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Optimal Tourist Problems and Anytime Planning of Trip
Itineraries

Jingjin Yu Javed Aslam Sertac Karaman Daniela Rus

Abstract

We introduce and study the problem in which a mobile sensing robot (our tourist) is tasked to travel among
and gather intelligence at a set of spatially distributed point-of-interests (POIs). The quality of the information
collected at each POI is characterized by some non-decreasing reward function over the time spent at the POI.
With limited time budget, the robot must balance between spending time traveling to POIs and spending time
at POIs for information collection (sensing) so as to maximize the total reward. Alternatively, the robot may be
required to acquire a minimum mount of reward and hopes to do so with the least amount of time. We propose a
mixed integer programming (MIP) based anytime algorithm for solving these two NP-hard optimization problems
to arbitrary precision. The effectiveness of our algorithmis demonstrated using an extensive set of computational
experiments including the planning of a realistic itinerary for a first-time tourist in Istanbul.

I. INTRODUCTION

Imagine that a roboticist travels to Turkey to attend an international conference in Istanbul. Unfortu-
nately, due to her busy schedule, our roboticist does not have much time for touring this historic city. Yet,
as luck would have it, near the end of her trip, she finds herself with a day of spare time and decides to
do some sightseeing. Planning such a day trip, however, turns out to be quite challenging: the roboticist
must decide among a large number of point-of-interest (POIs) which ones to go to, how to travel from
one POI to another, and how much time she should spend at each POI that she does decide to visit.
Naturally, she hopes to get the most out of her tour under her limited time budget. Could we help our
roboticist plan an optimal itinerary for such a journey automatically?

Alternatively, an environmental scientist may need to planan automated, GPS-guided trip for an aerial
mobile (sensing) robot to collect scientific data at a set of spatially distributed locations. Because of the
high cost associated with operating the robot, our scientist, similar to our roboticist in Istanbul, must select
a subset of locations for the aerial robot to visit and decidehow much effort (time) the robot should spend
at each location to perform necessary measurements. Is there a principled method that our environmental
scientist can use for planning such a trip with optimality guarantees?

In this paper, we propose the Optimal Tourist Problem (OTP) that is motivated by and models after
the scenarios mentioned above. In the basic setup, a touristis interested in visiting somen POIs that
are spatially distributed. Each POI is associated with areward functionor learning curvethat is non-
decreasing over the time spent at the POI. Because travelingbetween POIs and staying at a POI to gain
reward are both time consuming, optimization problems naturally arise. We introduce two such related
problems. In the first problem, areward-maximizing tourist(RMT) seeks to maximize the gained reward
given limited time budget. From a dual perspective, in the second problem, abudget-minimizing tourist
(BMT) seeks to minimize the time spent to collect a predetermined amount of reward. We provide a
mixed integer programming (MIP) basedanytimealgorithm for solving both RMT and BMT variants of
the OTP problem.
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The primary motivation behind our study of OTP is its potential application to robotic surveillance
and monitoring problems such as automated reconnaissance and scientific survey Smith et al. (2011);
Grocholsky et al. (2006), which we refer to under the umbrella term ofinformative path planning(IPP).
In an IPP problem, a path is planned to satisfy some information collection objective, sometimes under
additional constraints such as path length or total time limit. In Alamdari et al. (2014), anO(logn)
approximation algorithm yields iterative TSP paths that minimize the maximum latency (the inverse of
the frequency with with a node is visited) across alln nodes in a connected network. In Smith et al.
(2012), the authors proposed a method for generating speed profiles along predetermined cyclic (closed)
paths to keep bounded the uncertainty of a varying field usingsingle or multiple robots. For the problem
of observing stochastically arriving events at multiple locations with a single mobile robot, a(1+ ε)-
optimal algorithm was proposed in Yu et al. (2014) to solve the multi-objective optimization problem
of maximizing event observation in a balanced manner and minimizing delay between event observa-
tions across the locations. Recently, a method calledRecursive Adaptive Identificationis proposed as a
polynomial time polylogarithmic-approximation algorithm for attacking adaptive IPP problems Lim et al.
(2014). Sampling based methods Kavraki et al. (1996); LaValle (1998); Karaman and Frazzoli (2011) have
also been applied to IPP problems with success. In Hollingerand Sukhatme (2013), Rapidly-Exploring
Random Graphs (RRG) are combined with branch-and-bound methods for planning most informative
paths. In Lan and Schwager (2013), the authors tackle the problem of planning cyclic trajectories for
the best estimation of a time-varying Gaussian Random Field, using a variation of RRT called Rapidly-
Expanding Random Cycles (RRC).

An optimization problem that is intimately connected to OTPis the Orienteering Problem (OP) Chao et al.
(1996); Vansteenwegen et al. (2011); Gavalas et al. (2014),which is obtained when rewards at the POIs
are fixed in an RMT problem. The fixed reward is collected in full once a POI is visited. OP, which is
easy to see as an NP-hard problem, is observed to be difficult to solve exactly for even medium sized
instances with over a hundred of POIs. On the side of approximation algorithms, constant approximation
ratios down to(2+ ε) are only known under metric settings for OP with uniform reward across the
POIs on undirected graphs Chekuri et al. (2012). No constantratio approximation algorithm is known
for directed graphs. On the other hand, many MIP-based algorithms exist for OP and related problems
Vansteenwegen et al. (2011); Gavalas et al. (2014). These algorithms often allow the precise encoding of
the problem in the MIP model. A work in this domain that is closest to ours studies an OP problem in
which the reward may depend on the time spent at the POIs Erdoˇgan and Laporte (2013). It proposes a
solution method that iteratively adds constraints that areviolated by the incomplete model. In comparison,
our work studies a more general problem that allows multiplestarting POIs and arbitrary reward functions.
Moreover, we construct a static (i.e. constraints are fixed), arbitrarily precise MIP model that gives rise
to a natural anytime algorithm.

On the side of trip planning problems, many interesting works De Choudhury et al. (2010); Basu Roy et al.
(2011); Yoon et al. (2012) compute “optimal” itineraries according to some reward metric. For example,
the authors of De Choudhury et al. (2010) apply a recursive greedy approximation algorithm for OP
Chekuri and Pál (2005) to plan suggested itineraries. Mostof these work focus on the data mining aspect
of trip planning problems,e.g., how POI related data, such as the average visiting times forPOIs and
tourist preference through POI correlations, may be derived and used. In contrast, we provide a clean
separation between two elements of the OTP problem, the transportation model and the reward model,
and focus on the interaction between these two elements through an algorithmic study.

The rest of the paper is organized as follows. In Section II, we formulate the two variants of OTP,
RMT and BMT. In Section III, we provide a step-by-step introduction of our MIP model for solving the
proposed OTP variants, after which many generalizations are also presented. In Section IV, we discuss
the overall algorithm and some of its important properties in more detail. We present computational
simulations in Section V and conclude in Section VI.
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II. PROBLEM FORMULATION

Let the setV = {v1, . . . ,vn} representsn point-of-interests(POIs) inR
2. There is adirected edge ei, j

between two POI verticesvi ,v j ∈ V if there is a path fromvi to v j that does not pass through any
intermediate POIs. When an edgeei, j exists, letdi, j denote its length. There is a tourist (alternatively, an
agent or a mobile robot) that travels between the POIs following single integrator dynamics. Denoting the
tourist’s location asp, when the tourist is traveling from POI to POI,ṗ = u,‖ u ‖= 1. Otherwise,ṗ = 0.

