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Abstract— This paper presents a new methodology to craft
navigation functions for nonlinear systems with stochastic
uncertainty. The method relies on the transformation of the
Hamilton-Jacobi-Bellman (HJB) equation into a linear par-
tial differential equation. This approach allows for optimality
criteria to be incorporated into the navigation function, and
generalizes several existing results in navigation functions. It
is shown that the HJB and that existing navigation functions
in the literature sit on ends of a spectrum of optimization
problems, upon which tradeoffs may be made in problem
complexity. In particular, it is shown that under certain criteria
the optimal navigation function is related to Laplace’s equation,
previously used in the literature, through an exponential trans-
form. Further, analytical solutions to the HJB are available
in simplified domains, yielding guidance towards optimality for
approximation schemes. Examples are used to illustrate the role
that noise, and optimality can potentially play in navigation
system design.

I. INTRODUCTION

This paper presents a new method to construct naviga-
tion functions that bring a robot operating under stochastic
uncertainty in its control inputs to a desired configuration
while avoiding collision with obstacles. This is done through
analysis of the Hamilton Jacobi Bellman Equation (HJB) for
nonlinear stochastic optimal control problems. It has recently
been found that under mild conditions the HJB is related
through a logarithmic transform to a linear partial differential
equation (PDE) [26], [29], [14]. This paper specializes this
analysis to robot navigation functions, resulting in new plan-
ning methods for robots with stochastic nonlinear dynamics.

Related Work. This paper touches upon two classical
problems: navigations functions (see Section II for a review),
and stochastic optimal control problems. Navigation func-
tions were introduced by Koditschek and Rimon [17], [18],
[25] to remedy the local minima problem in the classical
potential field method of robot motion planning [15], and
their early work on navigation functions focused primarily
on the existence and discovery of potential functions whose
gradient would lead a point mass model of a robot from
any point in the robot’s configuration space to a desired
goal. Later work extended the navigation function concept
to incorporate multiple agents [11], and sensory input [23].

However, little consideration has been given to including
notions of optimality into a navigation function. This paper
shows how to directly incorporate optimality criteria that
can be modeled as the sum of a (possibly) nonlinear state
dependent cost and a quadratic control cost. This contrasts
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with the existing focus of the navigation approach, which
implicitly defines a decomposition of the the problem into a
trajectory generation method (the solution of the navigation
function) and a local feedback trajectory following control
method. This may lead to suboptimality in the path planning
or control law, or even instability [20]. By formulating the
problem relative to the Hamilton Jacobi Bellman problem,
our method allows the impact of the dynamic model to be
directly incorporated into the navigation function, if desired.

Specifically, we examine the presence or absence both
dynamics and a state dependent cost function in an optimal
control problem. We find that if these are neglected, methods
similar to those used to generate navigation functions that
exist in the literature are recovered [16], [21]. The result is
that a spectrum of problems, ranging from the full HJB to
the classical potential-based navigation function, are made
explicit and the tradeoffs in modeling complexity becomes
visible. The analysis we present makes it apparent how
dynamics may then be incorporated to a navigation function
if desired. To our knowledge, this paper also represents the
first attempt to formally include stochastic uncertainty into
the construction of the navigation function.

Solutions to stochastic optimal control problems pose in-
herently difficult computational problems. Classical work on
addressing these problems have pursued several approaches.
Systems with linear dynamics perturbed by Gaussian noise
have well known closed form solutions [33]. For systems
which do not fit these assumptions, several approximation
methods, such as receding horizon control [12] or roll-out
methods [1] have proven to be very useful. Another direction
to solving these problems has been through discretization
of the system’s state space, leading to a Markov Decision
Process. When framed as such, it is possible to solve the
problem exactly and globally through techniques such as
value iteration or linear programming [1]. If a measure of
error is acceptable, these methods have been made appli-
cable to arbitrarily large state spaces through Approximate
Dynamic Programming [5].

