. Each robot has sensing capability, by vision,
which enables it to determine the position (within its own
coordinate system) of the other robots. The robots oper-
ate in rounds by executing Look-Compute-Move cycles. All
robots may or may not be active at all rounds. In a round,
when becoming active, a robot gets a snapshot of its sur-
roundings (Look) by its sensing capability. This snapshot
is used to compute a destination point (Compute) for this
robot. Finally, it moves towards this destination (Move).
The robot either directly reaches destination or moves at-
least a small distance towards the destination. The choice
of active robot in each round is decided by an adversary.
However, it is guaranteed that each robot will become active
in finite time. All robots execute the same algorithm. The
robots are oblivious, i.e., at the beginning of each cycle, they
forget their past observations and computations [10]. De-
pending on the activation schedule and the duration of the
cycles, three models are defined. In the fully-synchronous
model, all robots are activated simultaneously. As a result,
all robots acts on same data. The semi-synchronous model
is like the fully synchronous, except that the set of robots
to be activated is chosen at random. As a result, the active
robots act on same data. No assumption, is made on tim-
ing of activation and duration of the cycles for asynchronous
model. However, the time and durations are considered to
be finite.

Vision and mobility enable the robots to communicate
and coordinate their actions by sensing their relative posi-
tions. Otherwise, the robots are silent and have no explicit
message passing. These restrictions enable the robots to be
deployed in extremely harsh environments where communi-
cation is not possible, i.e an underwater deployment or a
military scenario where wired or wireless communications
are impossible or can be obstructed or erroneous.

1.2 Earlier works
Majority of the investigations[9, 12] on mobile robots as-

sume that their visibility is unobstructed or full, i.e., if two
robots A and B are located at a and b, they can see each
other though other robots lie in the line segment ab at that
time. Very few observations on obstructed visibility (where

ar
X

iv
:1

40
8.

20
72

v1
 [

cs
.D

C
]

 9
 A

ug
 2

01
4

A and B are not mutually visible if there exist other robots
on the line segment ab) have been made in different models;
such as, (i) the robots in the one dimensional space [5]; (ii)
the robots with visible lights [7, 8] and (iii) the unit disc
robot called fat robots [1, 6].

The first model studied the uniform spreading of robots
on a line [5]. In the second model, each agent is provided
with a local externally visible light, which is used as colors [7,
8, 9, 11, 12, 13, 2]. The robots implicitly communicate with
each other using these colors as indicators of their states. In
the third model, the robots are not points but unit discs [4,
6, 1]) and collisions among robots are allowed.

Obstructed visibility have been addressed recently in [2]
and [3]. In [2] the authors have proposed algorithm for
robots in light model. Here, the robots starting from any
arbitrary configuration form a circle which is itself an unob-
structed configuration. The presence of a constant number
of visible light(color) bits in each robot, implicitly help the
robots in communication and storing the past configuration.
In [2], the robots obtain a obstruction free configuration by
getting as close as possible. Here, the robots do not have
light bits. However, the algorithm is for semi-synchronous
robots.

1.3 Our Contribution
In this paper, we propose algorithm to remove obstructed

visibility by making of general configuration by the robots.
The robots start from arbitrary distinct positions in the
plane and reach a configuration when they all see each other.
The robots are asynchronous, oblivious, having no agree-
ment in coordinate systems. The obstructed visibility model
is no doubt improves the traditional model of multi robot
system by incorporating real-life like characteristic. The
problem is also a preliminary step for any subsequent tasks
which require complete visibility.

The organization of the paper is as follows: Section 2, de-
fines the assumptions of the robot model used in this paper
and presents the definitions and notations used in the algo-
rithm. Section 3 presents an algorithm for obtaining general
position by asynchronous robots. We also furnish the cor-
rectness of our algorithm in this section. Finally in section 4
we conclude by providing the future directions of this work.

2. MODEL AND DEFINITIONS
LetR = {r1 . . . , rn} be a set of n homogeneous robots rep-

resented by points. Each robot can sense (see) 360o around
itself up to an unlimited radius. However, they obstruct the
visibility of other robots. The robots execute look-compute-
move cycle in asynchronous manner. They are oblivious and
have no direct communication power. The movement of the
robots are non-rigid, i.e., a robot may stop before reaching
its destination. However, a robot moves at-least a minimum
distance δ > 0 towards its destination. This assumption as-
sures that a robot will reach its destination in finite time.
Initially the robots are positioned in distinct locations and
are stationary. Now we present some notations and conven-
tions which will be used throughout the paper.

