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Abstract

We introduce and study the problem in which a mobile sensifptr (our tourist) is tasked to travel among
and gather intelligence at a set of spatially distributethipof-interests (POIs). The quality of the information
collected at each POI is characterized by some non-dengeasivard function over the time spent at the POI.
With limited time budget, the robot must balance betweemdjpgy time traveling to POIs and spending time
at POls for information collection (sensing) so as to maxanihe total reward. Alternatively, the robot may be
required to acquire a minimum mount of reward and hopes toodeith the least amount of time. We propose a
mixed integer programming (MIP) based anytime algorithmgolving these two NP-hard optimization problems
to arbitrary precision. The effectiveness of our algoritttndemonstrated using an extensive set of computational
experiments including the planning of a realistic itingréor a first-time tourist in Istanbul.

. INTRODUCTION

Imagine that a roboticist travels to Turkey to attend anrima&onal conference in Istanbul. Unfortu-
nately, due to her busy schedule, our roboticist does na hawch time for touring this historic city. Yet,
as luck would have it, near the end of her trip, she finds hievsigh a day of spare time and decides to
do some sightseeing. Planning such a day trip, howevers tomih to be quite challenging: the roboticist
must decide among a large number of point-of-interest (P@lsch ones to go to, how to travel from
one POI to another, and how much time she should spend at €achh& she does decide to visit.
Naturally, she hopes to get the most out of her tour under iheted time budget. Could we help our
roboticist plan an optimal itinerary for such a journey am#tically?

Alternatively, an environmental scientist may need to @anautomated, GPS-guided trip for an aerial
mobile (sensing) robot to collect scientific data at a setpattially distributed locations. Because of the
high cost associated with operating the robot, our scigmsiigilar to our roboticist in Istanbul, must select
a subset of locations for the aerial robot to visit and debiol@ much effort (time) the robot should spend
at each location to perform necessary measurements. ks aherincipled method that our environmental
scientist can use for planning such a trip with optimalityagntees?

In this paper, we propose the Optimal Tourist Problem (OTR} ts motivated by and models after
the scenarios mentioned above. In the basic setup, a tosiristerested in visiting soma POls that
are spatially distributed. Each POI is associated wittevaard functionor learning curvethat is non-
decreasing over the time spent at the POI. Because travaditygeen POIls and staying at a POI to gain
reward are both time consuming, optimization problems na#ljuarise. We introduce two such related
problems. In the first problem, @ward-maximizing tourisS(RMT) seeks to maximize the gained reward
given limited time budget. From a dual perspective, in theosd problem, éudget-minimizing tourist
(BMT) seeks to minimize the time spent to collect a predeteech amount of reward. We provide a
mixed integer programming (MIP) basedytimealgorithm for solving both RMT and BMT variants of
the OTP problem.
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The primary motivation behind our study of OTP is its potah@ipplication to robotic surveillance
and monitoring problems such as automated reconnaissamtecéentific survey Smith et al. (2011);
Grocholsky et al.[(2006), which we refer to under the umhbrédrm ofinformative path planningIPP).

In an IPP problem, a path is planned to satisfy some infoonatbllection objective, sometimes under
additional constraints such as path length or total timatlitm Alamdari et al. |(2014), arO(logn)
approximation algorithm yields iterative TSP paths thahimize the maximum latency (the inverse of
the frequency with with a node is visited) across mlhodes in a connected network. In_Smith et al.
(2012), the authors proposed a method for generating speditep along predetermined cyclic (closed)
paths to keep bounded the uncertainty of a varying field usingle or multiple robots. For the problem
of observing stochastically arriving events at multipledtions with a single mobile robot, @ + €)-
optimal algorithm was proposed in Yu et al. (2014) to solve thulti-objective optimization problem
of maximizing event observation in a balanced manner andnmezimg delay between event observa-
tions across the locations. Recently, a method caRedursive Adaptive Identificatias proposed as a
polynomial time polylogarithmic-approximation algonithfor attacking adaptive IPP problems Lim et al.
(2014). Sampling based methods Kavraki et/ al. (1996); Ula\{aP98); Karaman and Frazzoli (2011) have
also been applied to IPP problems with success. In Holliager Sukhatme (2013), Rapidly-Exploring
Random Graphs (RRG) are combined with branch-and-bounthadetfor planning most informative
paths. In_Lan and Schwager (2013), the authors tackle thelgroof planning cyclic trajectories for
the best estimation of a time-varying Gaussian Random Fiegdohg a variation of RRT called Rapidly-
Expanding Random Cycles (RRC).

An optimization problem that is intimately connected to OiERhe Orienteering Problem (OP) Chao et al.
(1996);| Vansteenwegen et dl. (2011); Gavalas et al. (20t4igh is obtained when rewards at the POls
are fixed in an RMT problem. The fixed reward is collected in éwice a POI is visited. OP, which is
easy to see as an NP-hard problem, is observed to be diffc@blie exactly for even medium sized
instances with over a hundred of POls. On the side of appratkom algorithms, constant approximation
ratios down to(2+ ¢€) are only known under metric settings for OP with uniform rewvacross the
POls on undirected graphs Chekuri et al. (2012). No consttia approximation algorithm is known
for directed graphs. On the other hand, many MIP-based ithguos exist for OP and related problems
Vansteenwegen et jal. (2011); Gavalas et al. (2014). Theseithims often allow the precise encoding of
the problem in the MIP model. A work in this domain that is @ssto ours studies an OP problem in
which the reward may depend on the time spent at the POlsgBrdand Laporte (2013). It proposes a
solution method that iteratively adds constraints thatvaskated by the incomplete model. In comparison,
our work studies a more general problem that allows mulspdeting POIs and arbitrary reward functions.
Moreover, we construct a statice. constraints are fixed), arbitrarily precise MIP model thakeg rise
to a natural anytime algorithm.

On the side of trip planning problems, many interesting W@k Choudhury et al. (2010); Basu Roy et al.
(2011);/Yoon et al.[(2012) compute “optimal” itinerarieccarding to some reward metric. For example,
the authors of De Choudhury et/al. (2010) apply a recursiwedy approximation algorithm for OP
Chekuri and Pal (2005) to plan suggested itineraries. Mbgtese work focus on the data mining aspect
of trip planning problemse.g, how POI related data, such as the average visiting time$@is and
tourist preference through POI correlations, may be ddrized used. In contrast, we provide a clean
separation between two elements of the OTP problem, thepoattation model and the reward model,
and focus on the interaction between these two elementaghran algorithmic study.