This paper follows an alternative line of work–linearly
solvable stochastic optimal control (SOC) algorithms. The
study of linearly solvable SOC problems has recently been
studied from two avenues. Work begun by Kappen [13]
examined the HJB and found that, using a transformation
borrowed from quantum mechanics and assumptions on
stochasticity, it was possible to find a linear partial differen-
tial equation (PDE) whose solution is the SOC solution. Inde-
pendently, Todorov [28] found an alternate model for control
in Markov Decision Processes that allowed for optimal MDP
policies to be found as a solution to a set of linear equations,
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as compared to value iteration. It was subsequently found
that by taking the continuous limit of the discrete Markov
model, this same linear HJB PDE is obtained. The HJB can
then be understood as the limit process of an MDP.

Recent research along these lines has tended towards de-
veloping sampling based approaches for solving the resulting
linear PDE. This is done through the use of the Feynman-
Kac Lemma, which allows for a linear PDE to be solved
by examining the diffusion of a stochastic process. This
has been further developed by Theodorou et al. [27], [26]
into the Path Integral framework. Other research into the
study of the computational benefits, and analytic properties,
of the linear HJB are available in [30], [8]. Our work
begins from the same point, that of Stochastic Optimal
Control. However, whereas [26] uses the linearity of the HJB
to develop a novel reinforcement learning algorithm with
emphasis on numerical solution methodologies, the focus
of the present paper is on the application of this flavor
of Stochastic Optimal Control to the problem of navigation
functions. Connections between these two research fields are
emphasized over the specifics of the numerical calculation of
the PDE solution, for which we discuss available methods
from the literature.

II. REVIEW: NAVIGATION FUNCTIONS

Let CS denote the robot’s configuration space (or c-
space)– the possible configurations that a robot can occupy.
As is standard, let the subset of CS where the robot collides
with an obstacle define the set of configuration-space obsta-
cles, CO, while the free configuration space, F ⊂ CS , is the
complement of CO in CS . Under the assumption of perfect
sensory information, and traditionally also perfect actuation
control, the motion planing task is to move the robot from its
starting configuration, qinit ∈ F to a desired goal position
qd ∈ F . One approach to solve this problem is to construct
a navigation function:

Definition 1. (From [18]) Let qd be a goal configuration in
F , the free c-space. A map ϕ : F → [0, 1] is a navigation
function if it is

1) smooth on F (at least a C(2) function);
2) polar at qd, i.e., has a unique minimum at qd on the

path-connected component of F containing qd;
3) admissable on F , i.e., uniformly maximal on the bound-

ary of F;
4) a Morse function.

Given a navigation function, ϕ(q), the robot’s path to the
goal from any staring configuration in F can be realized
by following the gradient ∇ϕ(q) at each q. The definition
assures that the robot will achieve the goal while remaining
in F , and not become trapped in a local minima of ϕ(q).

Navigation functions may be constructed in several forms.
In the well-known classical approach of [25], a navigation
function may be calculated analytically when the when
the bounded problem domain, the obstacle shapes, and the
goal region are all diffeomorphic to spheres. Similarly, if
the boundary, obstacles, and goal region are star-shaped

sets (which are homeomorphic to spheres), then one can
compute the navigation function by transforming the problem
to a sphereworld, find the sphereworld navigation function,
and transforming the function back to the original problem
domain.

A. Navigation Function Considerations

Navigation functions have been successful in part due to
their rapid computability and its transparent nature. Further-
more, the navigation function provides both a global plan, as
well as a feedback controller that follows the gradient of the
navigation function. This allows the total motion planning
and execution problem to be abstracted into a trajectory
planner (the path followed by the gradient of the navigation
function) and a path following controller [25]. The price to
pay for this convenience is optimality: ignoring dynamics in
the quest to follow the gradient will rarely result in a proce-
dure that minimizes control effort. This is in part due to the
fact that the system dynamics do not enter into the navigation
functions calculation, and may result in unexpected and
unstable behavior in some contexts [20]. The work presented
below shows the connection between navigation functions
and more general optimal control theory, allowing for system
dynamics to be included if this is desirable. It also becomes
possible to include more sophisticated weighting of various
goals, such as the desire for minimum-time trajectories.