• Position of a robot: ri ∈ R represents a location of
a robot inR at some time, i.e., ri is a position occupied
by a robot in R at certain time. To denote a robot in
R we refer by its position ri.

• Measurement of angles: By an angle between two

line segments, if otherwise not stated, we mean the
angle made by them which is less than equal to π.

• V(ri) : For any robot ri, we define the vision of ri,
V(ri), as the set of robots visible to ri (excluding ri
itself). The robots in V(ri) can also be in motion due
to asynchronous scheduling.

If we sort the robots in V(ri) by angle at ri, w.r.t. ri
and connect them in that order, we get a star-shaped
polygon, denoted by STR(ri). Note that rj ∈ V(ri) if
and only if ri ∈ V(rj) (Figure 1).

ri

Figure 1: An example of STR(ri)

• CR(ri) : This is the set of line segments joining ri
to all its neighbors or all robots in V(ri). CR(ri) =
{rirj : rj ∈ V(ri)} (Figure 2).

ri

rj

Figure 2: An example of CR(ri)

• Lrirj : Straight line through ri and rj : rj ∈ V(ri)
(Figure 3)

• COL(ri): COL(ri) denotes the set of robots for which
ri creates visual obstructions.

• DISP(rirj) : When a robot ri moves to new position
r̂i, we call ∠rirj r̂i as the angle of displacement of ri
w.r.t. rj and denote it by DISP (rirj) (Figure 3).

rj

ri
rk

r̂i
DISP (rirj)

Lrirj

Figure 3: Examples of Lrirj , DISP(rirj) = ∠rirjr̂i,
COL(ri) = {rl, rm}

rj−1

rj

rj+1

rirj−2 rj+2

α(ri)

Bisec(ri)

DIR(ri)

intersect(ri)

Figure 4: Examples of Γ(ri), α(ri), Bisec(ri),
intersect(ri)

• Γ(ri :) Set of angles ∠rjrirk where rk and rj are two
consecutive vertices of STR(ri) (Figure 4) .

• α(ri) : Maximum of Γ(ri) if maximum value of Γ(ri)
is less than π otherwise the 2nd maximum of Γ(ri).
The tie, if any, is broken arbitrarily (Figure 4).

• Bisec(ri) : Bisector of α(ri). Note that Bisec(ri) is a
ray from ri towards the angle of consideration (Figure
4).

• DIR(ri) : The direction of Bisec(ri). We say that
DIR(ri) lies on that side of any straight line where
infinite end of DIR(ri) lies (Figure 4).

• intersect(ri) : We look at the intersection points of
Bisec(ri) and Ljk , ∀ rj , rk ∈ V(ri). The intersection
point closest to ri is denoted by intersect(ri) (Figure
4).

• Γ′(ri): Set of angles ∠ri−1rjri and ∠rirjri+1, ∀rj ∈
V(ri), where ri−1 and ri+1 are the two neighbors of ri
on STR(V(rj)) (Figure 5).

ri

rj

ri+1ri−1

ri+2

rj−1

β(ri)

Figure 5: Examples of Γ′(ri), β(ri) = ∠rj−1ri+2ri

• β(ri) : Minimum of Γ(ri) ∪ Γ′(ri) (Figure 5).

• θ(ri) : β(ri)

n2 .

• d(ri): Distance between ri and intersect(ri).

• D(ri) : Distance between ri and the robot nearest to
it.

• ∆(ri) : min{ d(ri)
n2 , D(ri)Sin(θ(ri))}.

• r̂i : The point on Bisec(ri), ∆(ri) distance apart from
ri (Figure 6).

• C(ri) : The circle of radius ∆(ri) centered at ri. Note
that r̂i always lies on C(ri) (Figure 6).

• T (C(ri), rj) : Any one of the tangential points of the
tangents drawn to C(ri) from rj (Figure 6).

ri

C(ri)

T (C(ri), rj)
rj

Bisec(ri)

r̂i

Figure 6: Examples of C(ri), r̂i, T(C(ri), rj)

We classify the robots inR depending upon their positions
with respect to CH(R) (the convex hull of R), as below:

• External vertex robots (REV): A set of robots ly-
ing on the vertices of CH(R) . These robots do not
obstruct the visibility of any robot in R and hence
they do not move during whole execution of the algo-
rithm. Note that, if ri lies outside of STR(ri) , then
ri is an external vertex robot.