The rest of the paper is organized as follows. In Sediibn #, farmulate the two variants of OTP,
RMT and BMT. In Section_Ill, we provide a step-by-step inweotion of our MIP model for solving the
proposed OTP variants, after which many generalizatioasatgo presented. In Sectibnl IV, we discuss
the overall algorithm and some of its important propertiesmiore detail. We present computational
simulations in Sectioh V and conclude in Section VI.



[I. PROBLEM FORMULATION

Let the setV = {vi,...,vn} represents point-of-interest{POIs) inR?. There is adirected edge i9
between two POI verticesj,vj; € V if there is a path fromv; to v; that does not pass through any
intermediate POIs. When an edgg exists, letd; j denote its length. There is a tourist (alternatively, an
agent or a mobile robot) that travels between the POls fatigwingle integrator dynamics. Denoting the
tourist’s location ag, when the tourist is traveling from POI to PGl,= u, || u ||= 1. Otherwisep = 0.

The tourist is interested in visiting the POIs. To do so, staets from somebasevertexvg € B CV
with |B| = ng < n, travels between the POIs, and eventually returngstd-or exampleB may represent
the choices of hotels. For eashe V, she associates a maximuesward r; with the location, which can
be gained through spending time\at We assume that the obtained reward depends on thettithe
tourist spends at;. More precisely, the obtained reward is defined;dst;), in which f; € [0,1] is some
function oft; that is non-decreasing. We further require tfiats C* continuous andf/(0) is bounded
away from zero. That is, for all £i <n, f/ is continuous and;(0) > A for some fixedA > 0. We also
assume that (0) = 0 for convenience (it can be easily verified later that thissinot reduce generality).

Remark. We mention that no generality is lost by focusing on non-elasing functions. After presenting
our MIP models in Sectiopn I, it will become clear that anasenablef; can be turned into an equivalent
non-decreasing function which can then be used in settinthegMIP model. We will revisit this point
in Section1I-D.

The function fi may effectively be viewed as karning curve In this paper, two specific types of
one-parameter learning curves are studied in ddtadar andexponential Let A; > 0 denote thdearning
rate. In the case of a linear learning curve,

fi(t) = Ait, OStiS)\—l_. (2)
|

The exponential learning curve is specified as

fitt) =1—-eM, 0<t < +oo, 2

which captures the notion of “diminishing return” that arftea present in learning tasks.
After a trip is completed, our tourist would have traveledotigh a subset of the edgés C E and
have spent timey, ..., t,,ti > 0 at then POls. She would have spent a total time of

Jri= QEE" di j +i:ilti 3)

n

Jr = Zri fi(t). 4)

and gained a total reward of

Note that some edgesj may be passed through by the tourist multiple times, in witiaked, j is
included once each time j is enumerated i {3). That i&; is a multi-set. We defind := {ty,...,t},
R:={rq,...,rn}, andF :={fy,..., fn}.

During the trip planning phase, a tourist often faces thdlehging task of planning ahead so as to
spend the optimal amount of time to travel and to do sightget gain the most out of a trip. This gives
rise to two OTP variants. In the first, our optimal tourist igem a time budgeMry, during which she
hopes to maximize her total reward. That is,

Problem 1 (Reward-Maximizing Tourist (RMT)) Given a 5-tuple(V,B,D,R F) and a time budget
Mt > 0, compute the setsyEand T such thatgis maximized under the constraint £ Mr.

We do not need to specify the edge &tbecause it is implicitly fixed byD. The second, equally
natural problem is in a sense a dual problem of RMT, in whighgbal is to minimize the time spent to
achieve a predetermined reward.



Problem 2 (Budget-Minimizing Tourist (BMT)) Given a 5-tuple(V,B,D,R F) and a reward require-
ment Mg > 0, compute the setsyEand T such thatg is minimized under the constraing 3> Mg.

Besides RMT and BMT as formulated in this section, many [prattvariations are possible. For
example, it may be the case that a path (starting and endimgtaifs, train stations, and so on) is required
instead of a closed tour. Alternatively, maybe a multi-dagerary is more desirable than a one-day
itinerary. These variations and a few additional genea#itms are also addressed later in this paper (in
Section1-D).

Remark. We emphasize that the problems formulated in this sectigyajp an array of scenarios
other than itinerary planning for tourists. For exampler taurist may well be a mobile aerial robot
equipped with on-board cameras and automated computenvisised algorithms for traffic monitoring
at key intersections in a large city. In this case, spendingentime at a given location will allow more
observations, leading to higher quality information abtié traffic pattern at the given location. Given
limited flying time, the aerial robot must balance betweandfing around and spending time at important
sites to gather more traffic information (under some propetrig). We can easily imagine extensions of
this traffic monitoring application to surveillance, recamssance, and scientific exploration tasks.

[1l. MIP M oDELS FORBMT AND RMT

In this section, we propose mixed integer programming nsf® solving RMT and BMT using an
MIP solver. First, we describe an MIP model derived from aistaxg one for the orienteering problem
(OP) that applies to RMT and BMT problems witB| =1 (i.e., a single base) and linear learning curves.
The case ofB| =1 is often referred to as @otedproblem. Then, the MIP model is generalized to allow
multiple bases and arbitrary learning curves through hze#ton. Before moving to model construction,
we point out that the proposed problems are computatiomadipctable, given their similarity to TSP
and OP.

Proposition 1 RMT and BMT are NP-hard.

PROOF Letr; =1 and let the functions from the sBt be linear with unit slopei.e, f/ =A; =1. The
maximum achievable reward is tharand achieving such a reward requites 1 for all 1<i <n. Under
these restrictions, solving a BMT instance whMikr = n is equivalent to finding a TSP tour over all
POI vertices, which is NP-hard. Now, given a time budiykt, the decision problem of whethdfr is
sufficient for achieving a reward @k > n is NP-hard, implying that RMT is NP-hard as well. O

A. MIP Model for a Single Base and Linear Learning Curves

In this subsection, we introduce an MIP model for BMT and RMTthva single base and with the set
F being linear functions. These models are partially basethodels from Vansteenwegen et al. (2011);
Erdogan and Laporte (2013). Without loss of generalitlypler tourist start fromv,. Because the reward
at a given POI only depends on the total time spent at the P®lalso assume that the time the tourist
spent at a POI is spent during a single visit to the POI. Whevuadt spends time at a POI, we say the
tourist staysat the POI. With these assumptions, the tourist will evdhtueve stayed at somé POls
with the ordervg,...,vs,, and have spent timig,, ... ,ts, at these POls. Far¢ {s;,...,s/}, ti=0

Although the tourist only needs to stay at a POI at most onoe,nsay need to pass through a POI
multiple times €.g, if the POI is a transportation hub). To distinguish these types of visits to a
POI, we perform a transitive closure on the &t That is, we compute all-pairs shortest paths for
v.,vJ €V,1<i,j <n. This gives us a set of shortest directed pahs {p; j} with corresponding lengths

{d’ }. We say that the tourigbkesa pathp; j if the tourist stays av; immediately after staying at

v., except when the tourist starts and ends her triyp aWith this update, the tourist’s final tour is simply
Psi.s:---» P, - LELXj be a binary variable withi; = 1 if and only if p; j is taken by the tourist.