The tourist is interested in visiting the POIs. To do so, she starts from somebasevertex vB ∈ B⊂V
with |B|= nB≤ n, travels between the POIs, and eventually returns tovB. For example,B may represent
the choices of hotels. For eachvi ∈V, she associates a maximumreward ri with the location, which can
be gained through spending time atvi . We assume that the obtained reward depends on the timeti the
tourist spends atvi . More precisely, the obtained reward is defined asr i fi(ti), in which fi ∈ [0,1] is some
function of ti that is non-decreasing. We further require thatfi is C1 continuous andf ′i (0) is bounded
away from zero. That is, for all 1≤ i ≤ n, f ′i is continuous andf ′i (0)≥ λ for some fixedλ > 0. We also
assume thatf (0) = 0 for convenience (it can be easily verified later that this does not reduce generality).

Remark. We mention that no generality is lost by focusing on non-decreasing functions. After presenting
our MIP models in Section III, it will become clear that any reasonablefi can be turned into an equivalent
non-decreasing function which can then be used in setting upthe MIP model. We will revisit this point
in Section III-D.

The function fi may effectively be viewed as alearning curve. In this paper, two specific types of
one-parameter learning curves are studied in detail:linear andexponential. Let λi > 0 denote thelearning
rate. In the case of a linear learning curve,

fi(ti) = λiti, 0≤ ti ≤
1
λi
. (1)

The exponential learning curve is specified as

fi(ti) = 1−e−λiti , 0≤ ti ≤+∞, (2)

which captures the notion of “diminishing return” that are often present in learning tasks.
After a trip is completed, our tourist would have traveled through a subset of the edgesEtr ⊂ E and

have spent timet1, . . . , tn, ti ≥ 0 at then POIs. She would have spent a total time of

JT := ∑
ei, j∈Etr

di, j +
n

∑
i=1

ti (3)

and gained a total reward of

JR :=
n

∑
i=1

r i fi(ti). (4)

Note that some edgesei, j may be passed through by the tourist multiple times, in whichcasedi, j is
included once each timeei, j is enumerated in (3). That is,Etr is a multi-set. We defineT := {t1, . . . , ti},
R := {r1, . . . , rn}, andF := { f1, . . . , fn}.

During the trip planning phase, a tourist often faces the challenging task of planning ahead so as to
spend the optimal amount of time to travel and to do sightseeing to gain the most out of a trip. This gives
rise to two OTP variants. In the first, our optimal tourist is given a time budgetMT , during which she
hopes to maximize her total reward. That is,

Problem 1 (Reward-Maximizing Tourist (RMT)) Given a 5-tuple(V,B,D,R,F) and a time budget
MT > 0, compute the sets Etr and T such that JR is maximized under the constraint JT ≤MT .

We do not need to specify the edge setE because it is implicitly fixed byD. The second, equally
natural problem is in a sense a dual problem of RMT, in which the goal is to minimize the time spent to
achieve a predetermined reward.
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Problem 2 (Budget-Minimizing Tourist (BMT)) Given a 5-tuple(V,B,D,R,F) and a reward require-
ment MR> 0, compute the sets Etr and T such that JT is minimized under the constraint JR≥MR.

Besides RMT and BMT as formulated in this section, many practical variations are possible. For
example, it may be the case that a path (starting and ending athotels, train stations, and so on) is required
instead of a closed tour. Alternatively, maybe a multi-day itinerary is more desirable than a one-day
itinerary. These variations and a few additional generalizations are also addressed later in this paper (in
Section III-D).

Remark. We emphasize that the problems formulated in this section apply to an array of scenarios
other than itinerary planning for tourists. For example, our tourist may well be a mobile aerial robot
equipped with on-board cameras and automated computer vision-based algorithms for traffic monitoring
at key intersections in a large city. In this case, spending more time at a given location will allow more
observations, leading to higher quality information aboutthe traffic pattern at the given location. Given
limited flying time, the aerial robot must balance between traveling around and spending time at important
sites to gather more traffic information (under some proper metric). We can easily imagine extensions of
this traffic monitoring application to surveillance, reconnaissance, and scientific exploration tasks.

III. MIP M ODELS FORBMT AND RMT

In this section, we propose mixed integer programming models for solving RMT and BMT using an
MIP solver. First, we describe an MIP model derived from an existing one for the orienteering problem
(OP) that applies to RMT and BMT problems with|B|= 1 (i.e., a single base) and linear learning curves.
The case of|B|= 1 is often referred to as arootedproblem. Then, the MIP model is generalized to allow
multiple bases and arbitrary learning curves through linearization. Before moving to model construction,
we point out that the proposed problems are computationallyintractable, given their similarity to TSP
and OP.

Proposition 1 RMT and BMT are NP-hard.

PROOF. Let r i ≡ 1 and let the functions from the setF be linear with unit slope,i.e., f ′i = λi ≡ 1. The
maximum achievable reward is thenn and achieving such a reward requiresti = 1 for all 1≤ i ≤ n. Under
these restrictions, solving a BMT instance withMR = n is equivalent to finding a TSP tour over alln
POI vertices, which is NP-hard. Now, given a time budgetMT , the decision problem of whetherMT is
sufficient for achieving a reward ofJR≥ n is NP-hard, implying that RMT is NP-hard as well. �

A. MIP Model for a Single Base and Linear Learning Curves

In this subsection, we introduce an MIP model for BMT and RMT with a single base and with the set
F being linear functions. These models are partially based onmodels from Vansteenwegen et al. (2011);
Erdoǧan and Laporte (2013). Without loss of generality, let our tourist start fromv1. Because the reward
at a given POI only depends on the total time spent at the POI, we also assume that the time the tourist
spent at a POI is spent during a single visit to the POI. When a tourist spends time at a POI, we say the
tourist staysat the POI. With these assumptions, the tourist will eventually have stayed at someℓ POIs
with the ordervs1, . . . ,vsℓ, and have spent timets1, . . . , tsℓ at these POIs. Fori /∈ {s1, . . . ,sℓ}, ti = 0.

