
Finding Near-optimal Solutions in Multi-robot Path Planning

Michal Čáp1, Peter Novák2, Alexander Kleiner3

Abstract— We deal with the problem of planning collision-
free trajectories for robots operating in a shared space. Given
the start and destination position for each of the robots, the task
is to find trajectories for all robots that reach their destinations
with minimum total cost such that the robots will not collide
when following the found trajectories. Our approach starts from
individually optimal trajectory for each robot, which are then
penalized for being in collision with other robots. The penalty
is gradually increased and the individual trajectories are
iteratively replanned to account for the increased penalty until
a collision-free solution is found. Using extensive experimental
evaluation, we find that such a penalty method constructs
trajectories with near-optimal cost on the instances where the
optimum is known and otherwise with 4-10 % lower cost than
the trajectories generated by prioritized planning and up to
40 % cheaper than trajectories generated by local collision
avoidance techniques, such as ORCA.

I. INTRODUCTION

Thanks to recent advances in robotics, teams of au-
tonomous robotic systems start to pervade not only industrial
settings, but also our private spaces. Apart from numerous
deployments in military settings [12], autonomously navi-
gating robots are more and more found in warehouses and
manufacturing plants [18], many private households make
use of autonomous cleaning robots, and transport systems
consisting of large numbers of unmanned areal vehicles
(UAVs) are considered for delivering medium sized packages
to the consumers.

One of the important problems in multi-robotics is si-
multaneous operation of multiple autonomous vehicles in
shared spaces and their mutual collision avoidance. That is,
given a number of vehicles, together with their starting and
destination positions, we are interested in finding a set of
individual trajectories so that the do not collide with each
other, while at the same time the overall costs (e.g., sum of
trajectory lengths) is minimized.

The problem of finding such trajectories has been studied
under different names since at least 1980s. It is known that
even the simple variant of the problem involving rectangular-
shaped vehicles in a bounded 2-d space is PSPACE-hard [7].
While the problem is relatively straightforward to formulate
as a planning problem in the Cartesian product of the state
spaces of the individual robots, the solutions are difficult
to find using standard search techniques because the joint
state-space grows exponentially with the number of robots.
The complexity can be partly mitigated using independence
detection techniques such as ID [13] and M* [17] which

1 Agent Technology Center, Dept. of Computer Science, Faculty of
Electrical Engineering, CTU in Prague

2 Algorithmics, EEMCS, Delft University of Technology
3 iRobot Inc., Pasadena

detect independent conflict clusters and solve the resulting
lower-dimensional problems separately. However, each such
sub-conflict can be still prohibitively large to solve.

Prioritized planning [5], [3] is a heuristic approach based
on the idea of sequential planning for the individual robots
in the order of their priorities, where each robot considers
the trajectories of higher-priority robots as moving obstacles
and plans its trajectory to avoid them. While fast, prioritized
planning is incomplete and often fails to find a solution even
if one exists. Moreover, due to its greedy nature, the resulting
trajectories are typically noticeably suboptimal.

Reactive approaches based on the velocity obstacle
paradigm such as DRCA [9] or ORCA [15] are also popular
in practice thanks to their computational efficiency. However,
they resolve conflicts only locally and thus they cannot
guarantee that the resulting motion will be deadlock-free.

Efficient guaranteed algorithms such as Push&Rotate [4]
and Bibox [14] exist for a specific formulation of the
problem, where the robots move on a graph, and each robot
occupies exactly one vertex. A collision occurs only if two
robots occupy the same vertex or travel on the same edge.
Hence, these techniques are not suitable for fine-grained
planning of robot’s motion, where the collision is defined
in terms of the separation distance between the robots.

The techniques of mathematical optimization have been
also studied in the context trajectory generation. In particular,
the penalty-based approaches [10] have been tried for single-
robot trajectory generation [11] and for the rendezvous multi-
robot planning problem [2].

We explore the penalty-based approach in the context of
multi-robot path finding for collision avoidance and introduce
the k-step penalty method that can be seen as a generalization
of prioritized planning approach. The approach solves the
multi-robot path planning problem by performing a series of
single-robot path planning queries in a dynamic environment
in which trajectories that get close to trajectories of other
robots are penalized. That is, starting from trajectories that
disregard collisions with other robots, the conflicts between
robots’ trajectories are gradually being penalized with in-
creasing severity so as to finally, in a limit, the trajectories
of individual robots are forced out of conflict regions as the
penalties tend to infinity. Using extensive experiments, we
demonstrate that this heuristic approach tends to generate
near-optimal trajectories that are of significantly lower cost
than the trajectories generated by currently used techniques
for collision avoidance prioritized planning and ORCA [15].