The number of times that the tourist stays at (resp. leaves stiaying) a POI vertey; is Z 1,4 Xi]
(resp. ZJ 1j4i i Xji). Both summations can be at most one since by assumptlorcomhet never stays ata
POI twice. The tour constraint then says they must be edealy"_, ; ;xj = ZJ _1,j4 Xji- Letx; be the
binary variable indicating whether the tourist stayed;atWVe have the following edge-use constraints

n n
Xij = z Xjj=x <1, v2<i<n (5)
j=L)#i j=L)#i

The case of =1 is special since we need to ensure thais visited, even if the tourist does not actually
stayat v1. For this purpose, we add a self-loop variakie at v; and require

n n
ZX]_J':ZXJ']_:X]_::L (6)
=1 =1

The constraintd (5) andl(6) guarantee that the tourist takesir starting fronv;. However, they do not
prevent multiple disjoint tours from being created. To @mvthis from happening, sub-tour restriction

constraint is introduced. Let 2 u; < n be integer variables for i <n. If there is a single tour starting
from v1, thenu; can be chosen to satisfy the constraints

Uu—-uj+1<(n-1)(1-xj), 2<i,j<ni#j. (7)

To see that this is true, note that singe—uj +1 < n—1 regardless the of the values taken by
2 <uj,uj <n, (@) can only be violated ikjj = 1. The conditiornx;; = 1 only holds if the patlp; j taken.
Settingu; to be the order with which the tourist stayswgtif xj = 1, thenu; —u; +1 =0, satisfying [(V).
On the other hand, if there is another tour besides the om@ngtdrom v, and whenvj; = 1, then the
RHS of (1) equals zero. Farl(7) to hold, we must have uj+1 < 0= u; < u;. However, this condition
cannot hold for all consecutive pairs of POI vertices on decythus, [[¥) enforces that only a single tour
may exist.

With the introduction of the variablegxj }, the time spent by the tourist is given by

n o n n
Jr = Xidii + ) t. 8
2, 2,092 ©

To represent the total rewadg, we introduce a continuous variabl, 1 <i < n, to denote the reward
collected atv;. For a linearfj, A;, the learning rate, is simply the slope §f The rewardw; and the
visiting timet; then satisfy

w; < riX, (9)
Wi = tiAj, (10)
The constraint[(9) allows reward only if the tourist stayssatind limits the maximum reward af.

The constraint[(10) reflects the linear dependency of themgw; over the visiting timet;. The total
rewardJgr is simply

= -iwi' (11)

Solving RMT with a single base and linear learning curves tteam be encoded as a mixed integer
program that seeks to maximidg subject toJy < My, (8), (8), [7), [9), and (10). Similarly, solving BMT
with a single base and linear learning curves can be encaslednaixed integer program that minimizes

Jr subject toJr > Mg, (B), (8), [7), [9), and[(10).



B. Incorporating Multiple Bases

We now look at the case dB| > 1. To enable the selection of any particulge B, a virtual origin
vertexo is created, which is both a source and a sink. Then, each lestexv; is split into two copies,
vi" and VP, The edges connecting to other POI vertices of are split such that all edges going from
v; to other POI vertices are now rooted\étJt and all edges connecting other POI verticesjtare now
ending atv". In addition, two crossover edges betwe\éh and VU are added, one in each direction.
Lastly, an outgomg edge from to v°Ut and an incoming edge frow)“ to o are added. An illustration of
this gadget is given in Figuid 1.

Fig. 1. [left] A base vertex; and its outgoing (dotted) and incoming (solid) edges. fligtne gadget that split; into vﬁ” andvi"”t, along
with the split edges and the newly added four (bold) edges.

This gadget is duplicated for every elementBtising the same origin vertex The basic MIP model
from the previous subsection is then updated to enable théngpof the tourist through at least one
element ofB. For eachv; € B, we create four additional blnary variables to representtivr the four
newly added edges are used in a solution. These variablex”8fe(edge fromo to V1), x™° (edge
from vi" to 0), xX**"™" (edge from?Ut to vi"), andX™*"" (edge fromvi" to VOU). To ensure that at least one
vertex of B is used, we add the constraint

oout _ g 12
;& (12)

The edge-use constraints also need to be updated accordingd to the vertex split for vertices from
the setB, we have two sets of such edge-use constraints. The cantsfBainow applies to all non-base
vertices. The constrainfl(6) is updated for all base vestice B to

n
Xi +Xout|n X:n ,out XIO’OUt _ 0, (13)
j=L#

A X;i _l_xloutln X:n,out_xgmo: 0. (14)
j=Lj#

With constraint[(IR)p goes to exactly one®"! and later returns tg". Then, constraint$ (13) and (14),
along with the existing edge-use constraint (5), ensuré dha or more tours are created. Finally, to
prevent multiple tours from being created, we update thebbesui’'s to 1<u; <nfor 1<i<n. For a
base vertex; € B, we add the constraint

Ui—Uj+1< (2—x; —x""n. (15)
If v; is not a base vertex, we require
Ui—Uj+1<(1—xj)n. (16)

Constraints[(15) and_(16) replace the constrdint (7). Thestraint [16) has the same effect as the
constraint[(¥) in preventing a separate tour from beingteceaor base vertices, whexﬁ OUt — 1, which
is the case unlesg™®" + 1, the constraint{15) is the same &s](16)x1" = 1, then [I5) becomes
U—uj+1<n+ (1 Xij)n, which always holds. That is, the constraintl(15) treatssiflected base vertex
differently.



C. Linearization of Arbitrary Learning Curves

To accommodate arbitrary learning curves into our MIP mpdelinearization scheme is used. We
show that, with carefully constructed linear approximasiof f;’s, arbitrarily optimal MIP models can
be built.