In the construction and intuition behind navigation func-
tions, implicit is the idea of robustness. Since navigation
functions are defined over the entire free configuration space,
small deviations from the desired path place the robot in
nearby locations where the desirable behavior is similar.
Indeed, smoothness of the solution is typically enforced. This
work furthers the understanding of robustness properties of
navigation functions which has largely heretofore been only
analyzed ad-hoc.

Finally, some approaches for finding navigation functions
require difficult calculations and may not extend to complex
obstacle geometries.

III. A LINEAR HAMILTON JACOBI BELLMAN PDE

We begin by reviewing results in optimal control theory
that lead to the construction of the HJB. This paper considers
nonlinear systems that evolve with the following nonlinear
stochastic dynamics

dx = (f(x) +G(x)u) dt+B(x)Ldω (1)

where xt ∈ Rn is the system state at time t, ut ∈ Rm
denotes the control input, ω is a unit variance Brownian
motion stochastic process, and L is a state independent noise
scaling factor. The functions f(x), G(x), B(x) are assumed
to be smooth functions of the state and may be nonlinear.
We assume that the problem accrues costs r according to

r(x, u) = q(x) +
1

2
uTRu (2)

where q(x) is any (potentially nonlinear) non-negative func-
tion of state. The model for cost is limited to a form quadratic



in the controls in order to simplify the HJB equation in
a future step of the analysis. The goal is to minimize the
following expected cost functional

J(x0:T , u0:T ) = E
[
φ(xT ) +

∫ T

0

r(xt, ut)dt

]
(3)

where φ represents a state-dependent terminal cost, T is the
final time of the trajectory, E[·] is the expectation operators,
and the symbols x0:T and u0:T denote the state and control
over the interval [0, T ].

We consider the first-exit problem, wherein the state of the
system exists in a compact domain Ω. The system continues
to operate, and accrue cost, until it reaches the boundary,
∂Ω, of the domain at time T whereupon the terminal cost
φ(x(T )) is accrued. In the navigation problem, this boundary
consists of goals and obstacles in the robot workspace.

A common construction in the optimization literature is
the value function, V (xt), which captures the “cost-to-go”
from a given state. The optimal action follows the gradient
of the value function, bringing the agent into the states with
lower cost over the remaining time horizon. The solution to
the optimization problem is, beginning from an initial point
xt at time t,

V (xt) = min
u(·)

E [J (xt)] (4)

Using a dynamic programming argument it is possible to
derive the Hamilton-Jacobi-Bellman (HJB) equation associ-
ated with this problem [7], which is found to be

0 = min
u

(
r + (∇xV )

T
f +

1

2
Tr
(
(∇xxV )GΣεG

T
))

(5)

where Σε = LLT and the dependency on state is suppressed
for brevity. Since the control effort enters quadratically into
the cost, the optimal control takes the form:

u∗ = −R−1GT (∇xV )

Substituting the optimal u into (5) yields the following
nonlinear, second order PDE in the cost-to-go V (·):

0 = q + (∇xV )
T
f − 1

2
(∇xV )

T
GR−1GT (∇xV )

+
1

2
Tr
(
(∇xxV )BΣεB

T
)

The difficulty of solving this nonlinear, second order PDE
often prevents practitioners of optimal control from attempt-
ing to solve for the value function directly. However, it has
recently been found [13], [30], [26] that with the assumption