After a brief problem statement in the following section,
Section III introduces the kPM algorithm. Subsequently,
Section IV provides an extensive experimental evaluation

ar
X

iv
:1

41
0.

52
00

v1
 [

cs
.R

O
]

 2
0

O
ct

 2
01

4

and analysis of the algorithm’s performance and compares
it with the relevant state-of-the-art algorithms in terms of
success rate, solution quality and runtime. Finally, Section V
concludes the paper with a discussion of its contributions.

II. MULTI-ROBOT PATH PLANNING

Consider a team of circular mobile robots indexed
1, . . . , n, each with a radius ri > 0 operating in a shared
2-d workspace with static obstacles. Each robot has a task
to move from its start position si to some goal position gi.
A trajectory of robot πi is a mapping πi(t) : [0,∞) → R2

representing the position of the center of the robot at each
future time point. A trajectory of each robot is required
to start at the robot’s starting position si and finish at its
goal position gi. Further, each such trajectory πi bears a
cost, denoted c(πi). For simplicity, we will identify the cost
of a trajectory with the time the robot spends outside its
destination position.

We say that two trajectories πi, πj are conflict-free iff the
bodies of the two robots never intersect during the execution
of their trajectories. More formally, for robots i and j we
require that for each time-point t ∈ [0,∞), the distance of
the corresponding robots’ positions is greater than the sum
of their radii, formally:

∀t ∈ [0,∞) : |πi(t), πj(t)| > ri + rj ,

where |·, ·| is the Euclidean distance between two points.
Given the assumptions above, the multi-robot path plan-

ning problem is to find a set of trajectories π∗1 , . . . , π
∗
n

corresponding to the individual robots 1, . . . , n, such that
i) each pair of trajectories πi, πj with i 6= j is conflict-free,
and ii) the sum of trajectory costs

∑n
i=1 c(πi) is minimal.

To solve the problem, we could consider all robots in the
system as one composite robot with many degrees of freedom
and use some path planning algorithm to find a joint path for
all the robots. However, the size of such a joint configuration
space grows exponentially with the number of robots and
thus this approach quickly becomes impractical if one wants
to plan for more than a few robots.

A pragmatic approach that is often useful even for large
multi-robot teams is prioritized planning. The idea has been
first articulated by Erdman and Lozano-Pérez in [5]. In prior-
itized planning each robot is assigned a unique priority. The
trajectories for individual robots are then planned sequen-
tially from the highest priority robot to the lowest priority
one. For each robot a trajectory is planned so that it avoids
both the static obstacles in the environment as well as the
higher-priority robots moving along the trajectories planned
in the previous iterations. Works such as [16], [1] investigate
heuristics for choosing a good priority sequence for the
robots. Prioritized planning is more efficient than planning in
the joint configuration space, but there are scenarios in which
prioritized planning fails to provide a solution even if all
possible priority sequences are tried (cf. Figure 1). Further,
the solutions generated by prioritized planning are in most
cases noticeably suboptimal, see Figure 2 for an example of
such scenario.

Fig. 1: Corridor swap scenario: The picture shows two robots
desiring to move from s1 to g1 (s2 to g2) in a corridor that is
only slightly wider than a body of a single robot. Both robots
move at identical maximum speeds. Irrespective of which
robot starts planning first, its trajectory will be in conflict
with all satisfying trajectories of the second robot.

(a) Optimal solution

(b) Solution found by prioritized planing

Fig. 2: Heads-on scenario: The picture shows two robots
desiring to move from s1 to g1 (s2 to g2 resp.). The top
picture illustrates how an optimal solution looks like. The
bottom picture shows a solution generated by prioritized
planning assuming that the robot 1 has the higher priority:
robot 1 will follow a straight line path to its destination,
without considering robot 2, which will have to bear the full
cost of avoiding the collision.