• External edge robots (REE): A set of robots lying
on the edges of CH(R). These robots either block the
visibility of external vertex robots or other robot edge
robots. Note that, if ri lies on an edge of STR(ri),
then ri is an external edge robot.

• Internal robots (RI): A set of robots lying inside
the CH(R). Note that, if ri lies within STR(ri), ri is
an internal robot.

3. ALGORITHM FOR MAKING OF GEN-
ERAL POSITION

Consider initially robots in R are not in general position.
Our objective is to move the robots in R in such a way that
after a finite number of movements of the robots in R, it will
be in general position. In order to do so, our approach is
to move the robots which create visual obstructions to the
other robots. If a robot ri lies between two other robots,
say rp and rq such that ri, rp and rq are in straight line,
then ri is selected for movement. The destination of ri, say
T (ri), is computed in such a way that, there always exists
a rj ∈ R (where rj does not have full visibility), such that
when ri moves, the cardinality of the set of visible robots
of rj increases. Since, the number of robots are finite, the
number of robots having partial visibility, is also finite. Our
algorithm assures that at each round at-least one robot with
partial visibility will have full visibility. This implies that in
finite number of rounds all robots will achieve full visibility,
hence, the robots will be in general position in finite time.

3.1 Computing the destinations of the robots
A collinear middle robot is selected to move from its po-

sition. A robot finds its destination for movement using
algorithm ComputeDestination(ri). A robot ri, selected
for moving, moves along the bisector of the minimum angle
created at ri by the robots in V(ri). The destination is cho-
sen in such a way that ri will not block the vision of any
rj ∈ V(ri), where the vision of rj was not initially blocked
by ri, throughout the paths towards its destination. Each
movement of ri breaks at least one initial collinearity.

Algorithm 1: ComputeDestination()

Input: ri ∈ R with COL(ri) 6= φ.

Output: a point on Bisec(ri).

1. Compute α(ri), Bisec(ri), β(ri), θ(ri), D(ri),

2. Case 1: β(ri) 6= 0,

∆(ri)← min{ d(ri)
n2 , D(ri)Sin(θ(ri))}

3. Case 2: β(ri) = 0,
∆(ri)← D(ri)

4. Compute the point r̂i on Bisec(ri), ∆(ri) distance
apart from ri;

5. return r̂i;

Proof of Correctness of algorithm ComputeDestina-
tion().

Correctness of the algorithm is established by following
observations, lemmas.

rj

ri

ri−1 rr+1

rj rj+1

ri+1

ri

(a) (b)

ri−1

Figure 7: An example for lemma 1

Lemma 1. β(ri) ≤ π
3

.

Proof. If all the robots lie on a straight line, then β(ri) =
0. Suppose there are at least three non-collinear robots. For
three robots forming a triangle, β(ri) is maximum when the
triangle is equilateral. For all other cases, consider the trian-
gle formed by ri, rj and ri−1 where rj is any robot in V(ri)
and ri−1 is a neighbor of ri on STR(V(rj)). If rj is also a
neighbor of ri on V(ri−1) (Figure 7(a)), then ∠rirjri−1 and
∠riri−1rj are in Γ′(ri) and either ∠rjriri−1 or an angle less
than it is in Γ(ri). On the other hand, if rj is not a neighbor
of ri on V(ri−1) (Figure 7(b)), then instead of ∠riri−1rj , an
angle less than it, is in Γ′(ri). In all cases, β(ri) is less than

the minimum of the angles of the triangle formed by ri, rj
and ri−1. Hence, β(ri) ≤ π

3
.

Observation 1. Maximum value of DISP (rirj), denoted
by Max(DISP (rirj), is attained when r̂i coincides with one
of the tangential points T (C(ri), rj).

Lemma 2. For any ri, DISP (rirj) ≤ θ(ri) ∀ rj.

