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Abstract. Robots belong to a class of Cyber-Physical Systems where
complex software as a mobile device has to fulfill tasks in a complex
environment. Modeling robotics applications for analysis and code gen-
eration requires modeling languages for the logical software architecture
and the system behavior. The MontiArcAutomaton modeling framework
integrates six independently developed modeling languages to model
robotics applications: a component & connector architecture description
language, automata, I/O tables, class diagrams, OCL, and a Java DSL.
We describe how we integrated these languages into MontiArcAutomaton
a-posteriori in a black-box integration fashion.
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1 Introduction

Robots are a class of Cyber-Physical Systems (CPS) [5] where complex software
has to fulfill tasks in a continuous environment. A successful robotics application
has to consider different aspects of hardware and software: ranging from spatial
properties of the robot to kinematics and hardware drivers to the software ar-
chitecture and the behavior of the system. MontiArcAutomaton [8/9] integrates
six independently developed, heterogeneous modeling languages:

— the MontiArc architecture description language [2] to model the software ar-
chitecture of the system as (atomic and decomposed) components, connected
with unidirectional connectors via their typed ports;

— I/0O% automata [I1I7] and I/O tables [T0/I4] to model the behavior of atomic
components;

— UML/P class diagrams (CD) [12/13] model data types of ports and variables;

— the UML/P Object Constraint Language (OCL) [T2/13] and a Java Modeling
Language (Java ML), to model guards on I/O% automata transitions.

MontiArc, I/0% automata, I/O tables, CD, OCL, the Java ML, and Monti-
ArcAutomaton are implemented as MontiCore [4] languages in form of context-
free grammars with context condition checks. MontiCore facilitates language
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integration with a compositional symboltable framework — the Extensible Type
System (ETS) [I5] — which provides mechanisms for language aggregation (the
MontiArcAutomaton language family aggregates class diagrams), language in-
heritance (MontiArcAutomaton extends MontiArc), and language embedding
(I/O% automata embed Java and OCL). Crucially, this framework supports an
a-posteriori integration of languages in a black-box integration fashion.

In this short paper we give an overview of a specific case of language composi-
tion for robotics applications. Comparisons of MontiCore’s language composition
and integration mechanisms with related approaches are presented in [4UT5].

Fig. 1] illustrates MontiArcAutomaton’s language integration mechanisms on
the model of a simple robot. The robot drives forward until it approaches an
obstacle, it then drives backwards, rotates, and drives forward again. Decompo-
sition and interfaces of the components of BumperBot are modeled using the
concepts inherited from MontiArc. The behavior of the component BumpCon-
trol is modeled with an I/O% automaton, where two transitions are guarded with
embedded OCL expressions. The behavior of the component Timer is modeled
as an I/0O table and the behaviors of components wrapping hardware are im-
plemented in the target platform language. The types of component ports and
automaton variables are modeled in a class diagram.
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Fig. 1. The MontiArcAutomaton model of a robot integrating five modeling languages.

While Fig. [I] gives a graphical overview of the used models, the concrete,
textual models used to model the CPS are provided in the ReMoDD repositoryﬂ

! http://www.cs.colostate.edu/remodd/v1/content/black-box-integration-
heterogeneous-modeling-languages-cps-supporting-materials



Within this paper and with the concrete models attached we show how the three
mechanisms for integrating modeling languages are used within the MontiArc-
Automaton modeling language to describe the multiple aspects of a robotics
application. In the next sections we introduce the three language integration
mechanisms used and show how these are realized in the MontiCore framework.

2 Language Integration Mechanisms

MontiCore offers three distinct mechanisms for integrating heterogeneous lan-
guages: embedding, aggregation, and inheritance. For a detailed explanation of
these mechanisms see [4JI5]. All mechanisms have different benefits in varying
application scenarios, which will be presented in this section.

For MontiArcAutomaton we chose to model components and embedded au-
tomata in a single modeling artifact, as shown in Fig. [I] This is a tighter coupling
than a definition in separate artifacts as, for instance, done when using UML
component diagrams and UML class diagrams [6]. We believe that the syntactic
integration helps to prevent inconsistencies when evolving either the structure
of a component or its behavior [3].
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Fig. 2. The resulting abstract syntax trees (ASTs) when using (a) aggregation, (b)
embedding, and (c) inheritance. Aggregation results in separate ASTs for each model.
Embedding results in a single AST with subtrees embedded at the leaves of the host
language. Inheritance results also in a single AST containing extended nodes of the
sublanguage.

Language Aggregation: When modeling robotics applications, different
orthogonal aspects, like the definition of a common type system as a class di-
agram and its usage, need to be expressed by an aggregated set of languages
for specific purposes. Each aspect is modeled within a single artifact written
in a specific language thus producing separate abstract syntax trees (ASTs) as
shown in Fig. |2l This approach is used to aggregate the heterogeneous languages
as shown in Fig. [3| and enables establishing a knowledge relationship between
the models in terms of references.