The basic idea behind our linearization scheme is ratheplsinGiven aC' continuousf; € [0,1] with
fi/((’) > A >0, it can be approximated to arbitrary precision with a awndus, piecewise linear function
fi such that for arbitrarg > 0 and allt; > 0,

hotlee 17)
|
with f; having the form (seee.g, Figure[2)
aj 1ti +bj 1, 0<t <ty
fo a ot + i 2, tig <t <t (18)

gti+biy, tix-1<t<o

A numerical procedure for computing such &nis provided in Sectiofi 1V.

ti1 tio tigtia

Fig. 2. Approximation of somd; with a continuous, piecewise linear function (bold dashed segments). The approximation is concave
between[0,t; 5], [ti 2,t 3], and so on.

Once a particularﬁ is constructed, the constraints on the rewakdmust be updated. To make the
explanation clear, we use thefrom Figure[2 as a concrete example. Starting fipem 0, we introduce
a new continuous variablé over the first maximally concave segment ©f In the case of thef; in
Figure[2, the first maximally concave segment contains twe segments, ending &b. In this case, we
have

0<t! <t

To represent the reward obtained over the first maximallycaea segment, a continuous variawlé
is introduced, which satisfies the following constraints
W <aiatt+bis, W <aath+bis.
Then, for the next maximally concave segment, another coatis variableti2 is introduced. In our
example, the second maximally concave segment containsiraeegment and thus
tiz <t?<ts. (19)
We need to ensure thgt is active only ift! is maximized. We achieve this through the introduction
of an additional binary variabl&,z, which is set to satisfy the constraint
1
2 < t'_
ti2
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The constraint ensures th@% 1 only if t1 is maximized and takes the valtie. To avoid potential
numerical issues that may prever?t_ 1 from happening, in practice, we may write the constraint as
2 < (t148) /ti 2, in which & is a small positive real number. We can then activAtbrough the constraint

X
7 <XF(tiz—ti2) +tia,
which also renders the constraintl(19) unnecessary. Tharddier this second maximally concave segment,
w?, is then
VV2<a|3t +b|3_( 2t|2+b| 2)
After all of f; are encoded as such, we combine the individual time and dewaiables inta; and
W, as
=t (P —ti2)+..., (20)
=W Wr (21)
We note that the additional constraints that are introdiusaztoportional to the complexity of;. We

now prove that the overall MIP model constructed in this wégwes arbitrary approximations of the
original problem.

Theorem 2 Given an RMT instance specified by a 5-tupleB,D,R F), Mt > 0, and a positive real
numbere, a (14 €)-optimal solution of this RMT instance can be computed byisgla mixed integer
programming problem, obtained over(&+ £/2) piece-wise linear approximation of F.

PrROOF Assume that the RMT instance has an optimal solution thah@wardl; and spendi;l

time at then POI vertices. Leff; be a piece-wise linege /2)- apprOX|matlon off; for 1 < <n. Assume

that the optimal solution to the RMT instanfé B,D,R,F) has a rewarle and spendi;l ., tT time at

the n POI vertices. Using the approximation with the format giver{18) and saUsfymg[(jl?) we have

(1-2)fit) < FW) <@+ 5)h() (22)

and

fi(t). (23)

Then (by [28)),

(24)

R i; N 1- % i= !

in which the summatiory}’ ; ﬂ(tiT) is the reward returned by the MIP algorithm. On the other hand

by (22), we have
k=3 f) <1+ ) 3 i) (25)

Z figh < ( 1+ Z fi(t (26)
i=1
To see that[(26) holds, assume instead it is false. Then, QZ&)yagain, we have

153 )< 3 A<+ 3 )

which implies that



We then havely =51 ; fi(t") <34 fi (tiT), a contradiction. Puttind_(24) and (26) together yields

1+%
1_53532 (1+e+0(8))Jr

T
i<

Nl

O

For the BMT problem, since time is split between travelind antually staying at POls, a dired+ ¢)-
optimality assurance cannot be established. Neverthdtasa BMT instance with a reward requirement
of Mg > 0, assuming that the optimal solution requidgstime, we can guarantee that a reward of at least
(1—¢€)MR is achieved using time no more tha.

Theorem 3 Given a BMT instance specified by a 5-tug\¢ B,D,R F), Mg > 0, and a positive real
numbere, let its solution have a required total time of .JThen, an MIP model can be constructed that
computes a solution withr?> (1—-¢)Mgr and J < J;.

PROOF For simplicity as well as diversity, we use a piece-wiseedin approximation that is slightly
different. Instead of making the piece-wise linear functgatisfy (17), we use only line segments that
are no lessf;. That is, we can construdt such that
~ 1
filt) < fit) < 3= filt).

Suppose that the optimal so~lution to the original BMT ins&rspend,...,t; time at then POI
vertices. Since for all Xi <n, fi(t)) > fi(ti), the approximate MIP model constructed uskgnstead
of F will not need as much time to reach a reward\dt. That is, the approximate model produces a
solution with Jr < J;. Let the time spent at the POI vertices in the solution to thpreximate MIP

model bet],....t!, then the actual achieved reward is

=5 000> 5 (10T = A-e)Me

D. Extensions and Generalizations

Before concluding this section, we briefly mention a few agtens and generalizations of our MIP
model. We only cover the RMT problem here. The extension toTBidl straightforward.

Multiple tours: In a sense, the MIP model described so far creates a singléhd@rary since the plan
is a single tour that starts and ends at the same base. HowevevlIP model can be easily generalized
to allow the planning of trips with multiple tours. There awo possible generalizations with different
applications. The first possibility is to force multiple tsuo start at the same base, which represents the
problem of a tourist staying at the same hotel for multiplgsdaGiven the number of days, we may
obtain a more general MIP model by simply createcopies of the edge-use variableés., xjj’'s. For
each copy, a separate maximum time constraint (a daily tmi) lis imposed. Thesen copies are then
aggregated togethare., throughy " ; xij = xi;. We also require that the base POI vertices have either 0
or mincoming edges being used. the The rest of the MIP model resressentially the same.