Proof. Let rj be a robot in V(ri) and rk a robot closest
to ri. By observation 1, maximum values of DISP (rirj) and
DISP (rirk) are attained at tangential points T (C(ri), rj)
and T (C(ri), rk) respectively. Hence, DISP (rirj) is less
than π

2
for all j. By definition,

∆(ri)

|rirk|
= sin(max(DISP (rirk)))

≤ sin(θ(ri)) (1)

Again,

∆(ri)

|rirj |
= sin(max(DISP (rirj))) (2)

Since |rirk| < |rirj |, from (1) and (2) we have,

sin(max(DISP (rirj))) ≤ sin(θ(ri)). (3)

DISP (rirj) and θ(ri) are in [0, π
2

) (by lemma 1) and sine
is an increasing function in [0, π

2
]. From (3) we conclude,

DISP (rirj) ≤ θ(ri)

Suppose a robot ri ∈ R moves according to our algorithm.
We claim that it will never become collinear with any two
robots rj and rk in R where ri, rj and rk are not collinear
initially. Now we state arguments to prove our claim.

Observation 2. Let ABC be a right-angled triangle with
∠ABC = π

2
. Let D be a point on the side AC such that

|DC| ≤ 1
2
|AC|. Then,

∠BDA ≤ 2∠ACB.

Lemma 3. Suppose ri and rj move to new positions r̂i
and r̂j in at most one computation cycle. Let φ be the an-
gle between Lrirj and Lr̂ir̂j i.e., φ = ∠ricr̂i where c is the
intersection point between Lrirj and Lr̂ir̂j . Then,

φ < 2 Max {θ(ri), θ(rj)}

Proof. If any one ri and rj moves, then lemma is
trivially true. Suppose both of them move once.

Case 1:
Suppose ri and rj move synchronously. Without loss
of generality, let ∆(ri) ≥ ∆(rj).

•– Case 1.1:
Suppose DIR(ri) and DIR(rj) lie in the opposite
sides of Lrirj (Figure 8). In view of observation
1, Max{φ}, the maximum value of φ, is attained
when Lr̂ir̂j is a common tangent to C(ri) and
C(rj). Let M be the middle point of rirj . If

r̂i

rj

M cri

C(ri)

C(rj)

φ

r̂j

Figure 8: An example of case 1.1 for lemma 3

C(ri) is strictly larger than C(rj), c is closer to
rj than ri. If they are equal, c coincides with M .
Consider the right-angled triangle 4rir̂irj . By
observation 2,

φ ≤Max{φ}
≤ 2DISP (rirj)

< 2Max{DISP (rirj)}
≤ 2θ(ri)

– Case 1.2:
If DIR(ri) and DIR(rj) lie in the same side of
Lrirj (Figure 9), Max{φ} is attained when Lr̂ir̂j
is a tangent to C(ri) from the point c and c co-
incides with the closest point of C(rj) from ri.
Then following same argument as in case-1, we
have the proof.

r̂i

rj

M cri

C(ri) C(rj)

r̂j

Figure 9: An example of case 1.2 for lemma 3

• Case 2:
Suppose ri and rj move asynchronously. Suppose ri
is moving and is at r′i when rj takes the snapshot of
its surroundings to compute the value of ∆(rj). Since
ri has already computed the value of ∆(ri) and com-
putation of ∆ values of ri and rj are independent, the
proof follows from the same arguments as in case 1. In
this case the value of ∆(rj) may be different from the
value in case 1.

Lemma 4. Suppose two robots ri and rj move to r̂i and
r̂j respectively in at most one movement. Then

Max{DISP (rir̂j), DISP (rj r̂i)} < 2Max{θ(ri), θ(rj)}.

Proof. Follows from observation 2 and lemma 3 (Figure
10).

Lemma 5. If ri, rj and rk are not collinear and mutually
visible to each other, then during the whole execution of the
above algorithm, they never become collinear.

Proof. We have the following cases,

r̂j

ri

r̂i

DISP (rir̂j)

DISP (rj r̂i)

rj

DISP (rjri)

DISP (rirj)

Figure 10: An example for lemma 4

• Case 1 (Only one robot moves):
Without loss of generality, suppose rj , rk stand still
and ri moves. If DIR(ri) does not intersect Lrjrk
(Figure 11(a)), then the claim is trivially true.

SupposeDIR(ri) intersects Lrjrk (Figure 11(b)). Since

distance traversed by ri is bounded above by d(ri)

n2 , ri
can not reach Lrjrk and ri, rj and rk will not become
collinear.

ri

rk

rj

ri

rj
rk

DIR(ri)

DIR(ri)

(a) (b)

Figure 11: An example of case 1 for lemma 5

• Case 2 (Two of the robots move):
Without loss of generality, suppose ri and rj move
while rk remains stationary. This case would be feasi-
ble only if n ≥ 4.