λG(x)R−1G(x)T = B(x)ΣεB(x)T , Σt (6)

and the logarithmic transformation

V = −λ log Ψ (7)

one can obtain, after substitution and simplification, the
following linear PDE

0 = − 1

λ
qΨ + fT (∇xΨ) +

1

2
Tr ((∇xxΨ) Σt) . (8)

This transformation of the value function, which we call
here the desirability, provides an additional, computationally
appealing, method through which to calculate the value
function. The solution to the desirability may readily be
transformed by (7) to obtain the value function, which may
then be used for execution. Note that condition (6) can
roughly be interpreted as a controllability-type condition: the
system must have sufficient control to span (or counterbal-
ance) the effects of input noise on the system dynamics.
Furthermore, it must be “cheap” for the system to push in
directions where noise is high, and expensive were noise is
low. Additional discussion may be found in [30].

Note that Eq. (8) is in particular an elliptic PDE, and
therefore obeys the maximum principle for elliptic PDEs [6].
This implies that there exist no local minima or maxima in
the interior Ω of these HJB solutions, satisfying the Morse
property of navigation functions in Definition 1.

IV. NAVIGATION FUNCTIONS THROUGH OPTIMAL
CONTROL

This section will first reduce the SOC problem introduced
above to the standard setting of navigation functions by
sequentially incorporating the assumptions which hold in
the classical navigation function setting. These successive
eliminations of terms will then illuminate some connections
between our approach and classical navigation function
approaches. Finally, we will suggest how an approximate
minimum time problem can be formulated in this approach.

A. Reduction to the Navigation Function

Dynamics. Since the classical navigation function ap-
proach implicitly decouples the trajectory generation prob-
lem from the trajectory following control design, the dynam-
ics of a specific system are ignored. Hence, in our parallel
development of the Navigation HJB equation, the dynamic
term may be dropped f := 0. This results in the Navigation
PDE:

0 = − 1

λ
qΨ +

1

2
Tr ((∇xxΨ) Σε) .

Similarly, the classical navigation function setting does not
consider spatially dependent costs. Thus, the state-dependent
term in the cost function, q(x), may be simplified to a free
scalar parameter q := α, producing the PDE

0 = −α
λ

Ψ +
1

2
Tr ((∇xxΨ) Σε) (9)

We will term this PDE as the Augmented Navigation PDE,
as it incorporates additional cost information as compared
to traditional navigation functions, but does not include the
effects of system dynamics. The effect is that those states
that appear only in the dynamics, and are not the workspace
states, may be neglected as well. In reverse, if one wishes
to include dynamics, their presence in f(x) will require the
additional of these states as dimensions in the HJB PDE.

Interestingly, this PDE is well known as the homogeneous
Screened Poisson Equation, and has found applications in
image processing [2]. Of interest here are the observations



that this is a second order PDE with isotropic diffusion and
mass terms, a situation which has been well studied [24].

Boundary Costs. The boundary conditions for the PDE
correspond to the penalty accrued as the robot exits the
configuration domain and collides with an obstacle or reaches
the goal state. In (3) this is represented as the terminal
cost φ. Recall that by (7), this terminal cost must be
transformed along with the value function. Thus, we have
for the boundary condition

Ψ |∂Ω= e−
φ
λ (10)

where ∂Ω is the boundary of the operating domain, Ω.
Classically, the cost assigned to a collision has been modeled
as uniform over all obstacles (Property 3 of Definition 1), and
we may thus set φ(xT ) = c for an arbitrary constant c. Other
choices are certainly possible.

Remark 2. We note that the boundary conditions of a linear
PDE, as we have here, obey the principle of superposition.
Solutions to problems may be composed at essentially zero
cost, a potentially significant savings for systems that require
many plans over a common domain, or require a change in
the workspace. This topic is explored in [29] and [10].