III. PENALTY-BASED METHOD

We propose an approach which can be seen as a general-
ization of prioritized planning that attempts to mitiagate the
two mentioned drawbacks of the prioritized approach, but in
the same time retain its tractability. We combine the idea of
decoupled planning as used in prioritized planning with a
process of iterative increasing of penalty, which is a popular
approach for solving constrained optimization problems [10].

In the proposed approach, the requirement on minimal
separation between two trajectories is modeled by a penalty
function that assigns a penalty to each pair of trajectories
based on how much do they violate the separation require-
ment. The solution to the multi-robot pathfinding problem
is constructed by gradually increasing the penalty assigned
when a robot passes through a collision region and by letting
each robot replan its trajectory to account for the increased
penalty.

Initially, the algorithm ignores interactions between the
robots and finds an optimal trajectory for each robot. Then,
the algorithms starts gradually increasing penalty. After each
increase in weight, one of the robots is selected and a new

- 1.5 - 1.0 - 0.5 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

(a) Three bump functions with pa-
rameters pmax = 1, dsepij = 1 and
s = 1/3 (blue), s = 1 (purple) and
s = 3 (yellow)

0 5 10 15 20 25 30

0

2

4

6

8

10

(b) Example 30 elements long weight
sequence w1, . . . , w30

Fig. 3: Penalty function and weight sequence function

optimal trajectory that reflects the increased penalty is found
for the robot. The process is repeated until the penalties
are large enough to start dominating the cost of trajectories,
effectively forcing them out of the collision regions.

The minimal separation constraints between a pair of
robots i, j is approximated by a penalty function assigning
penalty to each part of the trajectory of robot i that gets
closer to the trajectory of robot j than the required separation
distance dsepij = ri + rj . The penalty function has the form

Ωij(πi, πj) =

ˆ ∞
0

ωij(|πi(t)− πj(t)|) dt ,

where ωij(d) : R≥0 → R≥0 is a continuous function assign-
ing a time-point penalty for interaction of the trajectories πi
and πj at a time-point t. In the case the trajectories do not
violate the separation distance dsep at the timepoint t, the
function assigns zero penalty. Generally, the function needs
to satisfy the following conditions:

∀d

{
ωij(d) = 0 if d ≥ dsepij
ωij(d) > 0 if d < dsepij

.

An example of a smooth function that satisfies these condi-
tions is a bump function

ωij(d) =

{
pmax

e−s · e
− s

1−(d/d
sep
ij

)2
)

for d < dsepij
0 otherwise

,

where pmax is a constant that can be used to adjust the
penalty at d = 0 and s is a constant that can be used to
adjust the “steepness” of the function. The intuition is that
the “more” the vehicles violate the separation constraint in
a given time-point, that is, the closer they get, the higher
penalty should be assigned to the violation in that time-point.
Figure 3a depicts example plots of three bump functions
having different values of the parameter s.

Algorithm 1 exposes the k-step Penalty Method (kPM)
algorithm that replans the trajectory of each robot exactly
k-times. The algorithm starts by finding a cost-optimal
trajectory for each robot using w = 0, i.e., while ignoring
interactions with other robots. Then, it gradually increases
the weight w and thus the penalties start to be taken into
account. After each increase of the weight coefficient, one
of the robots is selected and its trajectory is replanned to
account for the increased penalty. After the iterative phase

Algorithm 1: k-step Penalty Method

1 Algorithm PM(k)
2 for i← 1 . . . n do
3 πi ←Replan(i, 0);

4 for i← 1 . . . n(k − 2) do
5 r ← imod n(k − 2);
6 wi ← tan(i

n(k−2)+1 ·
π
2);

7 πi ←Replan(i, wi);

8 for i← 1 . . . n do
9 πi ←Replan(i,∞);

10 if ∀ij Ωij(πi, πj) = 0 then
11 return 〈π1, . . . , πn〉;
12 else
13 report failure;

14 Function Replan(r, w)
15 return trajectory π for robot r that minimizes

c(π) + w
∑

j 6=r
Ωrj(π, πj) ;

finishes, the trajectories of all robots are replanned for the
last time with the weight coefficient set to infinity. If the final
set of trajectories is conflict-free, the algorithm returns the
trajectories as a valid solution, otherwise it reports failure.

Since each robot replans once in the beginning (line 3) and
once at the end (line 9) of the algorithm, the robot is left
with k−2 opportunities for replanning in the iterative phase
of the algorithm. Hence, it performs n(k − 2) iterations in
the iterative stage with all the robots taking turns in a round-
robin fashion (line 7).