– Case 2.1:
Suppose ri and rj move synchronously. Then by
lemma 2,

DISP (rirk) ≤ ∠rirkrj
n2

(4)

And

DISP (rjrk) ≤ ∠rirkrj
n2

(5)

From equation 4 and 5

DISP (rirk) +DISP (rjrk) < ∠rirkrj (6)

The minimum value ofDISP (rirk)+DISP (rjrk)
for which ri, rj and rk could become collinear is
∠rirkrj . In view of equation (6), we conclude
that ri, rj and rk would never become collinear.

– Case 2.2:
Suppose that ri is in motion and is at r̂i

′ when rj
computes the value of ∆(rj). If r̂i

′ and rj lie in
opposite sides of Lrirk (Figure 12(a)), then

ri

rj rk

r̂′i
r̂′i

ri

rj
rk

(a) (b)

Figure 12: An example of case 2.2 for lemma 5

∆(rj) ≤
1

n2
dist(rj ,Lrk r̂i′)

which implies that rj can not reach Lrirk when
ri reaches its destination and hence the lemma.
Suppose r̂i

′ and rj lie in same side of Lrirk (Figure
12(b)). Then we have,

DISP (rirk) ≤ ∠r̂i′rkrj
n2

<
∠r̂irkrj
n2

Lemma follows from the same arguments as used
in Case 2.1.
Consider the case: suppose rj takes the snapshot
at time t and moves to its destination at time t′.
In between times t and t′, suppose ri has made at
most n−1

2
moves (we shall prove in case 3.2 that

number of movements of any robot is bounded
above by n−1

2
). If ri moves towards rj , after n−1

2
moves, we would have

DISP (rirj) < (1− 1

n2
)
n−1
2 ∠rirkrj

which is less than (1 − 1
n2)∠rirkrj . Hence equa-

tion (6) is satisfied in this case and we have the
proof of the lemma. If ri moves away from rj ,
then there is nothing to prove.

• Case 3 (All three robots move):

– Case 3.1:
Suppose ri, rj and rk move synchronously.

– Case 3.1.1:
Suppose Lr̂ir̂j intersects Lrirj at an angle φ > 0
(Figure 13).

ψ

φ

ri

rkrj

r̂j

A

B

C

r̂i

Figure 13: An example of case 3.1.1 for lemma 5

By lemma 3,

φ < 2Max{θ(ri), θ(rj)}

≤ 2

n2
∠rirjrk (7)

In 4ABrj ,

ψ = ∠rirjrk − φ

> ∠rirjrk −
2

n2
∠rirjrk

=
n− 2

n2
∠rirjrk

≥ 3

52
∠rirjrk (8)

Now ri, rj and rk would be collinear only if

DISP (rkB) = ψ (9)

From lemma 4,

DISP (rkB) < DISP (rkr̂j)

< 2Max{θ(ri), θ(rj)}

≤ 2

52
∠rirjrk (10)

Equations 8, 9 and 10 imply that ri, rj and rk do
not become collinear.

– Case 3.1.2:
Suppose Lr̂ir̂j and Lrirj are parallel i.e., φ = 0
which implies that ψ = ∠rirjrk (Figure 14). Let
Bisec(rk) intersect Lrirj at P and |rkP | = l.

Since ∆(rk) ≤ |rirj |sin(
∠rirjrk
n2) and n ≥ 5,

ri

r̂i

rj

r̂j

rk

Bisec(rk)

P

Figure 14: An example of case 3.1.2 for lemma 5

l −∆(rk) ≥ |rirj |sin(∠rirjrk)−∆(rk)

≥ |rirj |sin(∠rirjrk)− |rirj |sin(
∠rirjrk
n2

)

≥ |rirj |(sin(∠rirjrk)− sin(
∠rirjrk

52
))

> |rirj |sin(
∠rirjrk

52
) (11)

∆(ri) and ∆(rj) are bounded above by |rirj |sin
(
∠rirjrk

52
). Hence by equation (11), ri and rj and

rk do not become collinear.