Although the tourist only needs to stay at a POI at most once, she may need to pass through a POI
multiple times (e.g., if the POI is a transportation hub). To distinguish these two types of visits to a
POI, we perform a transitive closure on the setD. That is, we compute all-pairs shortest paths for
vi ,v j ∈V,1≤ i, j ≤ n. This gives us a set of shortest directed pathsP= {pi, j} with corresponding lengths
D′ = {d′i, j}. We say that the touristtakesa pathpi, j if the tourist stays atv j immediately after staying at
vi , except when the tourist starts and ends her trip atv1. With this update, the tourist’s final tour is simply
ps1,s2, . . . , psℓ,s1. Let xi j be a binary variable withxi j = 1 if and only if pi, j is taken by the tourist.
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The number of times that the tourist stays at (resp. leaves after staying) a POI vertexvi is ∑n
j=1, j 6=i xi j

(resp.∑n
j=1, j 6=i x ji ). Both summations can be at most one since by assumption, thetourist never stays at a

POI twice. The tour constraint then says they must be equal,i.e., ∑n
j=1, j 6=i xi j = ∑n

j=1, j 6=i x ji . Let xi be the
binary variable indicating whether the tourist stayed atvi . We have the following edge-use constraints

n

∑
j=1, j 6=i

xi j =
n

∑
j=1, j 6=i

x ji = xi ≤ 1, ∀2≤ i ≤ n. (5)

The case ofi = 1 is special since we need to ensure thatv1 is visited, even if the tourist does not actually
stayat v1. For this purpose, we add a self-loop variablex11 at v1 and require

n

∑
j=1

x1 j =
n

∑
j=1

x j1 = x1 = 1. (6)

The constraints (5) and (6) guarantee that the tourist takesa tour starting fromv1. However, they do not
prevent multiple disjoint tours from being created. To prevent this from happening, asub-tour restriction
constraint is introduced. Let 2≤ ui ≤ n be integer variables for 2≤ i ≤ n. If there is a single tour starting
from v1, thenui can be chosen to satisfy the constraints

ui−u j +1≤ (n−1)(1−xi j ), 2≤ i, j ≤ n, i 6= j. (7)

To see that this is true, note that sinceui − u j + 1 ≤ n− 1 regardless the of the values taken by
2≤ ui ,u j ≤ n, (7) can only be violated ifxi j = 1. The conditionxi j = 1 only holds if the pathpi, j taken.
Settingui to be the order with which the tourist stays atvi , if xi j = 1, thenui−u j +1= 0, satisfying (7).
On the other hand, if there is another tour besides the one starting from v1 and whenvi j = 1, then the
RHS of (7) equals zero. For (7) to hold, we must haveui−u j +1≤ 0⇒ ui < u j . However, this condition
cannot hold for all consecutive pairs of POI vertices on a cycle. Thus, (7) enforces that only a single tour
may exist.

With the introduction of the variables{xi j}, the time spent by the tourist is given by

JT =
n

∑
i=1

n

∑
j=1, j 6=i

xi j di j +
n

∑
i=1

ti. (8)

To represent the total rewardJR, we introduce a continuous variablewi ,1≤ i ≤ n, to denote the reward
collected atvi . For a linear fi , λi , the learning rate, is simply the slope offi . The rewardwi and the
visiting time ti then satisfy

wi ≤ r ixi , (9)

wi = tiλi , (10)

The constraint (9) allows reward only if the tourist stays atvi and limits the maximum reward atr i .
The constraint (10) reflects the linear dependency of the reward wi over the visiting timeti. The total
rewardJR is simply

JR =
n

∑
i=1

wi . (11)

Solving RMT with a single base and linear learning curves canthen be encoded as a mixed integer
program that seeks to maximizeJR subject toJT ≤MT , (5), (6), (7), (9), and (10). Similarly, solving BMT
with a single base and linear learning curves can be encoded as a mixed integer program that minimizes
JT subject toJR≥MR, (5), (6), (7), (9), and (10).
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B. Incorporating Multiple Bases

We now look at the case of|B| > 1. To enable the selection of any particularvi ∈ B, a virtual origin
vertexo is created, which is both a source and a sink. Then, each base vertexvi is split into two copies,
vin

i andvout
i . The edges connectingvi to other POI vertices ofV are split such that all edges going from

vi to other POI vertices are now rooted atvout
i and all edges connecting other POI vertices tovi are now

ending atvin
i . In addition, two crossover edges betweenvin

i and vout
i are added, one in each direction.

Lastly, an outgoing edge fromo to vout
i and an incoming edge fromvin

i to o are added. An illustration of
this gadget is given in Figure 1.

v i v i
out v i

in

o

Fig. 1. [left] A base vertexvi and its outgoing (dotted) and incoming (solid) edges. [right] The gadget that splitvi into vin
i andvout

i , along
with the split edges and the newly added four (bold) edges.

This gadget is duplicated for every element ofB using the same origin vertexo. The basic MIP model
from the previous subsection is then updated to enable the routing of the tourist through at least one
element ofB. For eachvi ∈ B, we create four additional binary variables to represent whether the four
newly added edges are used in a solution. These variables arexo,out

i (edge fromo to vout
i ), xin,o

i (edge
from vin

i to o), xout,in
i (edge fromvout

i to vin
i ), andxin,out

i (edge fromvin
i to vout

i ). To ensure that at least one
vertex ofB is used, we add the constraint

∑
vi∈B

xo,out
i = 1. (12)

The edge-use constraints also need to be updated accordingly. Due to the vertex split for vertices from
the setB, we have two sets of such edge-use constraints. The constraint (5) now applies to all non-base
vertices. The constraint (6) is updated for all base vertices vi ∈ B to

n

∑
j=1, j 6=i

xi j +xout,in
i −xin,out

i −xo,out
i = 0, (13)

n

∑
j=1, j 6=i

x ji +xout,in
i −xin,out

i −xin,o
i = 0. (14)

With constraint (12),o goes to exactly onevout
i and later returns tovin

i . Then, constraints (13) and (14),
along with the existing edge-use constraint (5), ensure that one or more tours are created. Finally, to
prevent multiple tours from being created, we update the variablesui ’s to 1≤ ui ≤ n for 1≤ i ≤ n. For a
base vertexvi ∈ B, we add the constraint

ui−u j +1≤ (2−xi j −xin,out
i )n. (15)

If vi is not a base vertex, we require

ui−u j +1≤ (1−xi j )n. (16)

Constraints (15) and (16) replace the constraint (7). The constraint (16) has the same effect as the
constraint (7) in preventing a separate tour from being created. For base vertices, whenxin,out

i = 1, which
is the case unlessxo,out

i 6= 1, the constraint (15) is the same as (16). Ifxo,out
i = 1, then (15) becomes

ui−u j +1≤ n+(1−xi j )n, which always holds. That is, the constraint (15) treats theselected base vertex
differently.
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C. Linearization of Arbitrary Learning Curves

To accommodate arbitrary learning curves into our MIP model, a linearization scheme is used. We
show that, with carefully constructed linear approximations of fi ’s, arbitrarily optimal MIP models can
be built.