The second possibility is applicable to multi-robot sultegice problems, in which all tours are disjoint.
That is, each mobile robot covers a disjoint set of POIs tgeaatively collect the maximum amount of
reward. Note that this implieB| > m. To achieve this, we again create multiple copies of the ecge
variables, enforce the time constraints for each copy, @ulegate the variables. Then, we let the base
POI vertices have at most a single incoming edge being used.
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Non-cyclic trip: The current MIP model forces a (cyclic) tour to be created.ev€hs this may be
more applicable to tourists, sometimes it may be beneficialaive non-cyclic routes. For example, using
multiple hotels may allow a tourist to significantly increabe potential total reward due to reduced travel
time. Alternatively, in a surveillance or monitoring prebi, a single use probe may be sent to follow
a one-time, non-cyclic route. To allow this, we may simplynoe the constraint that forces both the
incoming and outgoing edge from the origin vertexo a base vertex to be used. Non-cyclic trip can be
directly combined with the multiple-tour generalization.

Variations on learning curvesAlthough we focus on non-decreasif@j continuous learning curves
with first order derivatives bounded away from zero, oth@esyof learning curves can also be supported.
The only requirement on th&’s is that they can be approximated arbitrarily well usingiecp-wise
linear, continuous function with a finite number of line segts. In particular, we note that the learning
curve being non-monotone does not present an issue for tiRerividel. Given a generd] that non-
monotone, we can turn it into a non-decreasing function ew@ich our MIP model can be applied. To
do so, starting front; = 0, we find the first local maximum, say &t=t; 1, at which point we augment
fi by extending it fromfi(t 1) until it reaches the originaf; at a pointt; =t; » where f; starts increasing
again. We then repeat the same iterative process starbngtfr=t; ,. Such augmentation of is never
problematic because our MIP model maximizes the rewardyusia least amount of time and will never
allocate more time at a POI vertex when the reward is lessroaires the same.

IV. THE ALGORITHM AND ITS ANALYSIS

The overall algorithm construction is outlined in Algornitil. In Line[1 of the algorithm, it computes
all-pairs shortest paths and their respective lengthgyusitnansitive closure based algorithm, for example,
the Floyd-Warshall algorithm Floyd (1962); Warshall (196Phen, in Lines 2-4, the algorithm computes
a piece-wise lineaf1+-£/2)-approximation of eacH; € F, if necessary. Finally, OncB’ is computed
and all of F is built, Lines[B:11 of the algorithm can be carried out adang to the steps outlined in
Sectionll. In the rest of this section, we cover two impattaroperties of our algorithm.

A. Finite Complexity of Piece-Wise Linear Approximation

In Section[1ll, we mentioned that a reasonably nice learrdngye can be approximated to arbitrary
precision using a piece-wise linear function, which is nistiailt to imagine. However, to encode the
approximated piece-wise linear function into the MIP modeé function must have finitely many line
segments. We now show that the approximation indeed hatetincgomplexity.

Theorem 4 Let f € [0,1] be a C continuous, non-decreasing function with0f = 0 and f(0) > A for
some fixedA > 0. For any givene > 0, there exists a piece-wise linear approximation of f camteg
only finite number of line segments, denofedsuch that

(1) = f(t)l
- 7’ < E.
) <e¢ 27)
PROOF At t =0, by the continuity off’(t), for an arbitraryAe > 0, there existds such that for all
0<t<ts,

f'(0)—Ae < f'(t) < f/(0) + Ae. (28)
Since f/(0) > A, we obtain from[(2B) that
(1-¢)f'(0) < f'(t) < (1+¢)f(0). (29)

Then, sincef (0) =0, (29) implies that
(1—¢e)f' (0Ot < f(t) < (1+¢)f'(O)t. (30)



11

Algorithm 1: OPTIMALTOURISTINTINERARY
Input :V, the set of POIsB, the set of base®), the set of (incomplete) inter-POI distanc&s the
set of maximum POI rewards;, the set of learning curves$/r (or Mg), the time (or
reward) constraint, and, the required accuracy
Output: Jg, the maximum attainable reward (8, the minimum required time), ané;, a set of
visited edges associated wify (or Jy)

%Compute all pairs of shortest paths between all 1<i,j<n
1 (P',D’) + FLOYDWARSHALL(V,D)

%Compute for each fieF,1<i<n, a piece-wise linear (14 ¢&/2)-approximation
2 for fieF,1<i<ndo
\ fi <+ COMPUTEEPSILONAPPROXIMATION( fi, £/2)

4 end
%$Setting up the MIP model and optimize it using an MIP solver

5 (V/,D') «+ VERTEXSPLIT(V,B,D’) ; %split vEB
6 BUILDMODEL(V',D,RF) ; %Also builds Jr and Jr
7 if Mt is giventhen

8 ‘ SetJr < Mt and maximizelg ; $Maximize reward
9 else

10 | SetJr> Mg and minimizelr ; SMinimize time
11 end

12 return Ji (or J7), and the associatedyE

We let the first (left most) line segment of the approximatfobe simply f/(0)t for 0 <t <ts =: 11 (see
Figure[3 for a graphical illustration). Then, the secondyiradity of (30) becomes
_ 1 ~ -

()< @+rofty= O <fO=01-efx <)

which implies [2¥) for 0<t < 1;. Same holds for the first inequality df (30).

e[
s
. :

1+ o) [
L acofor ;I(1+ o))
o |

foraren

Fig. 3. A graphical illustration of the constructive proafr fTheoreni}.

For the second line segment, we simply extend fram f'(0)11) either horizontally (wherf’(0)71 >
f(11) or vertically (whenf/(0)1y < f(11) until the line segment meet§. Let this point onf(t) be
(12, f(12)).  _

The rest off can then be iteratively defined starting from the poéimt f (72)). For the third line segment,
we let its end point bérts, f(73)) such thatf(13) = min{1,(1+¢)f(12)}. Becausef is non-decreasing,
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overt <t <13,
f(12) < f(t) < f(13) < (1+¢€)f(12),

the same holds true fof over o <t < 13. Therefore, over, <t < 13,

f(12)
f(t)

We can then iteratively define the rest bsimilarly. Because each time we extefdy (1+¢) and we
start from f(72) > 0, in finite number of iteration$ reaches 1. O

) — )]

1f(t)—f(t)| < ef(12) = f

(t)<e

<e&.

Remark. We emphasize that the constructive proof of Theokém 4 malg yipproximations that are
far from the best piece-wise linear approximations. On tleeilohand, practical, non-linear learning
functions often do not require complex piece-wise linearctions to approximate. As an example, when
a learning curve from the exponential family is usedy, fi(tj) = 1—e %, a 105-approximation off;
can be achieved using only four line segments. Since thealie of f; can be easily computed in this
case, numerically computing the approximation is fairlygyedvioreover, only a one-time computation
is required; simple scaling can then extend the computaasily to different learning rates\i(s) and
rewards £'s). The initial and the approximated curves for the casdiof 1 are illustrated in Figurgl4.
It is straightforward to verify thatf; — fi|/f; < 0.05.