Language Embedding: Language embedding offers using different lan-
guages within the same model. MontiCore allows the definition of external non-
terminals within a grammar which allows for binding nonterminals of other
grammars to these external nonterminals and thus embedding (parts of) the
language. The AST in turn consists of objects belonging to the respective lan-
guages as shown in Fig. [2] This mechanism is especially useful when modeling



different paradigms, e.g., embedding a language for modeling behavior in a lan-
guage for modeling structure. We use this for embedding, e.g., I/O“ automata
in the MontiArcAutomaton language, as shown in Fig.

Language Inheritance: Language inheritance can be utilized to refine or
extend an existing language. MontiCore allows inheriting from existing nonter-
minals thus enabling extension of those languages as shown in Fig. [2] For the
MontiArcAutomaton language we extended the language MontiArc by new non-
terminals that allow the definition of embedded I/O% automata and variables as
shown in Fig. [3] This approach is especially useful to reuse existing concepts of
the super language while extending it by new concepts.
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Fig. 3. An overview of the MontiArcAutomaton integration. Rounded corners show
language aggregation. All other boxes show languages. Dashed arrows mark language
embedding. Solid arrows mark language inheritance. The CD language is part of both
the UML/P and the MontiArcAutomaton family aggregation.

3 Realization

In MontiCore, the integration of languages is implemented through the Exten-
sible Type System (ETS) sub-framework. To that end, ETS provides various
concepts and extension points that support an a-posteriori integration of aggre-
gated, embedded and inherited languages in a black-box integration fashion.

The core elements of an ETS-based implementation are namespaces, sym-
boltables, and entries. Their structure, construction, and integration are the key
aspects of an implementation of integrated languages.

Entries are descriptions of model elements and implemented as subclasses
of an abstract base class. For instance, ComponentEntry instances describe the
essence of component type definitions (e.g., BumperBot, BumpControl). Entries
can be nested into each other and reference each other even if the model elements
they describe are not part of the same model. This reference mechanism is, in
addition, subject to visibility rules that reflect the modeling language visibility
policies. For instance, the interface of component types is visible to other models,
whereas its internal structure is not. Thereby, the structure of entries resembles
the essential structure of integrated models.

Namespaces, symboltables, resolvers, and entries are, among other modules
not mentioned in this paper, custom implemented by a developer for single mod-
eling languages via extension points in the ETS framework [I5]. Crucially, these



implementations are encapsulated modules that can be integrated with each
other without a need for invasive modifications. To this end, the ETS provides
several means that allow an a-posteriori integration of modeling languages, based
on any combination of language aggregation, embedding, and inheritance.

A core mechanism is the adaptation of entries from different languages by
entry adapters. Entry adapters are implementations of the adapter pattern [IJ.
An entry adapter translates the interface of an entry from one language such that
it corresponds to an interface of an entry from another language. Their common
use case is the translation of a modeled concept between a language that defines
the concept and a language that references it. For instance, port declarations
in components, described by PortEntry, reference a type definition, described
by ArcdTypeEntry, which in our case originates in class diagram models where
types are described by CDTypeEntry. In the implementation of the integration
of these two languages, CDTypeEntry2ArcdTypeAdapter instances adapt class
type entries such that they conform to port type entries. Fig. [4] illustrates this
scenario. In this way, modeling concepts from different languages are integrated.
The ETS framework applies adapters automatically.
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Fig. 4. Example of the integration of MontiArc and CDs by adapting CD types to the
MontiArc symbol table.

Beyond this basic infrastructure, MontiCore provides the developer with var-
ious tools and extension points for the implementation of analyses and syntheses
on heterogeneous models. In general, such custom modules are all based on an
implementation of the visitor pattern [I]. These visitors can traverse language-
specific parts of heterogeneous ASTs. Furthermore, they can be combined into
composite visitors for specific compositions of languages. Visitors are, among
other use cases, employed for context conditions, like type checks, and model
transformations as well as for syntheses like code generation. For instance, a
composite code generator executes different code generation components for
components and I/0% automata while traversing the models of the aggregated
component and automaton languages.

Visitor executions are organized into workflows. Workflows are modules pro-
vided by the developer that are registered for specific (aggregated) modeling
languages. They are automatically executed for every model of that language.
Workflows can refer to information from other models (potentially models of
other languages) by resolving their entries through the ETS framework.
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Conclusion

Integration of modeling languages facilitates the efficient development of com-
plex software systems. We have illustrated how language aggregation, language
embedding and language inheritance can be used to model both architecture
and behavior of CPS in integrated models. The MontiCore framework supports
the application of these mechanisms in a black-box fashion through its ETS
framework and its workflows and visitors components.
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