The basic idea behind our linearization scheme is rather simple. Given aC1 continuousfi ∈ [0,1] with
f ′i (0)≥ λ > 0, it can be approximated to arbitrary precision with a continuous, piecewise linear function
f̃i such that for arbitraryε > 0 and allti ≥ 0,

| fi− f̃i |
fi

≤ ε, (17)

with f̃i having the form (see,e.g., Figure 2)

f̃i =






ai,1ti +bi,1, 0≤ ti ≤ ti,1
ai,2ti +bi,2, ti,1≤ ti ≤ ti,2
. . . , . . .
ai,ki ti +bi,ki , ti,ki−1≤ ti ≤ ∞

(18)

A numerical procedure for computing such anf̃i is provided in Section IV.

fi

t i,2 t i,3t i,1 t i,4

a i,2 +t i b i,2

fi
~

Fig. 2. Approximation of somefi with a continuous, piecewise linear function (bold dashed line segments). The approximation is concave
between[0, ti,2], [ti,2, ti,3], and so on.

Once a particular̃fi is constructed, the constraints on the rewardwi must be updated. To make the
explanation clear, we use thẽfi from Figure 2 as a concrete example. Starting fromti = 0, we introduce
a new continuous variablet1

i over the first maximally concave segment offi . In the case of thẽfi in
Figure 2, the first maximally concave segment contains two line segments, ending atti,2. In this case, we
have

0≤ t1
i ≤ ti,2.

To represent the reward obtained over the first maximally concave segment, a continuous variablew1
i

is introduced, which satisfies the following constraints

w1
i ≤ ai,1t

1
i +bi,1, w1

i ≤ ai,2t
1
i +bi,2.

Then, for the next maximally concave segment, another continuous variablet2
i is introduced. In our

example, the second maximally concave segment contains oneline segment and thus

ti,2≤ t2
i ≤ ti,3. (19)

We need to ensure thatt2
i is active only if t1

i is maximized. We achieve this through the introduction
of an additional binary variablex2

i , which is set to satisfy the constraint

x2
i ≤

t1
i

ti,2
.
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The constraint ensures thatx2
i = 1 only if t1

i is maximized and takes the valueti,2. To avoid potential
numerical issues that may preventx2

i = 1 from happening, in practice, we may write the constraint as
x2

i ≤ (t1
i +δ )/ti,2, in whichδ is a small positive real number. We can then activatet2

i through the constraint

t2
i ≤ x2

i (ti,3− ti,2)+ ti,2,

which also renders the constraint (19) unnecessary. The reward for this second maximally concave segment,
w2

i , is then
w2

i ≤ ai,3t
1
i +bi,3− (ai,2ti,2+bi,2).

After all of f̃i are encoded as such, we combine the individual time and reward variables intoti and
wi as

ti = t1
i +(t2

i − ti,2)+ . . . , (20)

wi = w1
i +w2

i + . . . . (21)

We note that the additional constraints that are introducedis proportional to the complexity of̃fi . We
now prove that the overall MIP model constructed in this way allows arbitrary approximations of the
original problem.

Theorem 2 Given an RMT instance specified by a 5-tuple(V,B,D,R,F), MT > 0, and a positive real
numberε, a (1+ ε)-optimal solution of this RMT instance can be computed by solving a mixed integer
programming problem, obtained over a(1+ ε/2) piece-wise linear approximation of F.

PROOF. Assume that the RMT instance has an optimal solution that has a rewardJ∗R and spendst∗1, . . . , t
∗
n

time at then POI vertices. Let̃fi be a piece-wise linear(ε/2)-approximation offi for 1≤ i ≤ n. Assume
that the optimal solution to the RMT instance(V,B,D,R, F̃) has a rewardJ†

R and spendst†
1, . . . , t

†
n time at

the n POI vertices. Using the approximation with the format givenin (18) and satisfying (17), we have

(1− ε
2
) fi(ti)≤ f̃i(ti)≤ (1+

ε
2
) fi(ti) (22)

and
1

1+ ε
2

f̃i(ti)≤ fi(ti)≤
1

1− ε
2

f̃i(ti). (23)

Then (by (23)),

J†
R =

n

∑
i=1

fi(t
†
i )≤

1
1− ε

2

n

∑
i=1

f̃i(t
†
i ), (24)

in which the summation∑n
i=1 f̃i(t

†
i ) is the reward returned by the MIP algorithm. On the other hand,

by (22), we have

J∗R=
n

∑
i=1

f̃i(t
∗
i )≤ (1+

ε
2
)

n

∑
i=1

fi(t
∗
i ) (25)

which implies that
n

∑
i=1

f̃i(t
†
i )≤ (1+

ε
2
)

n

∑
i=1

fi(t
∗
i ). (26)

To see that (26) holds, assume instead it is false. Then, by by(22) again, we have

(1+
ε
2
)

n

∑
i=1

fi(t
∗
i )<

n

∑
i=1

f̃i(t
†
i )≤ (1+

ε
2
)

n

∑
i=1

fi(t
†
i ).
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We then haveJ∗R = ∑n
i=1 fi(t∗i )< ∑n

i=1 fi(t
†
i ), a contradiction. Putting (24) and (26) together yields

J†
R≤

1+ ε
2

1− ε
2

J∗R = (1+ ε +o(ε))J∗R.

�

For the BMT problem, since time is split between traveling and actually staying at POIs, a direct(1+ε)-
optimality assurance cannot be established. Nevertheless, for a BMT instance with a reward requirement
of MR> 0, assuming that the optimal solution requiresJ∗T time, we can guarantee that a reward of at least
(1− ε)MR is achieved using time no more thanJ∗T .

Theorem 3 Given a BMT instance specified by a 5-tuple(V,B,D,R,F), MR > 0, and a positive real
numberε, let its solution have a required total time of J∗T . Then, an MIP model can be constructed that
computes a solution with JR≥ (1− ε)MR and JT ≤ J∗T .

PROOF. For simplicity as well as diversity, we use a piece-wise linear approximation that is slightly
different. Instead of making the piece-wise linear function satisfy (17), we use only line segments that
are no lessfi . That is, we can construct̃fi such that

fi(ti)≤ f̃i(ti)≤
1

1− ε
fi(ti).

Suppose that the optimal solution to the original BMT instance spendt∗1, . . . , t
∗
n time at then POI

vertices. Since for all 1≤ i ≤ n, f̃i(ti) ≥ fi(ti), the approximate MIP model constructed usingF̃ instead
of F will not need as much time to reach a reward ofMR. That is, the approximate model produces a
solution with JT ≤ J∗T . Let the time spent at the POI vertices in the solution to the approximate MIP
model bet†

1, . . . , t
†
n, then the actual achieved reward is

JR =
n

∑
i=1

fi(t
†
i )≥

n

∑
i=1

(1− ε) f̃i(t
†
i ) = (1− ε)MR.

�

D. Extensions and Generalizations

Before concluding this section, we briefly mention a few extensions and generalizations of our MIP
model. We only cover the RMT problem here. The extension to BMT is straightforward.

Multiple tours: In a sense, the MIP model described so far creates a single-day itinerary since the plan
is a single tour that starts and ends at the same base. However, our MIP model can be easily generalized
to allow the planning of trips with multiple tours. There aretwo possible generalizations with different
applications. The first possibility is to force multiple tours to start at the same base, which represents the
problem of a tourist staying at the same hotel for multiple days. Given the number of daysm, we may
obtain a more general MIP model by simply createm copies of the edge-use variables,i.e., xi j ’s. For
each copy, a separate maximum time constraint (a daily time limit) is imposed. Thesem copies are then
aggregated together,i.e., through∑m

k=1xi jk = xi j . We also require that the base POI vertices have either 0
or m incoming edges being used. the The rest of the MIP model remains essentially the same.