• Case 3.2:

Suppose ri, rj and rk move asynchronously. The main
problem in this case is the following scenario: suppose

rj or rk takes the snapshot at time tj or tk respectively
and starts moving to its computed destination at time
t′j or t′k respectively. Suppose the configuration has
been changed in between the times due to the move-
ments of the other robots. Then the corresponding ∆
value of rj or rk is not consistent w.r.t. the current
configuration. We have to show that this would not
create any problem for our algorithm. The main idea
of proof in this case is that we have to estimate the
maximum amount of inclination of Lrirj towards rk
between the times rj or rk takes the snapshot of sur-
roundings and it reaches the destination. So, in the
following proofs we only consider the scenarios (as in
the case 3.1.1. and case 3.1.2) in which there are pos-
sibilities of maximum reduction in the ∠rirjrk, which
depicts the inclination of Lrirj towards rk. Note that
the inclination of Lrirj towards rk is maximum when
both ri and rj move synchronously. So, we only prove
the case when rk holds the old value of ∆.

• Case 3.2.1
Suppose rk holds the old value of ∆ w.r.t. to the cur-
rent configuration. Suppose ri and rj are at r0i and
r0j respectively when rk takes the snapshot at time tk.
Suppose till t′k, ri and rj move x and x′ times respec-
tively. Note that initially ri and rj can be collinear
with n−1 robots and to remove these collinearity they
have to move at most n−1

2
times if they do not create

any new collinearity (this bound is obtained by con-
sidering the degenerate case i.e., when all the robots
are collinear initially).
First we prove that x and x′ are bounded above by
n−1
2

. To prove this we show that ri and rj do not cre-
ate any new collinearity while moving. We prove this
for arbitrary robots. Suppose some robot rs, while
moving, creates a new collinearity with rl and rm for
the first time during the execution of our algorithm
(Figure 15). Then either one of rl and rm or both

rs

rl

rm

Figure 15: An example of case 3.2.1 for lemma 5

have ∆ values w.r.t. old configurations. As stated ear-
lier we only prove the case in which only one robot,
say rm, has old ∆ value. rm computes ∆(rm) at the
time tm i.e.,

∆(rm) ≤ 1

n2
∠rsrlrm.

Suppose rm does not move till time t′m. The number of
times rs and rl move to break the initial collinearities
before time t′m is upper bounded by n−1

2
. rm would

become collinear with rs and rl when Lrsrl would be
inclined enough towards rm so that by moving a ∆(rm)

amount it would reach this straight line. We try to
estimate the inclination of Lrsrl towards rm (which is
depicted by the angle ψ as in the case 3.1.1. and by
the displacement of Lrsrl towards rm as in the case
3.1.2.) after n−1

2
number of movements of rs and rl

(note that we have consider the over estimated value of
the number of movements of rs and rl). As computed
in the case 3.1.1, after first movement,

ψ > (1− 1

n2
)∠rsrlrm

and ∠rsrlrm will become at most (1+ 1
n2)∠rsrlrm. By

the same repeated arguments, we can say that after d
movements

ψ > (1− 1

n2
)d∠rsrlrm

which is strictly greater than 1
n2∠rsrlrm for d ≤ n−1

2
.

This contradicts the fact that rs creates collinearity
with rl and rm. For the scenario same as the case
3.1.2., we have,

|rlrm|sin(∠rsrlrm)− n− 1

2
|rlrm|sin(

∠rsrlrm
n2

) >

|rlrm|sin(
∠rsrlrm
n2

) (12)

This also contradicts the fact that rs creates collinear-
ity with rl and rm. Hence, we conclude that rs would
not become collinear with rl and rm.
In the above proof, we replace rs, rl and rm by ri,
rj and rk respectively to conclude that ri would not
become collinear with rj and rk during the whole ex-
ecution of our algorithm.

Lemma 6. Consider any two robots ri and rj. ri does not
cross Bisec(rj).

rk

rj ri

a b
p

Figure 16: An example for lemma 6

Proof. If Bisec(ri) and Bisec(rj) do not intersect, then
there is nothing to prove. Suppose Bisec(ri) and Bisec(rj)
intersect at a point p (Figure 16). If at least one of intersect(ri)
and intersect(rj) is closer to ri and rj respectively than p,
then we are done. Else α(ri) and α(rj) are angle of same
triangle 4rirjrk for some rk ∈ R i.e, α(ri) = ∠rkrirj and
α(ri) = ∠rkrjri. In 4rirjrk, let Bisec(ri) and Bisec(rj)
intersect rjrk and rirk at a and b respectively. Here n > 5.