1t

(2.01, 0.91) u.--
k= 0.01 |

o i

osl fi 7 k=030

27(0.63, 0.49)

k=0.74

02 4 —(0.10, 0.10)

kE=1.00 ‘ ‘

0 1 2 3

0

Fig. 4. A graphical illustration of the constructive proafrfTheoreni}. The differerk’s indicate the slopes of the corresponding line
segments.

B. The Anytime Property

An very useful property of Algorithrl1 that we obtain for fressthat it yields aranytimealgorithm. The
anytime property is a direct consequence of solving the MtRlets for RMT and BMT using an MIP
solver, which generally use some variations of the bramzHaound algorithm _Land and Doig (1960).
Roughly speaking, a branch-and-bound algorithm works withigh-dimensional) polytope that contains
all the feasible solutions to an optimization problem. Thgoathm then iteratively partitions the polytope
into smaller ones and truncates more and more of the polytaadeare known not to contain the optimal
solution. After some initial steps, a tree structure is tbaild the leaves of the tree contains portions of
the original feasibility polytope that are still active.F@ach of these polytopes, suppose we are working
on a maximization problem, it is relatively easy to locateeasible solution with the correct integrality
condition {.e., a feasible solution in which binary/integer variables gesigned binary/integer values).
The maximum of all these feasible solution is then a lowerngoof the optimal value. On the other
hand, it is also possible to compute for each leaf the maximaamevable objective without respecting
the integrality constraints, which yields a lower bound ba bptimal value. The difference between the
two bounds is often referred to as tgap. When the gap is zero, the optimal solution is found. Over the



13

running course of a branch-and-bound algorithm, if the gaolgally decreases, an anytime algorithm is
obtained.

For our particular problems, the anytime property is quiseful since computing the true optimal
solution to the (potentially approximate) MIP model for RMand BMT can be very time consuming.
We will see in Section V that for medium sized problems, adpf#imal solution, which is fairly good
for practical purposes, can often be computed quickly.

V. COMPUTATIONAL EXPERIMENTS

In this section, we evaluate our proposed algorithm in sgveomputational experiments. In these
experiments, we look at the solution structure, computaliperformance, and an application to planning
a day tour of Istanbul. The simulation is implemented in theaJprogramming language. For the MIP
solver, Gurobi Gurobi Optimization (2014) is used. Our caomagtional experiments were carried out on
an Intel Core-i7 3930K PC with 64GB of memory.

A. Anytime Solution Structure

Our first set of experiments was performed over a randomlgigead example, created in the following
way. The example contains 30 uniformly randomly distrilbuROls in a 10< 15 rectangle (see Figuré 5).
Each POlv; is associated with a; € [1,2) and anr; € [1,2) that were both uniformly randomly selected.
The Aj’s andri’s are selected not to vary by much because we expect thatotige, this will present
a more difficult choice for a tourist or a mobile robot. Fiy both linear €.g, with the form (1)) and
exponential ¢.g, with the form [2)) types were used, with the learning ratescified by theA;’s. We
sete = 0.05 when we approximate the non-linehis with piece-wise linear functions (that is, we use
the linear approximation illustrated in Figuré 4 with propealing). Note that = 0.05 yields a 1.1-
optimal MIP model for exponential;’'s. These steps determine the s¥isR, F, F. We letB to be the
set {v1,Vg,V17,Vo5}. For decidingE and D, we let there be an edge between two POI vertigeg; if
the Euclidean distance between them is no more than 10.Ifitte constraints were set as follows. For
RMT, Mt =50 for both linear and exponentiéls. For BMT, Mg = 30.55 for linear fi's andMgr = 25.78
for exponentialfi’s. TheseMgr’s were selected because they are the optidpalalue for the respective
RMT problems withMt = 50.

For each problem instance, we extract the solution aftergtipge becomes no more than 100%, 50%,
20%, 10%, 5%, 1%, and 0%. These solutions for the RMT instamtie linear learning curves are
illustrated in Figuré b. Because the large number of POlslied, we do not list the computegs but
point out that, in the linear case, when the set of POls foyistpis selected, it is always beneficial to
exhaust the reward at POIs with the largest learning ratedime is best used this way. The computation
of these five solutions took.96,1.05,2.16,3.70, and 1@ seconds, respectively. Confirming that the last
solution (Figurd_b(e)) is indeed the optimal solution todkséconds.

For the BMT instance withVir = 30.55, we similarly plot the solutions at different accuracias
Figure[6. Note that the optimal solution (Figure 6(e)) yselthe same tour as the optimal solution to
the corresponding RMT problem (Figuré 5(e)). We note thais actually smaller than 50 in this case,
suggestingMt = 50 is not necessary to reach a rewardJef= 30.55. The computation of these five
solutions took 38,0.60,3.13,6.19, and 280 seconds, respectively. Confirming that the last solugon
indeed the optimal solution took 50 seconds.

For exponential learning curves, similar results were ioeth The optimal tours for RMT and BMT
are illustrated in Figurél7, which, as expected, have theestmar. Computing the optimal solution to
these more complex 1.1-optimal MIP models took&@nd 301 seconds, respectively.

B. Computational Performance

Since the models for RMT and BMT attempt to solve an NP-hamblem precisely (note that
the problem after linearization remains NP-hard), no pofgral time algorithm exists unless P = NP.



14

e J,=17.29 ® Jp,=23.52

L4 . ® . L4 . ® o
[ ]

® o
L] L]
] LY LY
(]
0o oo o
,,,,,,,,,,,,,,,,, @ (b)
® Jp=27.30 | | o aio.®

SRR

Fig. 5. Figures (a) - (e): POls visited by the best solutioth® RMT problem after the gap dips just below 100%, 50%, 200%p,1and
5%, respectively. The solution obtained after the gap digdevb 5% is in fact the optimal solution for this particularagmple. The black
and the green dots are the POls and the green dots are thedstisesv

(d)

Fig. 6. Figures (a) - (e): POls visited by the best solutioth® BMT problem after the gap dips just below 100%, 50%, 200861and
1%, respectively.
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Fig. 7. (a) Optimal solution to RMT with exponential leargisurves andvir = 50.00. (b) Optimal solution to BMT with exponential
learning curves withvigr = 25.78.