The second possibility is applicable to multi-robot surveillance problems, in which all tours are disjoint.
That is, each mobile robot covers a disjoint set of POIs to cooperatively collect the maximum amount of
reward. Note that this implies|B| ≥m. To achieve this, we again create multiple copies of the edge-use
variables, enforce the time constraints for each copy, and aggregate the variables. Then, we let the base
POI vertices have at most a single incoming edge being used.
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Non-cyclic trip: The current MIP model forces a (cyclic) tour to be created. Whereas this may be
more applicable to tourists, sometimes it may be beneficial to have non-cyclic routes. For example, using
multiple hotels may allow a tourist to significantly increase the potential total reward due to reduced travel
time. Alternatively, in a surveillance or monitoring problem, a single use probe may be sent to follow
a one-time, non-cyclic route. To allow this, we may simply remove the constraint that forces both the
incoming and outgoing edge from the origin vertexo to a base vertex to be used. Non-cyclic trip can be
directly combined with the multiple-tour generalization.

Variations on learning curves:Although we focus on non-decreasingC1 continuous learning curves
with first order derivatives bounded away from zero, other types of learning curves can also be supported.
The only requirement on thefi ’s is that they can be approximated arbitrarily well using a piece-wise
linear, continuous function with a finite number of line segments. In particular, we note that the learning
curve being non-monotone does not present an issue for the MIP model. Given a generalfi that non-
monotone, we can turn it into a non-decreasing function overwhich our MIP model can be applied. To
do so, starting fromti = 0, we find the first local maximum, say atti = ti,1, at which point we augment
fi by extending it fromfi(ti,1) until it reaches the originalfi at a pointti = ti,2 where fi starts increasing
again. We then repeat the same iterative process starting from ti = ti,2. Such augmentation offi is never
problematic because our MIP model maximizes the reward using the least amount of time and will never
allocate more time at a POI vertex when the reward is less or remains the same.

IV. THE ALGORITHM AND ITS ANALYSIS

The overall algorithm construction is outlined in Algorithm 1. In Line 1 of the algorithm, it computes
all-pairs shortest paths and their respective lengths using a transitive closure based algorithm, for example,
the Floyd-Warshall algorithm Floyd (1962); Warshall (1962). Then, in Lines 2-4, the algorithm computes
a piece-wise linear(1+ ε/2)-approximation of eachfi ∈ F, if necessary. Finally, OnceD′ is computed
and all of F̃ is built, Lines 5-11 of the algorithm can be carried out according to the steps outlined in
Section III. In the rest of this section, we cover two important properties of our algorithm.

A. Finite Complexity of Piece-Wise Linear Approximation

In Section III, we mentioned that a reasonably nice learningcurve can be approximated to arbitrary
precision using a piece-wise linear function, which is not difficult to imagine. However, to encode the
approximated piece-wise linear function into the MIP model, the function must have finitely many line
segments. We now show that the approximation indeed has limited complexity.

Theorem 4 Let f ∈ [0,1] be a C1 continuous, non-decreasing function with f(0) = 0 and f′(0)≥ λ for
some fixedλ > 0. For any givenε > 0, there exists a piece-wise linear approximation of f containing
only finite number of line segments, denotedf̃ , such that

| f (t)− f̃ (t)|
f (t)

≤ ε. (27)

PROOF. At t = 0, by the continuity of f ′(t), for an arbitraryλε > 0, there existstδ such that for all
0≤ t ≤ tδ ,

f ′(0)−λε ≤ f ′(t)≤ f ′(0)+λε. (28)

Since f ′(0)≥ λ , we obtain from (28) that

(1− ε) f ′(0)≤ f ′(t)≤ (1+ ε) f ′(0). (29)

Then, sincef (0) = 0, (29) implies that

(1− ε) f ′(0)t ≤ f (t)≤ (1+ ε) f ′(0)t. (30)
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Algorithm 1: OPTIMALTOURISTINTINERARY

Input : V, the set of POIs,B, the set of bases,D, the set of (incomplete) inter-POI distances,R, the
set of maximum POI rewards,F, the set of learning curves,MT (or MR), the time (or
reward) constraint, andε, the required accuracy

Output: J∗R, the maximum attainable reward (orJ∗T , the minimum required time), andEtr , a set of
visited edges associated withJ∗R (or J∗T)

%Compute all pairs of shortest paths between all 1≤ i, j ≤ n

1 (P′,D′)← FLOYDWARSHALL(V,D)

%Compute for each fi ∈ F,1≤ i ≤ n, a piece-wise linear (1+ ε/2)-approximation

2 for fi ∈ F,1≤ i ≤ n do
3 f̃i ← COMPUTEEPSILONAPPROXIMATION( fi ,ε/2)
4 end

%Setting up the MIP model and optimize it using an MIP solver

5 (V ′,D′)← VERTEXSPLIT(V,B,D′) ; %Split v∈ B

6 BUILD MODEL(V ′,D,R, F̃) ; %Also builds JR and JT

7 if MT is giventhen
8 Set JT ≤MT and maximizeJR ; %Maximize reward

9 else
10 Set JR≥MR and minimizeJT ; %Minimize time

11 end

12 return J∗R (or J∗T), and the associated Etr

We let the first (left most) line segment of the approximationf̃ be simply f ′(0)t for 0≤ t ≤ tδ =: τ1 (see
Figure 3 for a graphical illustration). Then, the second inequality of (30) becomes

f (t)≤ (1+ ε) f̃ (t)⇒ 1
1+ ε

f (t)≤ f̃ (t)⇒ (1− ε) f (x)≤ f̃ (t),

which implies (27) for 0≤ t ≤ τ1. Same holds for the first inequality of (30).

~

f

t1

f  (0)¶

(1 + ")f  (0)t¶

1

t2 t5t4t3

t1

(1+ ")f  (  )t2

(1+ ")f  (  )t3

f

f  (0)t¶

(1 { ")f  (0)t¶

Fig. 3. A graphical illustration of the constructive proof for Theorem 4.

For the second line segment, we simply extend from(τ1, f ′(0)τ1) either horizontally (whenf ′(0)τ1 >
f (τ1) or vertically (when f ′(0)τ1 < f (τ1) until the line segment meetsf . Let this point on f (t) be
(τ2, f (τ2)).

The rest off̃ can then be iteratively defined starting from the point(τ2, f (τ2)). For the third line segment,
we let its end point be(τ3, f (τ3)) such thatf (τ3) = min{1,(1+ ε) f (τ2)}. Becausef is non-decreasing,
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over τ2≤ t ≤ τ3,
f (τ2)≤ f (t)≤ f (τ3)≤ (1+ ε) f (τ2),

the same holds true for̃f over τ2≤ t ≤ τ3. Therefore, overτ2≤ t ≤ τ3,

| f̃ (t)− f (t)| ≤ ε f (τ2)⇒
| f̃ (t)− f (t)|

f
(t)≤ ε

f (τ2)

f (t)
≤ ε.