In 4arjp,

|ap| = sin(
∠rkrjri

2
)
|rja|

sin(∠aprj)
(13)

In 4prirj ,

|pri| = sin(
∠rkrjri

2
)

|rirj |
sin(∠π − aprj)

= sin(
∠rkrjri

2
)
|rirj |

sin(∠aprj)
(14)

From equation 13 and 14,

|ap|
|pri|

=
|rja|
|rirj |

(15)

Since |rja| < |rirj |, |ap| < |pri| which implies,

∆(ri) <
|ria|
52

< |pri|.

Hence ri can not cross Bisec(rj). Similarly, rj can not cross
Bisec(ri).

Lemma 7. Suppose, for any robot ri ∈ R, rk /∈ V(ri).
Then during the whole execution of the algorithm ri will not
block the vision between rj and rk where rj ∈ V(rk).

rj r′j

ri

r′l

rlrk

Figure 17: An example for lemma 7

Proof. Let rj ∈ V(ri) ∩ V(rk). Suppose rl be the near-
est robot of ri such that rk lie on Lrirl (Figure 17). If
Bisec(ri) does not intersect rjrl, there is no possibility that
ri will block the vision between rj and rk. Let Bisec(ri)
intersect rjrl. Then rj is one of the immediate neighbor of
rl on STR(V(ri)). Let r′j and r′l be the other immediate
neighbors of rj and rl respectively on STR(V(ri)). First
we prove that ri will always lie on the same side of Lrjrl
as it is initially even if ri, rj , rk and rj move. By lemma
6 and the observation that the movements of ri, rj , rl are
bounded by the edges and chords of the polygon formed by
{rj , rl, r′l, ri, r′j}, we conclude ri never crosses the line Lrjrl .
To block the vision between rk and rj , ri has to move on
the line segment rkrj . Since ri and line segment rjrk lies
on different sides of Lrjrl , ri will never block the vision be-
tween rk and rj . Let rj /∈ V(ri). Then there is a robot rm
which creates visual obstruction between ri and rj . Now the
movement of ri is bounded by the line Lrlrm and hence the
lemma.

Lemma 8. If at any time t, rj ∈ V(ri), then at t′(> t),
rj ∈ V(ri) even if ri changes its position.

Proof. The proof is immediate from 5 and 7.

Lemma 9. Cardinality of V(ri) is strictly increasing.

Proof. Lemma 5, 7 and 8 imply the proof.

Lemma 10. There exist at least two robots rj , rk ∈ R for
which V(rj) and V(rj) increase whenever ri changes its po-
sition.

Proof. ri moves whenever ri is collinear with at least
one pair of robots, (rj , rk), and ri lies in between those
robots. If rj and rk do not move then V(rj) and V(rk)
increase whenever ri moves because no robot can reach rjrk
due to the facts stated in lemma 5 and 7. When either rj
or rk or both ri and rk moves, one member of COL(rj)
and one member of COL(rk) can see each other. Hence the
lemma.

3.2 Moving the robots to obtain general posi-
tion

Next we will discuss the algorithmMakeGenaralPosition(),
by which the robots in R move to obtain full visibility. The
robots in RI which create obstacle to other robots and the
robots in REE are eligible for movement by this algorithm.
The robots compute destinations using ComputeDestination()
and move towards it. The robots keep on executing the al-
gorithm till there exist no three collinear robots in R.

Algorithm 2: MakeGenaralPosition()

Input: R, a set of robots with their positions.

Output: R̂, which is in general position.

while ri ∈ REE ∨ (ri ∈ RI ∧ COL(ri) 6= φ) do

1. T (ri)← ComputeDestination(ri);

2. Move to T (ri);

3. Compute COL(ri);

Proof of Correctness of algorithm MakeGenaralPo-
sition().

The algorithm assures that the robot will form general
position in finite number of movements. The termination
of the algorithm is established by following observation and
lemmas.

Observation 3. ComputeDestination is not executed by
a robot rl ∈ R if rl ∈ REV ∨ (RI ∧ COL(rl) = φ).

Lemma 11. COL(ri) will be φ in finite time.

Proof. In the initial configuration the number of robots
in COL(ri) is upper bounded by n − 1. During the whole
execution of our algorithm no new collinearity is created and
for each iteration cardinality of COL(ri) is reduced by at
least two. Hence after at most n−1

2
number of iterations of

the while loop in the above algorithm, COL(ri) will become
null.

Lemma 12. ∀ri,V(ri) will be (n − 1) in finite number of
execution of the cycle.