The free variables q(x) and R define a notion of cost, and
therefore a notion of optimality. The inclusion of these vari-
ables allows us to compare navigation functions according to
their perceived cost, and furthermore to declare navigation
functions optimal with respect to a choice of criteria. Such
criteria has traditionally been eschewed in favor of simplicity
in construction of the navigation function, and hence our
framework may be said to be a slight generalization, bringing
notions of optimality into consideration.

Control-dependent costs. Recall that our initial definition
of cost (2) includes a control dependent term. Navigation
functions have traditionally been unconcerned with the con-
trol effort. Recall that the assumption on control effort and
noise (6) needed to realize a linearly solvable HJB PDE is:

λG(x)R−1G(x)T = Σt (11)

where Σt is fixed as a function of the known control vector
field matrix, G(x), and noise characteristics, B(x) and Σε.
The control effort penalty R cannot be brought to zero
naively without violating this assumption. It is possible to
compensate for this limitation by using the free parameter λ
to maintain the underlying relation in this assumption. That
is, set λ = β and define R = βR̃, yielding expressions

λG(x)
(
βR̃
)−1

G(x)T = Σt (12)

G(x)R̃−1G(x)T = Σt

which is independent of β, allowing the control penalty cost
to be reduced to zero. The difficulty is that as λ → 0,
(9) becomes nonsensical in the limit. Fortunately, we have
assumed no cost over the states and set α = 0 to produce
the Navigation PDE

0 = Tr ((∇xxΨ) Σt) (13)

which is recognized to be Laplace’s equation scaled accord-
ing to the system noise characteristics. The practical cost in-
curred by this reduction of the complete SOC HJB, Equation
(8), to Equation (13) is that we have eliminated consideration
of control effort and state dependent penalties, which is nat-
ural in the robotics setting. Interestingly, Laplace’s equation
has been used previously in the generation of navigation
functions [4], [16], [21]. In this prior work, the authors
suggested the use of Laplace’s equation, with the motivation
that solutions to Laplace’s equations can be shown to have
no local minima over their domain. The following theorem
justifies this from an optimality perspective, albeit through
the transformation (7).

Theorem 3. The optimal robust desirability function absent
costs over state is given by V = −λ log Ψ where λ is ac-
cording to (11), and Ψ is the solution to Laplace’s equation
over the domain Ω:

0 = Tr ((∇xxΨ) Σt)

Ψ |∂Ω = e−
φ
λ

Remark 4. There is an interesting trade-off resulting from
Eq. (11). Define Σ̃t , γΣt in order that the noise may be
scaled by γ. Define λ = β, as in (12) in order to scale
the control penalty. Then λ = aβγ for some fixed constant
a. The result is that a scaling of the control effort has
the same effect on the solution as a scaling of the noise,
and these manifest only through the transformation (7) and
the boundary conditions, and surprisingly not through the
differential constraints on Ψ as γ is simply cancelled in Eq.
(13). What does have an effect, however, is the directional
influence of Σt, i.e. the solution will incorporate paths that
have beneficial drift.

Due to the exponential dependence of Eq. (7), one cannot
realize the limit β → 0. Instead, β is chosen based on
magnitude of the noise, or the level of control penalty,
depending on the perspective.

Remark 5. Laplace’s equation has been justified in the
presence of noise here, whereas it was previously justified
due to its lack of local minima. It is notable that in this case
the deterministic and stochastic case share their solution,
subject to a scaling.

Two PDEs (9), (13) have been produced in this initial
analysis. The first of these allows one to naturally incorporate
several optimality criteria into the concept of a navigation
function, while the second is especially simple and creates
a connection to previously inspired navigation function for-
mulae.

B. Approximate Time-Optimal Navigation Functions

The freedom afforded by the optimality parameters allows
for the solution to be biased towards time-optimal navigation
functions by penalizing time spent away from the goal. This
is accomplished by setting q(x) = c for some constant
c. Control effort may also be adjusted through the free
parameter λ and decreased relative to the state cost. The



robustness of the navigation function to noise may also be
controlled through the noise characteristics defined by Σε,
and again reduced. As the value of the constant c is increased
while parameters λ and Σε are increased, cost is accrued
only when the system remains outside the goal region. The
optimal action during this time is to take the quickest path
to the goal, ignoring the amount of control effort used.