We can then iteratively define the rest off̃ similarly. Because each time we extendf̃ by (1+ ε) and we
start from f (τ2)> 0, in finite number of iterations̃f reaches 1. �

Remark. We emphasize that the constructive proof of Theorem 4 may yield approximations that are
far from the best piece-wise linear approximations. On the other hand, practical, non-linear learning
functions often do not require complex piece-wise linear functions to approximate. As an example, when
a learning curve from the exponential family is used,e.g., fi(ti) = 1−e−λiti , a 1.05-approximation offi
can be achieved using only four line segments. Since the derivative of fi can be easily computed in this
case, numerically computing the approximation is fairly easy. Moreover, only a one-time computation
is required; simple scaling can then extend the computationeasily to different learning rates (λi ’s) and
rewards (r i ’s). The initial and the approximated curves for the case ofλi = 1 are illustrated in Figure 4.
It is straightforward to verify that| f̃i− fi |/ fi < 0.05.

 0

 0.2

 0.6

 1

 0  1  2  3

(0.10, 0.10)

(0.63, 0.49)

(2.01, 0.91)

k = 1.00

k = 0.74

k = 0.30

k = 0.01
fi

fi
~

Fig. 4. A graphical illustration of the constructive proof for Theorem 4. The differentk’s indicate the slopes of the corresponding line
segments.

B. The Anytime Property

An very useful property of Algorithm 1 that we obtain for freeis that it yields ananytimealgorithm. The
anytime property is a direct consequence of solving the MIP models for RMT and BMT using an MIP
solver, which generally use some variations of the branch-and-bound algorithm Land and Doig (1960).
Roughly speaking, a branch-and-bound algorithm works witha (high-dimensional) polytope that contains
all the feasible solutions to an optimization problem. The algorithm then iteratively partitions the polytope
into smaller ones and truncates more and more of the polytopethat are known not to contain the optimal
solution. After some initial steps, a tree structure is built and the leaves of the tree contains portions of
the original feasibility polytope that are still active. For each of these polytopes, suppose we are working
on a maximization problem, it is relatively easy to locate a feasible solution with the correct integrality
condition (i.e., a feasible solution in which binary/integer variables getassigned binary/integer values).
The maximum of all these feasible solution is then a lower bound of the optimal value. On the other
hand, it is also possible to compute for each leaf the maximumachievable objective without respecting
the integrality constraints, which yields a lower bound on the optimal value. The difference between the
two bounds is often referred to as thegap. When the gap is zero, the optimal solution is found. Over the
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running course of a branch-and-bound algorithm, if the gap gradually decreases, an anytime algorithm is
obtained.

For our particular problems, the anytime property is quite useful since computing the true optimal
solution to the (potentially approximate) MIP model for RMTand BMT can be very time consuming.
We will see in Section V that for medium sized problems, a 1.2-optimal solution, which is fairly good
for practical purposes, can often be computed quickly.

V. COMPUTATIONAL EXPERIMENTS

In this section, we evaluate our proposed algorithm in several computational experiments. In these
experiments, we look at the solution structure, computational performance, and an application to planning
a day tour of Istanbul. The simulation is implemented in the Java programming language. For the MIP
solver, Gurobi Gurobi Optimization (2014) is used. Our computational experiments were carried out on
an Intel Core-i7 3930K PC with 64GB of memory.

A. Anytime Solution Structure

Our first set of experiments was performed over a randomly generated example, created in the following
way. The example contains 30 uniformly randomly distributed POIs in a 10×15 rectangle (see Figure 5).
Each POIvi is associated with aλi ∈ [1,2) and anr i ∈ [1,2) that were both uniformly randomly selected.
The λi ’s and r i ’s are selected not to vary by much because we expect that in practice, this will present
a more difficult choice for a tourist or a mobile robot. Forfi , both linear (e.g., with the form (1)) and
exponential (e.g., with the form (2)) types were used, with the learning rates specified by theλi ’s. We
set ε = 0.05 when we approximate the non-linearfi ’s with piece-wise linear functions (that is, we use
the linear approximation illustrated in Figure 4 with proper scaling). Note thatε = 0.05 yields a 1.1-
optimal MIP model for exponentialfi ’s. These steps determine the setsV, R, F, F̃ . We let B to be the
set {v1,v9,v17,v25}. For decidingE and D, we let there be an edge between two POI verticesvi ,v j if
the Euclidean distance between them is no more than 10. Finally, the constraints were set as follows. For
RMT, MT = 50 for both linear and exponentialfi ’s. For BMT, MR= 30.55 for linear fi ’s andMR= 25.78
for exponentialfi ’s. TheseMR’s were selected because they are the optimalJR value for the respective
RMT problems withMT = 50.

For each problem instance, we extract the solution after thegap becomes no more than 100%, 50%,
20%, 10%, 5%, 1%, and 0%. These solutions for the RMT instancewith linear learning curves are
illustrated in Figure 5. Because the large number of POIs involved, we do not list the computedti ’s but
point out that, in the linear case, when the set of POIs for staying is selected, it is always beneficial to
exhaust the reward at POIs with the largest learning rate since time is best used this way. The computation
of these five solutions took 0.96,1.05,2.16,3.70, and 10.2 seconds, respectively. Confirming that the last
solution (Figure 5(e)) is indeed the optimal solution took 76 seconds.

For the BMT instance withMR = 30.55, we similarly plot the solutions at different accuraciesin
Figure 6. Note that the optimal solution (Figure 6(e)) yields the same tour as the optimal solution to
the corresponding RMT problem (Figure 5(e)). We note thatJT is actually smaller than 50 in this case,
suggestingMT = 50 is not necessary to reach a reward ofJR = 30.55. The computation of these five
solutions took 0.48,0.60,3.13,6.19, and 28.60 seconds, respectively. Confirming that the last solutionis
indeed the optimal solution took 50 seconds.

For exponential learning curves, similar results were obtained. The optimal tours for RMT and BMT
are illustrated in Figure 7, which, as expected, have the same tour. Computing the optimal solution to
these more complex 1.1-optimal MIP models took 27.6 and 30.1 seconds, respectively.

B. Computational Performance

Since the models for RMT and BMT attempt to solve an NP-hard problem precisely (note that
the problem after linearization remains NP-hard), no polynomial time algorithm exists unless P = NP.
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J    = 17.29R J    = 23.52R

(a) (b)
J    = 27.30R J    = 30.26R

(c) (d)
J    = 30.55R

(e)

Fig. 5. Figures (a) - (e): POIs visited by the best solution tothe RMT problem after the gap dips just below 100%, 50%, 20%, 10%, and
5%, respectively. The solution obtained after the gap dips below 5% is in fact the optimal solution for this particular example. The black
and the green dots are the POIs and the green dots are the base vertices.