During the iterative phase, the weights are increased in
a sequence w1, . . . , wl, with l = n(k − 2). To model the
gradual hardening of the separation constraints ultimately
to the hard separation constraint, the sequence needs to
converge to infinity. One way of generating such a sequence
is using functions of the following form wi = tan(i

l+1 ·
π
2)

for i = 1, . . . , l. Figure 3b shows an example plot of such a
sequence.

In each iteration of the algorithm, a selected robot can
generally respond in two ways to a weight increase. On
the one hand side, it can accept the increase and simply
leave its trajectory unchanged. On the other hand side, in can
find a higher-cost trajectory that avoids the penalized region.
The optimal trajectory for the robot, however, often lies in
between these two extremes and avoids the penalty region
only partially such that the increased cost of the trajectory
with decreased received penalty are optimally traded off.
This corresponds to finding a optimal trajectory subject to
a spatio-temporal cost function. To find such a trajectory we
discretize the free space in form of a grid-like graph and add
a discretized time dimension. An optimal discrete solution is
then obtained by running the A* algorithm on such a space-
time graph.

(a) The graph used for trajectory plan-
ning (in gray).

(b) Initial trajectories

(c) Trajectories at iteration 3 (d) Trajectories at iteration 9. Final.

Fig. 4: Corridor swap scenario: two robot have to
swap their positions in the depicted narrow corridor.
The frames show intermediate solutions generated by
PM(k=10). A video showing the resolution process and
simulated execution of the solution can be watched at
http://youtu.be/HartJqN5HXM.

Illustration of benefits

The penalty method has two benefits over prioritized
planning. First, the penalty method can solve instances that
are out of reach of prioritized planning. For example, the
corridor swap scenario (introduced in Figure 1) can be
resolved by the penalty method in k = 10 iterations. Figure 4
illustrates how penalty method resolves the corridor swap
problem. Second, for many problem instances, the penalty
method can find cheaper solutions than prioritized planning.
For instance, if the penalty method is applied to the heads-on
scenario (introduced in Figure 2), the algorithm constructs a
solution in which both robots slightly divert theirs trajectories
and divide the cost of collision avoidance. This solution is
cheaper then the solution returned by prioritized planning in
which one of the robots takes all the cost. Figure 5 illustrates
how penalty method resolves the heads-on problem.

IV. EXPERIMENTAL EVALUATION

In this section we compare the performance of our k-step
penalty method (abbreviated as PM or PM(k=. . .)) against
prioritized planning (PP) and a state-of-the-art optimal al-
gorithm called operator decomposition (OD) on a range
of dense multi-robot path planning instances. Specifically,
we focus on small and dense collision situations in which
all robots are involved in a single conflict cluster. These
situations usually represent bottlenecks in solving multi-
robot pathfinding problems since sparser scenarios can be
in most cases decomposed into a number of independent
conflict clusters and solved separately.

Since reactive techniques based on the velocity obstacle
paradigm [6] are often used as a practical approach for
collision avoidance between robots in multi-robot teams, we
also compare our method with optimal reciprocal collision

(a) The graph used for trajectory plan-
ning (in gray).

(b) Initial trajectories.

(c) Trajectories at iteration 19. (d) Trajectories at iteration 20.

(e) Trajectories at iteration 21. (f) Trajectories at iteration 23.

(g) Trajectories at iteration 30. Final.
(Cost: 21.84)

(h) Solution found by prioritized
planning. (Cost: 22.68)

Fig. 5: Heads-on scenario: the two robots need to swap
their position in empty space. The frames show intermediate
solutions generated by PM(k=20). A video showing the
resolution process and simulated execution of the solution
can be watched at http://youtu.be/E7LFPIi3zhQ.

avoidance (ORCA), one of the most popular algorithms
belonging to this family.

Experiment setup

The experimental comparison is done in three environ-
ments depicted in Figure 6. The robots are modeled as 2-
d discs that move on a 16-connected grid graph depicted
in Figure 7. The start and goal position for each robot
is chosen randomly. When generating start and destination
for each robot we ensure that a) robots do not overlap at
start position, b) robots do not overlap at goal position, and
c) when adding a robot, its individually optimal trajectory
must be in conflict with the trajectory of some previously
added robot, i.e. the robots form a single conflict cluster. In
Scenario A and B, the start and destination for each robot is
chosen from the area depicted by the gray rectangle, however,
the robots are allowed to leave the rectangle when resolving
the conflict. In Scenario C, the robots cannot leave the free
space when resolving the conflict. All robots can move at
the same maximum speed.