C. Analogy with electro-statics

It is interesting that early researchers on potential field
navigation methods were naturally drawn towards analogies
with electro-statics. Khatib’s seminal work [15] conceptually
frames the collision avoidance problem as a process of
adding potential fields that would repulse or attract the point
robot mass in much the same way as electrostatic fields
might. We now see that this intuitive notion of attractive
and repulsive forces can also be grounded in notions of
optimality. Indeed, for the Navigation PDE of Eq. (13), the
analogy is exact in desirability-space, with the representa-
tion of obstacles and goals manifesting identically to static
charges on their surfaces. However, a logarithmic transform
improves the solution from an intuitive one to one which is
optimal.

D. Convergence of the solution trajectories

Due to the presence of the control cost in the solution to
the HJB, it isn’t possible to directly determine the probability
the system successfully reaches a goal region, where failure
is dictated by the modeling assumption of stochastic forcing
in (1). As mentioned in Remark 4, entirely removing the
affect of this cost component isn’t possible as the necessary
formulae break down in the limit. However, it is possible to
take a small value for the control cost R. The cost-to-go is
then predominantly governed by the cost of colliding with
an inadmissible boundary. By setting the boundary conditions
for obstacles to φ = 1, the cost-to-go then becomes a con-
servative approximation of probability of success in reaching
the goal, i.e. the cost-to-go will overstate the probability
of failure by also including the cost of future trajectories’
control effort in its value. For even moderately small values
of R, this approximation may not be overly conservative.

It is important to note that of the various PDEs proposed,
only (13) guarantees non-collision. Specifically, the penalty
accrued on the way to the goal when q(x) 6= 0 may be
greater than the boundary penalty (for instance if a high time-
penalty was applied), and the system may simply plan to
hit the nearest obstacle. This may be ameliorated by simply
increasing the obstacle penalty to a sufficiently high value,
but calculation of such a value a-priori remains an open
question.

E. Range of Navigation Functions

We briefly review the results presented up to this point.
Three distinct PDEs have been presented, beginning from
the HJB and then constructed by neglecting a term. Our
goal was not the construction of the Laplacian, but showing
its justification as in fact the optimal solution given the

specific assumptions of matched noise (6), and a neglect of
state dependent cost and dynamics. It is also now clear how
existing Laplacian techniques may be augmented towards
optimality with a simple exponential transformation (7),
as well as through the inclusion of dynamics to form the
Navigation PDE (8), which may also have the state cost
simply set to zero. This informs the discussion as navigation
functions are brought to bear in novel domains [22].

V. NUMERICAL SOLUTIONS

The linear HJB is a PDE, and therefore appropriate
for conventional numerical tools. These include techniques
such as the Finite Difference Method (FDM), the Finite
Element Method (FEM), or even the Boundary Element-
Fast Multipole Method (FMM) [3], [24]. In a number of
papers Todorov [29], [31], [32] has looked into a number of
alternatives based on the structure of the discretized problem
as well. In this work, we use the FDM due to its simplicity
as the focus of this work is not on numeric computation.

The mentioned methods are quite fast in practice and
may scale up to approximately six dimensions. However,
in high dimensions such techniques fall prey to the curse
of dimensionality. Recent work using sparse tensor decom-
positions [9] have allowed for these HJBs to be solved in
dimensions up to twelve, with higher dimensions possible.
Alternatively, the Feynman-Kac Lemma may be used to
solve the problem through sampling [26], [13] by simulating
a Brownian motion with the PDE related to its generator.
Such methods scale independent of dimension (albeit with a
constant that is dimension-dependent) but face the drawback
that each execution of the algorithm is only able to return
the solution to the PDE at an individual point.