J    = 91.92T J    = 85.17T

(a) (b)
J    = 55.92T J    = 49.84T

(c) (d)
J    = 49.56T

(e)

Fig. 6. Figures (a) - (e): POIs visited by the best solution tothe BMT problem after the gap dips just below 100%, 50%, 20%, 10%, and
1%, respectively.
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J    = 25.78R J    = 50.00T

(a) (b)

Fig. 7. (a) Optimal solution to RMT with exponential learning curves andMT = 50.00. (b) Optimal solution to BMT with exponential
learning curves withMR = 25.78.

Therefore, our evaluation of the algorithm’s computational performance is limited to an empirical one.
For this, two large sets of computations are performed. In the first set of computations, rectangular grids
of various sizes were constructed. The POIs reside on the lattice points on these grid, with the reward and
learning rate selected uniformly randomly from[1,2). Verticesn/3 and 2n/3 are selected as base vertices.
For each choice of grid sizes, 10 example problems are created. For the RMT instances, a time budget of
1.5 times the grid perimeter is used. For the BMT instances, areward requirement of 0.6 times the grid
perimeter is used. These constraints are chosen to allow thetour to go through 10% to 25% of the total
POIs. For both RMT and BMT instances, we perform computations with both linear and exponential
learning curves (with 5% linearization). The average time,in seconds, required to compute a solution up
to given accuracy is listed in Table I. The number in the parenthesis denote the number of times, out of
a total of ten, that the computation completed within a limitof 900 seconds.

Our second set of computations generates the POI locations uniformly randomly according to the same
rules used in Section V-A, in a|V|×1.2|V| rectangle. Then, for RMT instances, a time budget of 4

√
|V| is

used. For BMT instances, a reward requirement of 2
√
|V| is used. The rest of the setup is done similarly

as in the rectangular grid case. The computational performance is listed in Table II.
From the computational experiments, we observe that in the grid case, for up to 200 POIs, the proposed

method can compute a 1.2-optimal (corresponding to a 20% gap) MIP solution for almost all instances
(199 out of 200 instances), under very reasonable computation time. Moreover, for up to 80 POIs, the
method can compute a 1.05- optimal MIP solution for almost all instances (158 out of160 instances).
When the POIs are selected randomly, the computation seems to be more challenging. Computing 1.2-
optimal MIP solution starts to become challenging when there are more than 40 POIs. The difficulty
seems to come from the fact that randomly selected POIs can potentially be packed more densely in
certain local regions. Nevertheless, we were still able to compute 1.5-optimal MIP solutions in most of
the cases when there are 100 POIs. Overall, the two large setsof computations suggest that our algorithm
can be used to do itinerary planning for practical-sized instances in large cities.

C. Planning a One-Day Istanbul Tour

As a last computational example, we illustrate how one may use real data to compute a day tour of Is-
tanbul over 20 POIs.1 These 20 POIs are selected by taking the top-ranked attractions from TripAdvisor’s2

city guide for Istanbul. We select the top 20 POIs that are notgeneral areas and have at least 300 user
reviews. These POIs are (the ordering is by the POI’s rank): 1. Suleymaniye Mosque, 2. Rahmi M. Koc
Museum, 3. Rustem Pasha Mosque, 4. Hagia Sophia Museum, 5. Kariye Museum, 6. Basilica Cistern,
7. Bosphorus Strait, 8. Blue Mosque, 9. Rumeli Fortress, 10.Eyup Sultan Mosque, 11. Kucuk Ayasofya
Camii, 12. Topkapi Palace, 13. Miniaturk, 14. Istanbul Archaeological Museums, 15. Gulhane Park, 16.
Istanbul Modern Museum, 17. New Mosque, 18. Dolmabahce Palace, 19. The Bosphorus Bridge, and 20.
Galata Tower.

1We intentionally limited the size and complexity of this example to provide all important details.
2http://www.tripadvisor.com
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TABLE I
COMPUTATION TIME FOR SOLVINGRMT AND BMT OVER POIS LOCATED AT THE LATTICE POINTS ON VARIOUS SIZED INTEGER GRIDS.

grid size problem learning curve
MIP gap

100% 50% 20% 10% 5% 1% 0%

4×5

RMT linear 0.085s
(10)

0.135s
(10)

0.203s
(10)

0.261s
(10)

0.675s
(10)

2.285s
(10)

2.357s
(10)

BMT linear 0.070s
(10)

0.108s
(10)

0.271s
(10)

0.571s
(10)

0.974s
(10)

1.101s
(10)

1.102s
(10)

RMT exponential 0.149s
(10)

0.171s
(10)

0.240s
(10)

0.388s
(10)

0.471s
(10)

1.293s
(10)

1.343s
(10)

BMT exponential 0.061s
(10)

0.090s
(10)

0.174s
(10)

0.364s
(10)

0.505s
(10)

0.605s
(10)

0.608s
(10)

5×6

RMT linear 0.309s
(10)

0.342s
(10)

0.439s
(10)

0.531s
(10)

1.561s
(10)

17.00s
(10)

18.66s
(10)

BMT linear 0.191s
(10)

0.250s
(10)

0.868s
(10)

2.038s
(10)

5.580s
(10)

8.038s
(10)

8.080s
(10)

RMT exponential 0.361s
(10)

0.395s
(10)

0.522s
(10)

0.814s
(10)

1.225s
(10)

11.31s
(10)

12.41s
(10)

BMT exponential 0.147s
(10)

0.194s
(10)

0.586s
(10)

1.803s
(10)

5.710s
(10)

9.383s
(10)

9.483s
(10)

6×7

RMT linear 0.683s
(10)

0.687s
(10)

0.816s
(10)

1.009s
(10)

5.790s
(10)

161.3s (7) 209.8s (7)

BMT linear 0.501s
(10)

0.514s
(10)

6.308s
(10)

31.76s
(10)

79.22s
(10)

127.9s
(10)

129.0s
(10)

RMT exponential 0.870s
(10)

0.914s
(10)

1.784s
(10)

5.268s
(10)

17.91s
(10)

182.6s (8) 234.6s (8)

BMT exponential 0.701s
(10)

0.715s
(10)

3.718s
(10)

11.37s
(10)

78.40s
(10)

79.43s (8) 80.87s (8)

8×10

RMT linear 2.272s
(10)

2.443s
(10)

2.953s
(10)

21.58s
(10)

87.13s
(10)

454.6s (3) 809.0s (1)

BMT linear 2.188s
(10)

2.382s
(10)

3.111s
(10)

20.75s
(10)

134.1s (9) 284.2s (6) 295.2s (6)

RMT exponential 2.134s
(10)

2.345s
(10)

5.664s
(10)

22.75s
(10)

67.28s
(10)

342.5s (4) 498.5s (3)

BMT exponential 2.530s
(10)

2.849s
(10)

20.64s
(10)

79.32s
(10)

274.6s (9) 492.9s (6) 524.7s (6)

10×20

RMT linear 17.31s
(10)

17.31s
(10)

18.96s
(10)

98.66s
(10)