We generated 25 random problem instances for different
numbers of robots in each environment. On each instance
we run all the algorithms and record the solution quality of
the returned solution and the runtime. The bars in the graphs
indicate standard error of the average. Experiment runs were
executed on 1 core of Intel Xeon E5-2665 2.40GHz, 4
GB RAM. A bundle that includes implementation of all

example instance, 7 robots example instance, 25 robots example instance, 10 robots
(a) Scenario A (b) Scenario B (c) Scenario C

Fig. 6: Experimental environments

the algorithms together with the problem instances can be
downloaded at http://agents.fel.cvut.cz/~cap/kpm.

Algorithms used in the comparison
Penalty Method (PM): The penalty-based method de-

scribed in Section III was tried for different values of
parameters k ranging from k = 3 to k = 100.

Prioritized Planning (PP): In prioritized planning (PP)
we use a fixed random priority ordering over the robots. The
ordering used in PP identical to the ordering used in the
penalty method.

Operator Decomposition (OD): Operator Decomposi-
tion [13] is a complete and optimal forward-search algorithm
for multi-robot path planning on a graph representing a dis-
cretization of the joint state space of a number of robots. The
joint state space is searched using the operator decomposition
technique that decomposes joint-actions to trees of single-
robot moves, which allows more efficient pruning and better
utilization of a heuristic estimate during the search process.
We use OD algorithm to find provably optimal solutions.

Optimal Reciprocal Collision Avoidance (ORCA): The
reactive technique ORCA [15] is typically used as a closed-
loop controller that at each time instant selects collision-
avoiding velocity vector from the continuous space of robot’s
velocities that is the closest to the robot’s desired velocity.
In our implementation, at each time instant the algorithm
computes a shortest path from the robots current position to
its goal on the same graph that is used by other methods.
The desired velocity vector then points at the this shortest
path at the maximum speed. When using ORCA, we often
witnessed dead-lock situations during which the robots either
moved at extremely slow velocity or stopped completely. If
a prolonged deadlock situation was detected, we considered
the run as failed.

Results
Success rate: The comparison of success rate of the

tested algorithms is in Figure 8. The plots shows the ratio of
successfully solved instances for each algorithm in each test
environment. Since the runtime of OD grows exponentially,
we limited the runtime of OD to 1 hour. The simulation
of ORCA was terminated with failure if a deadlock was
detected.

(a) Discretization used in Scenario A(b) Discretization used in Scenario B
and C

Fig. 7: Discretization used for trajectory planning

Sub-optimality: Figure 9 shows average sub-optimality
of solutions returned by the PM algorithm for different values
of k parameter in each environment. The average subopti-
mality of solutions returned by PP algorithm is also shown
for each environment. The sub-optimality of a solution on a
particular instance is computed as −(c− c∗)/c∗, where c is
the cost of the solution returned by the measured algorithm
and c∗is the cost of optimal solution computed using OD
algorithm. The averages are computed only from the subset
of instances that were successfully resolved by all tested
algorithms and for which we were able to compute the
optimum.

Time spent outside goal: Figure 10 shows the average
time spent outside goal position when the robots execute
the solutions found by PM, PP and ORCA in all instances
in Scenario B that involve 10 robots. The averages are
computed on the subset of instances that were successfully
resolved by all compared algorithms.

CPU runtime: Figure 11 shows average CPU runtime
that PM and PP algorithms require to return a solution. The
averages are computed only on the subset of instances that
were successfully resolved by both PP and PM.