VI. EXAMPLES

The approach is also illustrated several numerical exam-
ples. Each of these is solved with an h = 0.1 discretization
of the domain and the use of a simple Finite Difference
Method.

A. Problems with Simple Solutions

In simple domains it is possible to find an analytical or
simply computed solution to (9), (13). For instance, suppose
a point robot is commanded to move to a goal location
located at the origin of a two-dimensional configuration
space with no obstacles, while it is perturbed with noise
whose characteristics are uniform across the configuration
space. The solution to the associated Navigation PDE (13)
corresponds to the solution of Laplace’s equation for a point
potential, i.e. the fundamental solution, which is

Ψ = − log (r)

2π

where r is the distance from the robot’s current configuration
to the origin [6]. The solution to the Augmented Navigation
PDE (9) for this problem may be found as follows. Taking
the Fourier Transform of the equation yields(

k2 +
α

λ

)
Ψ̃ = 1.



Fig. 1. Navigation function for a two dimensional point-mass robot
calculated according to Eq. (13) with varying corridor widths.

The fundamental solution is then found by solving for Ψ̃ and
then finding the inverse Fourier Transform, which yields

Ψ =
1

2π
K0

(√
α

r
λ

)
with K0 the modified Bessel function of the second kind.

B. Effect of Noise on Corridor Navigation

Next, we demonstrate the method for a two dimensional
robot whose task is to reach the top right corner of a square
configuration space. The domain has two obstacles, creating
a pair of corridors that the robot must traverse if it begins in
lower portion of the configuration space. For this example
Σt = 2I2×2, λ = 1, and the width of the thinner corridor is
set to 1.5 and 2 distance units for comparison. The resulting
solutions are shown in Fig. 1. This example shows why it
can be important to include noise in the construction of a
navigation function. Consider the situation when the robot
starts near the bottom of the figure. In both environments,
robot can travel through two different corridors to reach the
goal. In both environments, the navigation functions lack
local minima, as expected. In the left-hand environment,
the robot can potentially choose between a wide corridor,
and a medium width corridor. The choice of the corridor
will depend upon the robot’s specific starting configuration,
as it is safe to traverse both corridors. In the right hand
figure, the robot can potentially choose between the same
large corridor, or a very narrow corridor (whose width is 3

4
the magnitude of the noise variance). For almost all starting
positions, the navigation function guides the robot away from
the potentially dangerous narrow corridor, unless the robot
happens to start positioned well into the narrow corridor.
This intuitively logical result occurs because the potential
for collision in the narrow corridor places too high a cost on
that potential path.

Remark 6. The solution to Eqs. (9), (13) take place in
exponentiated coordinates, and for many examples tend to
be close to zero for large regions of the state space. It is
therefore usually more useful to consult the value function
directly rather than examining the desirability.

C. Maze

The second example shows that complicated environments
can be well handled by this method, and also highlights

Fig. 2. Navigation function for a two dimensional point-mass robot in a
maze-like environment with equi-dimensional noise. On the top-left is the
standard navigation function calculated according to (13). On the top-right,
the minimum time-criteria is approximated by taking α = 100, λ = .04
in (9). The bottom-left and -right have Σt = 4I2, 4.6I2, and λ = .4, .46
respectively. The obstacles and boundary are chosen to have penalty of 20
units, while the goal region has a penalty of 0 units. The goal is located at
the origin.

the effects of including additional cost criteria into the
navigation function. The same robot dynamics and same
noise distribution of the previous example are used, however
the obstacles are placed in a more complicated maze-like
pattern. The Augmented Navigation PDE of Eq. (9) is used
in order to incorporate the additional optimality criteria. The
resulting navigation functions are shown in Figure 2 with
several noise and cost configurations..