Therefore, our evaluation of the algorithm’s computatigmerformance is limited to an empirical one.
For this, two large sets of computations are performed. énfitlst set of computations, rectangular grids
of various sizes were constructed. The POls reside on theelgtoints on these grid, with the reward and
learning rate selected uniformly randomly frdi2). Verticesn/3 and 21/3 are selected as base vertices.
For each choice of grid sizes, 10 example problems are ckelate the RMT instances, a time budget of
1.5 times the grid perimeter is used. For the BMT instancesward requirement of 0.6 times the grid
perimeter is used. These constraints are chosen to allowotingo go through 10% to 25% of the total
POls. For both RMT and BMT instances, we perform computatisith both linear and exponential
learning curves (with 5% linearization). The average timeseconds, required to compute a solution up
to given accuracy is listed in Table I. The number in the pdresis denote the number of times, out of
a total of ten, that the computation completed within a liofit900 seconds.

Our second set of computations generates the POI locatidfemly randomly according to the same
rules used in Sectidn VAA, in /| x 1.2|V| rectangle. Then, for RMT instances, a time budget ¢f\| is
used. For BMT instances, a reward requirementgf@ is used. The rest of the setup is done similarly
as in the rectangular grid case. The computational perfoceés listed in Tabléll.

From the computational experiments, we observe that in tildecgse, for up to 200 POls, the proposed
method can compute a2toptimal (corresponding to a 20% gap) MIP solution for adtnall instances
(199 out of 200 instances), under very reasonable computétne. Moreover, for up to 80 POIs, the
method can compute a@5- optimal MIP solution for almost all instances (158 outl®0 instances).
When the POls are selected randomly, the computation sefine more challenging. Computing2t
optimal MIP solution starts to become challenging when éhare more than 40 POls. The difficulty
seems to come from the fact that randomly selected POls ctanfadly be packed more densely in
certain local regions. Nevertheless, we were still abledimpute 15-optimal MIP solutions in most of
the cases when there are 100 POIs. Overall, the two larg@fetsnputations suggest that our algorithm
can be used to do itinerary planning for practical-sizedaimses in large cities.

C. Planning a One-Day Istanbul Tour

As a last computational example, we illustrate how one mayraal data to compute a day tour of Is-
tanbul over 20 POI&.These 20 POIs are selected by taking the top-ranked atinscfiom TripAdvisor’E
city guide for Istanbul. We select the top 20 POls that aregesteral areas and have at least 300 user
reviews. These POls are (the ordering is by the POI's rankBuleymaniye Mosque, 2. Rahmi M. Koc
Museum, 3. Rustem Pasha Mosque, 4. Hagia Sophia Museum,riyekduseum, 6. Basilica Cistern,
7. Bosphorus Strait, 8. Blue Mosque, 9. Rumeli Fortress Eyaip Sultan Mosque, 11. Kucuk Ayasofya
Camii, 12. Topkapi Palace, 13. Miniaturk, 14. Istanbul Axeblogical Museums, 15. Gulhane Park, 16.
Istanbul Modern Museum, 17. New Mosque, 18. DolmabahcecBal®. The Bosphorus Bridge, and 20.
Galata Tower.

IWe intentionally limited the size and complexity of this exgle to provide all important details.
2http://www.tripadvisor.com



16

TABLE |
COMPUTATION TIME FOR SOLVINGRMT AND BMT OVERPQIS LOCATED AT THE LATTICE POINTS ON VARIOUS SIZED INTEGER GRIB.
rid size roblem learning curve MIP gap
g P 9 100% 50% 20% 10% 5% 1% 0%
RMT linear 0.085s 0.135s 0.203s 0.261s 0.675s 2.285s 2.357s
4x5 . (10) (20) (10) (10) (10) (10) (10)
BMT linear 0.070s 0.108s 0.271s 0.571s 0.974s 1.101s 1.102s
(10) (10) (10) (10) (10) (10) (10)
RMT exponential 0.149s 0.171s 0.240s 0.388s 0.471s 1.293s 1.343s
(10) (10) (10) (10) (10) (10) (10)
BMT exponential 0.061s 0.090s 0.174s 0.364s 0.505s 0.605s 0.608s
(20) (10) (20) (10) (20) (20) (20)
RMT linear 0.309s 0.342s 0.439s 0.531s 1.561s 17.00s 18.66s
546 _ (10) (10) (10) (10) (10) (10) (10)
BMT linear 0.191s 0.250s 0.868s 2.038s 5.580s 8.038s 8.080s
(20) (20) (20) (20) (10) (20) (20)
RMT exponential 0.361s 0.395s 0.522s 0.814s 1.225s 11.31s 12.41s
(20) (20) (20) (20) (20) (20) (20)
BMT exponential 0.147s 0.194s 0.586s 1.803s 5.710s 9.383s 9.483s
(20) (20) (20) (20) (20) (20) (20)
RMT linear 0.683s 0.687s 0.816s 1.009s 5.790s 161.3s (7) 209.8s (7)
6x 7 _ (10) (10) (10) (10) (10)
BMT linear 0.501s 0.514s 6.308s 31.76s 79.22s 127.9s 129.0s
(10) (10) (10) (20) (20) (20) (20)
RMT exponential 0.870s 0.914s 1.784s 5.268s 17.91s 182.6s (8) 234.6s (8)
(10) (10) (10) (10) (20)
BMT exponential 0.701s 0.715s 3.718s 11.37s 78.40s 79.43s (8) 80.87s (8)
(10) (10) (10) (10) (10)
RMT linear 2.272s 2.443s 2.953s 21.58s 87.13s 454.6s (3) 809.0s (1)
8x 10 . (10) (10) (10) (10) (10)
BMT linear 2.188s 2.382s 3.111s 20.75s 134.1s (9) 284.2s (6) 295.2s (6)
(10) (10) (10) (10)
RMT exponential 2.134s 2.345s 5.664s 22.75s 67.28s 342.5s (4) 498.5s (3)
(20) (20) (20) (10) (20)
BMT exponential 2.530s 2.849s 20.64s 79.32s 274.6s (9) 4929s (6) 524.7s (6)
(20) (20) (20) (20)
RMT linear 17.31s 17.31s 18.96s 98.66s 433.9s (7) N/A N/A
10x 20 _ (20) (20) (20) (10)
BMT linear 43.28s 48.84s 93.40s 241.9s (9) 346.8s(4) N/A N/A
(20) (20) (20)
RMT exponential 17.33s 26.87s 48.06s (9) 59.64s (5) 317.3s(1) N/A N/A
(20) (10)
BMT exponential 37.17s 44.29s 241.3s 424.2s (6) 435.4s (1) N/A N/A
(10) (20) (10)