433.9s (7) N/A N/A

BMT linear 43.28s
(10)

48.84s
(10)

93.40s
(10)

241.9s (9) 346.8s (4) N/A N/A

RMT exponential 17.33s
(10)

26.87s
(10)

48.06s (9) 59.64s (5) 317.3s (1) N/A N/A

BMT exponential 37.17s
(10)

44.29s
(10)

241.3s
(10)

424.2s (6) 435.4s (1) N/A N/A

After the POIs are selected, we compute the maximum reward ofthese POIs using the formula3
√

nreview+
10− rank/5, in whichnreview is the total number of reviews received for the POI on TripAdvisor andrank
is the POI’s rank on TripAdvisor. The attractions are mostlymuseums and architectural sites, to which
we assign the learning rates of 1−0.01r i , i.e., we expect a tourist to spend more time at more renowned
POIs . Using Google Map3, we extracted the pair-wise distances between any two of these POIs and build
the setsE and D. The base vertex set is selected to contain the 1st, 6th, 11th, and 16th ranked POIs.
With these parameters, we solve the RMT problem with exponential learning curves and a time budget
of 9 hours. From the solution (an exact solution to the 1.1-optimal MIP model, computed in about five
seconds) we extracted the itinerary listed in Table III. Theitinerary visits 14 POIs and yields a reward of
115 out of a total possible reward of 380. A visual inspectionof the itinerary suggests that it is a fairly
reasonable solution to our proposed problem.

During a recent trip to Istanbul for the WAFR 2014 conference, due to a tight schedule, some of us

3http://maps.google.com.
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TABLE II
COMPUTATION TIME FOR SOLVINGRMT AND BMT OVER POIS THAT ARE UNIFORMLY RANDOMLY SELECTED.

# of samples problem learning curve
MIP gap

100% 50% 20% 10% 5% 1% 0%

20

RMT linear 0.118s
(10)

0.236s
(10)

0.730s
(10)

2.645s
(10)

4.832s
(10)

5.887s
(10)

5.92 s
(10)

BMT linear 0.049s
(10)

0.112s
(10)

1.183s
(10)

1.727s
(10)

1.908s
(10)

1.962s
(10)

1.966s
(10)

RMT exponential 0.274s
(10)

0.379s
(10)

3.780s
(10)

6.499s
(10)

13.38s
(10)

17.49s
(10)

17.57s
(10)

BMT exponential 0.071s
(10)

0.166s
(10)

2.531s
(10)

5.731s
(10)

6.946s
(10)

7.400s
(10)

7.424s
(10)

30

RMT linear 0.435s
(10)

1.122s
(10)

15.41s
(10)

74.97s
(10)

228.1s (9) 81.90s (7) 82.95s (7)

BMT linear 0.289s
(10)

0.821s
(10)

18.23s
(10)

54.56s
(10)

76.39s
(10)

81.34s
(10)

81.58s
(10)

RMT exponential 1.221s
(10)

2.664s
(10)

17.44s
(10)

81.39s
(10)

168.4s (9) 159.2s (8) 161.8s (8)

BMT exponential 0.339s
(10)

1.243s
(10)

8.676s
(10)

24.96s
(10)

41.74s
(10)

47.93s
(10)

48.15s
(10)

42

RMT linear 6.058s
(10)

13.73s
(10)

49.33s (8) 164.5s (6) 262.9s (3) 170.2s (1) 187.8s (1)

BMT linear 0.612s
(10)

1.513s
(10)

142.2s (9) 107.0s (7) 141.2s (7) 148.9s (7) 149.1s (7)

RMT exponential 14.13s
(10)

24.80s
(10)

93.65s
(10)

132.2s (6) 288.2s (4) 375.9s (3) 381.1s (3)

BMT exponential 1.711s
(10)

7.759s
(10)

179.4s (7) 195.4s (4) 279.6s (3) 362.7s (3) 365.0s (3)

100

RMT linear 54.26s
(10)

57.26s
(10)

439.3s (8) N/A N/A N/A N/A

BMT linear 19.98s
(10)

105.5s
(10)

N/A N/A N/A N/A N/A

RMT exponential 59.45s
(10)

125.3s (9) 309.0s (5) 790.8s (1) N/A N/A N/A

BMT exponential 12.03s
(10)

251.1s
(10)

577.3s (1) N/A N/A N/A N/A

200

RMT linear 40.26s
(10)

255.0s (8) N/A N/A N/A N/A N/A

BMT linear 170.7s
(10)

185.1s (9) N/A N/A N/A N/A N/A

RMT exponential 34.50s
(10)

229.5s (8) N/A N/A N/A N/A N/A

BMT exponential 223.4s
(10)

494.3s (3) N/A N/A N/A N/A N/A

only had a few hours to visit local attractions. In the end, wevisited the Hagia Sophia Museum, the Blue
Mosque, and the Basilica Cistern. It turns out that, when we run the RMT algorithm with three hours of
budget, this is the exact itinerary returned by the algorithm (see Table IV).

VI. CONCLUSION

In this paper, we proposed the Optimal Tourist Problem (OTP)that tie together the problem of
maximizing information collection efforts at point-of-interests (POIs) and minimizing the required time
spent on traveling between the set of discrete, distributedPOIs. A particular novelty is that our formulation
encompasses a general class of time-based reward functions. For solving the two variants of OTP, RMT
and BMT, we construct an exact (when reward function is linear) or an arbitrarily optimal (when reward
function is non-linear) MIP model that gives rise to an anytime algorithm for solving such problems.
Computational results suggest that our algorithm is applicable to practical-sized itinerary planning or
informative path planning problems and generates fairly sensible plans.
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TABLE III
A 9-HOUR COMPUTED ITINERARY IN ISTANBUL.

1 Start from the Suleymaniye Mosque, stay for 0.84 hour
2 Take a taxi to Topkapi Palace (8 min), stay for 0.88 hour
3 Take a taxi to Kucuk Ayasofya Camii (6 min), stay for 0.14 hour
4 Walk to Blue Mosque (6 min), stay for 0.90 hour
5 Walk to Basilica Cistern (4 min), stay for 0.90 hour
6 Walk to Hagia Sophia Museum (4 min), stay for 0.93 hour
7 Walk to Gulhane Park (4 min), stay for 0.11 hour
8 Walk to Archaeological Museums (2 min), stay for 0.78 hour
9 Take a taxi to Rustem Pasha Mosque (6 min), stay for 0.78 hour
10 Take a taxi to Rahmi M. Koc Museum (9 min), stay for 0.76 hour
11 Take a taxi to Kariye Museum (8 min), stay for 0.82 hour
12 Take a taxi and return to Suleymaniye Mosque (12 min)

TABLE IV
A 3-HOUR COMPUTED ITINERARY IN ISTANBUL.

1 Start at Basilica Cistern, stay for 0.90 hour
2 Walk to Hagia Sophia Museum (4 min), stay for 0.93 hour
3 Walk to Blue Mosque (8 min), stay for 0.89 hour
4 Walk back to Basilica Cistern (4 min)
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