The results compare the use of (13) with the additional
cost criteria. It is seen that the solutions of (13) and (9) are
qualitatively similar. As λ is decreased in the general case,
this has the interpretation of either increasing the control
cost weighting, R, or increasing the noise covariance. The
solutions do not change qualitatively, only the magnitude of
the cost-to-go. In contrast, the approximated minimal-time
solution is characterized by shortest-path level sets. These
level sets are characterized by straight lines near corners, in
contrast to the circular level sets of other examples, as would
be expected for a shortest path solution amongst piecewise-
linear obstacles.

Remark 7. For some choices of costs q,R the navigation
function may bring the robot directly into an obstacle. This
is no contradiction, as framing the problem through the lens
of optimal control allows for freedom on the placement of
boundary conditions. The penalty for hitting an obstacle, if
chosen improperly, may be less than the cost to traverse
the domain and enter the goal region, and thus the most
economical choice is for the robot to simply collide with the
boundary. This isn’t a problem when using (13).



Fig. 3. An illustration of a nut grasping task. The square nut is shown in
green while the gripper is shown in red. The blue region denotes a range of
acceptable nut locations relative to the gripper. Each of these colored regions
is transformed into configuration space, with the intersection of gripper and
nut an obstacle, and intersection between the acceptable locations and the
nut a goal.

D. Grasping

A final example is of a simple planar grasping task wherein
a gripper must be positioned in the plane so that it may close
and grasp a small nut, an illustration of which is shown in
Figure 3. The goal of the problem is to move the end effector
to one of a continuum of desirable locations surrounding the
object in such a way that the gripper’s orientation places the
jaws around the nut, whereupon a simple closing action will
reliably grasp the nut. The problem is transformed into the
system’s configuration space, and then solved in the Optimal
Navigation framework, with the results shown in Figure 4.
As the method treats the goal states as a set of boundary
conditions, the relatively large goal region is handled easily.

The example illustrates the approach for a non-point
mass robot, and illustrates the smoothness of the navigation
function over the domain in a typical manipulation task. It
is easily to see the optimal path of the gripper, wherein it
smoothly rotates, following the basin of low cost in blue,
until the nut is captured.

VII. DISCUSSION

This paper introduced a generalization of the navigation
function framework to include system noise, dynamics, and
cost criteria. Philosophically, this paper links the classical
robotics subject of navigation functions with recent advances
in Stochastic Optimal Control. Previous results that were
developed on a somewhat ad-hoc basis have been shown
to be related to optimality considerations, and the intuition
which led to their development well placed. Remarkably,
many existing results using harmonic potentials can be shown
to be optimal for a particular configuration of noise and cost
models when the solution is simply adjusted by a logarithmic
transformation.

We also showed how navigation functions can approxi-
mately incorporate minimum time task requirements. From
a practical point of view, the methods developed here to
construct the navigation functions can be applied to en-

Fig. 4. Cross sections of navigation function for the nut grasping task
illustrated in Figure 3. Parameters used are α = 0.02, R = .02I3×3,Σt =
5I3×3 and the boundary costs are set to φ = 1. Spatial discretization in the
x− and y−coordinates are hx = hy = 0.25 and in the angular direction
hθ = 20◦. The goal region isosurface is displayed in dark blue.

vironments, obstacles, and robots with arbitrary smooth
geometries. Furthermore, it allows for the results of existing
methods (i.e. [19]) to be compared against the underlying
optimal solution to the problem, if the system’s noise char-
acteristics are captured by our model. The ability to solve
for the navigation function in terms of a linear PDE also
expands the space of algorithms for calculating solutions.

Our numerical experiments show that solutions in config-
urations space having dimension up to 5 can be computed on
a desktop PC computer. Future work will explore specialized
numerical algorithms in an attempt to expand the practical
computational limits of the approach. Additionally, it may be
possible to use the results presented here to inform the choice
of artificial potential fields, yielding navigation functions that
may be assembled quickly, but that better approximate the
optimal navigation function for the problem.
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