Results interpretation

Our results show that the optimal algorithm OD is practical
only for instances that contain three or fewer robots. Prior-
itized planning generally scales better than OD, but returns

●●● ●●● ●●● ●●● ●●● ●●● ●●●

0

25

50

75

100

1 2 3 4 5 6 7
No of robots

In
st

an
ce

s
so

lv
ed

 [%
]

Success rate on Scenario A

●●● ●●● ●●● ●●● ●●●
●
●●

●
●
●

●

●
●

●

●

●

0

25

50

75

100

1 2 3 4 5 10 15 20 25
No of robots

In
st

an
ce

s
so

lv
ed

 [%
]

Success rate on Scenario B

●●● ●●●
●
●●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●●
●

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10
No of robots

In
st

an
ce

s
so

lv
ed

 [%
]

Success rate on Scenario C

Fig. 8: Success rate. The plot shows the percentage of
instances successfully solved by PM, PP, ORCA and OD
in each environment. From PM, three different values of k
parameter are considered: k = 3, k = 20, and k = 100.

solutions that are on average 2-4 % suboptimal (cf. Figure 9).
Although PM requires more time to provide a solution than
PP (cf. Figure 11), it does not exhibit the exponential drop
in ability to solve larger instances that OD suffers from. Yet,
the cost of solutions returned by PM tend to converge to
the vicinity of the optimal cost with increasing number of
iterations k for the instances where the optimum is known,
(cf. Figure 9) and otherwise converges to solutions that are
of significantly lower cost than the solutions returned by
PP (cf. Figure 10). Further, besides the improved quality of
the returned solutions, PM achieves higher success-rate on
our instances (cf. Figure 8). E.g., in the empty environment
with 20 robots (cf. Figure 8), PM(k=100) solves 88 % of the

●

●

●

● ● ● ●OPTIMUM

PP
(avg. from 53 instances)

−2

−1

0

0 25 50 75 100
k

S
ub

op
tim

al
ity

 [%
]

Suboptimality on Scenario A

●

●
●

● ●
● ●OPTIMUM

PP
(avg. from 78 instances)

−4

−2

0

0 25 50 75 100
k

S
ub

op
tim

al
ity

 [%
]

Suboptimality on Scenario B

●
●

●

●
●

● ●OPTIMUM

PP

(avg. from 52 instances)−10.0

−7.5

−5.0

−2.5

0.0

0 25 50 75 100
k

S
ub

op
tim

al
ity

 [%
]

Suboptimality on Scenario C

method ● PM OD PP

Fig. 9: Optimality of penalty method. The plot shows average
suboptimality of solutions returned by PM for different
values of k parameter ranging from k = 3 to k = 100.
The averages are computed on instances for which we were
able to compute the optimum using the OD algorithm.

instances, where PP solves only 28 %.
Although ORCA exhibits high success rate on our in-

stances in Scenario B, it should be noted that the trajectories
resulting from this collision avoidance process are very
costly. We have observed that in instances involving higher
number of robots kPM returns trajectories that are more
than 40 % faster than the trajectories returned by ORCA
(cf. Figure 10).

Real-world maps

To demonstrate the applicability of our method, we have
deployed the penalty method to coordinate trajectories of
a number of simulated robots in two representative real-

●
●● ●

● ● ●

ORCA

PP

(avg. from 18 instances)

7.5

10.0

12.5

15.0

0 25 50 75 100
k

A
vg

. t
im

e
ou

ts
id

e
go

al
 [s

]

method ● PM ORCA PP

Time out of goal, Scenario B, 10 robots

Fig. 10: Average time spent outside goal (i.e. cost). The plot
shows average time the robots spend outside the goal if they
execute solutions found by PM, PP and ORCA. For PM,
we consider values of k ranging from k = 3 tok = 100.
Measured on all instances with 10 robots in Scenario B that
were successfully solved by all compared methods.

world environments. First, we tested the algorithm in an
office corridor environment, which is based on the laser
rangefinder log of Cartesium building at the University
of Bremen.1 The environment and the roadmap used for
trajectory planning in the environment together with the
task of each robot are depicted in Figure 12a. We run
PM(k=5) algorithm to coordinate the trajectories of 16 robots
sharing the environment and after 19 seconds obtained the
trajectories shown in Figure 12b. A video showing simu-
lated execution of the found trajectories can be watched at
http://youtu.be/VfiBuQBBIhM.

Second, we depolyed the algorithm in a logistic center
environment. The tasks of the individual robots and the
roadmap that the robots used for planning in this environment
are shown in Figure 13a. We used PM(k=5) algorithm to
coordinate the trajectories of the individual robots. After
55 seconds we obtained coordinated trajectories shown in
Figure 13b. The simulated execution of the found trajectories
can be watched at http://youtu.be/G3A3TYKu73Q.