After the POls are selected, we compute the maximum rewattese POIs using the formufnreview+
10—rank/5, in which nyeyiew is the total number of reviews received for the POI on Tripisdv andrank
is the POI's rank on TripAdvisor. The attractions are mostlyseums and architectural sites, to which
we assign the learning rates ofD.01r;, i.e., we expect a tourist to spend more time at more renowned
POls . Using Google Mﬁ) we extracted the pair-wise distances between any two setR©Is and build
the setsE and D. The base vertex set is selected to contain the 1st, 6th, afth 16th ranked POls.
With these parameters, we solve the RMT problem with expaelearning curves and a time budget
of 9 hours. From the solution (an exact solution to th&-dptimal MIP model, computed in about five
seconds) we extracted the itinerary listed in Table Ill. Tireerary visits 14 POIs and yields a reward of
115 out of a total possible reward of 380. A visual inspectibrthe itinerary suggests that it is a fairly
reasonable solution to our proposed problem.

During a recent trip to Istanbul for the WAFR 2014 conferendge to a tight schedule, some of us

Shttp://maps.google.com.
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TABLE I
COMPUTATION TIME FOR SOLVINGRMT AND BMT OVER POIS THAT ARE UNIFORMLY RANDOMLY SELECTED.
i ve MIP gap
# of samples problem learning cunve 57 £0% 50% 10% 5% 9% 0%
RMT linear 0.118s 0.236s 0.730s 2.645s 4.832s 5.887s 5.92 s
20 (10) (10) (20) (10) (10) (20) (10)
BMT linear 0.049s 0.112s 1.183s 1.727s 1.908s 1.962s 1.966s
(10) (10) (20) (10) (10) (20) (10)
RMT exponential 0.274s 0.379s 3.780s 6.499s 13.38s 17.49s 17.57s
(10) (10) (20) (10) (20) (20) (20)
BMT exponential 0.071s 0.166s 2.531s 5.731s 6.946s 7.400s 7.424s
(20) (10) (10) (20) (20) (10) (20)
RMT linear 0.435s 1.122s 15.41s 74.97s 228.1s (9) 81.90s (7) 82.95s (7)
30 (10) (10) (20) (10)
BMT linear 0.289s 0.821s 18.23s 54.56s 76.39s 81.34s 81.58s
(20) (20) (10) (20) (10) (10) (20)
RMT exponential 1.221s 2.664s 17.44s 81.39s 168.4s (9) 159.2s (8) 161.8s (8)
(20) (20) (10) (10)
BMT exponential 0.339s 1.243s 8.676s 24.96s 41.74s 47.93s 48.15s
(20) (20) (10) (20) (20) (10) (20)
RMT linear 6.058s 13.73s 49.33s (8) 164.5s (6) 262.9s (3) 170.2s (1) 187.8s (1)
42 (20) (20)
BMT linear 0.612s 1.513s 142.2s (9) 107.0s (7) 141.2s(7) 148.9s (7) 149.1s (7)
(10) (20)
RMT exponential 14.13s 24.80s 93.65s 132.2s (6) 288.2s (4) 375.9s (3) 381.1s (3)
(10) (10) (20)
BMT exponential 1.711s 7.759s 179.4s (7) 195.4s (4) 279.6s (3) 362.7s (3) 365.0s (3)
(10) (10)
RMT linear 54.26s 57.26s 439.3s (8) N/A N/A N/A N/A
100 (10) (10)
BMT linear 19.98s 105.5s N/A N/A N/A N/A N/A
(10) (10)
RMT exponential 59.45s 125.3s (9) 309.0s (5) 790.8s (1) N/A N/A N/A
(10)
BMT exponential 12.03s 251.1s 577.3s (1) N/A N/A N/A N/A
(20) (20)
RMT linear 40.26s 255.0s (8) N/A N/A N/A N/A N/A
200 (10)
BMT linear 170.7s 185.1s (9) N/A N/A N/A N/A N/A
(10)
RMT exponential 34.50s 229.5s5 (8) N/A N/A N/A N/A N/A
(10)
BMT exponential 223.4s 494.3s (3) N/A N/A N/A N/A N/A
(10)

only had a few hours to visit local attractions. In the end,wgited the Hagia Sophia Museum, the Blue
Mosque, and the Basilica Cistern. It turns out that, when wethe RMT algorithm with three hours of
budget, this is the exact itinerary returned by the algorifsee Tablé 1V).

VI. CONCLUSION

In this paper, we proposed the Optimal Tourist Problem (Ot tie together the problem of
maximizing information collection efforts at point-oftarests (POIs) and minimizing the required time
spent on traveling between the set of discrete, distribBtets. A particular novelty is that our formulation
encompasses a general class of time-based reward fundionsolving the two variants of OTP, RMT
and BMT, we construct an exact (when reward function is lipnea an arbitrarily optimal (when reward
function is non-linear) MIP model that gives rise to an amgialgorithm for solving such problems.
Computational results suggest that our algorithm is apple to practical-sized itinerary planning or
informative path planning problems and generates fairhysgde plans.
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TABLE 11l
A 9-HOUR COMPUTED ITINERARY INISTANBUL.

Start from the Suleymaniye Mosque, stay for 0.84 hour

Take a taxi to Topkapi Palace (8 min), stay for 0.88 hour

Take a taxi to Kucuk Ayasofya Camii (6 min), stay for 0.14 hou
Walk to Blue Mosque (6 min), stay for 0.90 hour

Walk to Basilica Cistern (4 min), stay for 0.90 hour

Walk to Hagia Sophia Museum (4 min), stay for 0.93 hour

Walk to Gulhane Park (4 min), stay for 0.11 hour

Walk to Archaeological Museums (2 min), stay for 0.78 hour
Take a taxi to Rustem Pasha Mosque (6 min), stay for 0.78 hour
Take a taxi to Rahmi M. Koc Museum (9 min), stay for 0.76 hour
Take a taxi to Kariye Museum (8 min), stay for 0.82 hour

Take a taxi and return to Suleymaniye Mosque (12 min)

B R
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TABLE IV
A 3-HOUR COMPUTED ITINERARY INISTANBUL.

Start at Basilica Cistern, stay for 0.90 hour

Walk to Hagia Sophia Museum (4 min), stay for 0.93 hour
Walk to Blue Mosque (8 min), stay for 0.89 hour

Walk back to Basilica Cistern (4 min)

A OWNBR
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