Proof. Let η = |
⋃n
i=1 V(ri)|. The algorithm for a robot

ri terminates whenever |V(ri)| reaches the value n−1. Hence

the algorithm for all robots terminates when η = n(n−1)
2

which is a finite integer. By lemma 9 and 10 the value of
η increases whenever any robot moves. Hence after finite
number of execution cycles η reaches its maximum value
n(n−1)

2
.

From the above results, we can conclude the following
theorem:

Theorem 1. A set of asynchronous, oblivious robots (ini-
tially not in general position) without agreement in common
chirality, can form general position in finite time.

4. CONCLUSION
In this paper we have presented an algorithm for obtain-

ing general position by a set of autonomous, homogeneous,
oblivious, asynchronous robots having no common chirality.
The algorithm assures the robots to have collision free move-
ments. Another important feature of our algorithm is that
the convex hull made by the robots in initial position, re-
mains intact both in location and size. In other words, the
robots do no go out side the convex hull formed by them.
This feature can help in many subsequent pattern forma-
tions which require to maintain the location and size and of
the pattern.

Once the robots obtain general position, the next job
could be to form any pattern maintaining the general po-
sition. Most of the existing pattern formation algorithms
have assumed that the robots are see through. Thus, de-
signing algorithms for forming patterns by maintaining gen-
eral position of the robots, may be a direct extension of this
work.

5. REFERENCES
[1] C. Agathangelou, C. Georgiou, and M. Mavronicolas. A

distributed algorithm for gathering many fat mobile
robots in the plane. In Proceedings of the 32nd ACM
Symposium on Principles of Distributed Computing
(PODC), 250–259, 2013.

[2] G. Antonio Di Luna, P. Flocchini, S. Gan Chaudhuri,
N. Santoro, and G. Viglietta. Robots with Lights:
Overcoming Obstructed Visibility Without Colliding In
Proc. 16th International Symposium on Stabilization,
Safety, and Security of Distributed Systems (SSS’14), to
appear.

[3] G. Antonio Di Luna, P. Flocchini, F. Poloni
”

N.
Santoro, and G. Viglietta. The Mutual Visibility
Problem for Oblivious Robots. In Proc. 26th Canadian
Conference on Computational Geometry (CCCG’14), to
appear.

[4] K. Bolla, T. Kovacs, and G.Fazekas. Gathering of fat
robots with limited visibility and without global
navigation. In Int. Symp. on Swarm and Evolutionary
Comp., 30–38, 2012.

[5] R.Cohen and D.Peleg. Local spreading algorithms for
autonomous robot systems. Theoretical Computer
Science, 399:71–82, 2008.

[6] J. Czyzowicz, L. Gasieniec, and A. Pelc. Gathering few
fat mobile robots in the plane. Theoretical Computer
Science, 410(6â7):481 – 499, 2009.

[7] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M.
Yamashita. The power of lights: Synchronizing
asynchronous robots using visible bits. In Proceedings of
the 32nd International Conference on Distributed
Computing Systems (ICDCS), 506–515, 2012.

[8] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M.
Yamashita. Synchronized dancing of oblivious
chameleons. In Proc. 7th Int. Conf. on FUN with
Algorithms (FUN), 2014.

[9] A. Efrima and D. Peleg. Distributed models and
algorithms for mobile robot systems. In Proceedings of
the 33rd International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM),
70–87, 2007.

[10] P. Flocchini, G. Prencipe, and N. Santoro. Distributed
Computing by Oblivious Mobile Robots. Morgan &
Claypool, 2012.

[11] P. Flocchini, N. Santoro, G. Viglietta, and
M. Yamashita. Rendezvous of two robots with constant
memory. In Proceedings of the 20th International
Colloquium on Structural Information and
Communication Complexity (SIROCCO), 189–200, 2013.

[12] D. Peleg. Distributed coordination algorithms for
mobile robot swarms: New directions and challenges. In
Proc. 7th Int. Workshop on Distr. Comp. (IWDC), 1–12,
2005.

[13] G. Viglietta. Rendezvous of two robots with visible
bits. In Proc. 9th Symp. on Algorithms and Experiments
for Sensor Systems, Wireless Networks and Distributed
Robotics (ALGOSENSORS), 291–306, 2013.

	1 Introduction
	1.1 Framework
	1.2 Earlier works
	1.3 Our Contribution

	2 Model and Definitions
	3 Algorithm for Making of General Position
	3.1 Computing the destinations of the robots
	3.2 Moving the robots to obtain general position

	4 Conclusion
	5 References