V. CONCLUSION

In this work we have explored the applicability of penalty-
based method to improve success rate and the quality of
returned solution of prioritized planning. We have formulated
a new penalty-based algorithm for finding collision-avoiding
trajectories in multi-robot teams. The algorithm starts from
an individually optimal trajectory for each robot. Then, the
parts of the trajectories that lie in collision with other robots

1We thank Cyrill Stachniss for providing the data through the Robotics
Data Set Repository [8].

●●● ●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

0

10

20

30

1 2 3 4 5 10 15 20 25
No of robots

A
vg

. C
P

U
 r

un
tim

e
[s

]

● ● ●PM(k=3) PM(k=20) PM(k=100) PP

CPU runtime in Scenario B

Fig. 11: CPU runtime requirements. The plot shows average
CPU runtime needed by PM and PP to return solution in
instances involving different numbers of robots. From PM,
three different values of k parameter are considered: k = 3,
k = 20, and k = 100.

are penalized and the magnitude of the penalty is gradually
increased towards infinity. After each such increase, the
trajectory of one of the robots is replanned to account for
the increased penalty. Using this process, the trajectories are
gradually forced out of collisions.

We have compared our penalty-based method with a
state-of-the-art optimal algorithm, prioritized planning and
reactive technique ORCA on three benchmark scenarios. Our
results show that with increasing number of iterations, the
algorithm constructs solutions with near-optimal cost (on
instances where the optimum was known). On the instances
where the optimum was not known, our method consistently
provided solutions that are 4-10 % cheaper than solutions
provided by prioritized planning and up to 40 % cheaper than
the solutions provided by a widely-used reactive technique
ORCA.

REFERENCES

[1] M. Bennewitz, W. Burgard, and S. Thrun. Finding and optimizing
solvable priority schemes for decoupled path planning techniques for
teams of mobile robots. Robotics and Autonomous Systems, 41(2):89–
99, 2002.

[2] Subhrajit Bhattacharya, Vijay Kumar, and Maxim Likhachev. Dis-
tributed optimization with pairwise constraints and its application to
multi-robot path planning. In Robotics: Science and Systems, 2010.

[3] Michal Cap, Peter Novak, Jiri Vokrinek, and Michal Pechoucek.
Asynchronous decentralized algorithm for space-time cooperative
pathfinding. In Spatio-Temporal Dynamics Workshop (STeDy), SFB/TR
8 Spatial Cognition Center Report, No. 030-08/2012, 2012.

[4] Boris de Wilde, Adriaan W ter Mors, and Cees Witteveen. Push
and rotate: cooperative multi-agent path planning. In Proceedings of
the 2013 international conference on Autonomous agents and multi-
agent systems, pages 87–94. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

[5] Michael Erdmann and Tomas Lozano-Pérez. On multiple moving
objects. Algorithmica, 2:1419–1424, 1987.

(a) Tasks of the robots and the roadmap used for planning.

(b) Resulting coordinated trajectories.

Fig. 12: Office corridor: Coordination of 16 robots in an
office corridor.

(a) Tasks of the robots and the roadmap used for planning.

(b) Resulting coordinated trajectories.

Fig. 13: Logistic center: Coordination of 35 robots in a
logistic centers.

[6] Paolo Fiorini and Zvi Shiller. Motion planning in dynamic environ-
ments using velocity obstacles. The International Journal of Robotics
Research, 17(7):760–772, 1998.

[7] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. On the complexity of
motion planning for multiple independent objects; pspace- hardness of
the "warehouseman’s problem". The International Journal of Robotics
Research, 3(4):76–88, December 1984.

[8] Andrew Howard and Nicholas Roy. The robotics data set repository
(radish), 2003.

[9] E. Lalish. Distributed Reactive Collision Avoidance. BiblioBazaar,
2011.

[10] Jorge Nocedal and Stephen J. Wright. Numerical optimization.
Springer series in operations research and financial engineering.
Springer, New York, NY, 2. ed. edition, 2006.

[11] John Schulman, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry
Bradlow, and Pieter Abbeel. Finding locally optimal, collision-free
trajectories with sequential convex optimization. In Proceedings of
Robotics: Science and Systems, Berlin, Germany, June 2013.

[12] Martin Selecký, Antonín Komenda, Michal Štolba, Tomáš Meiser,
Michal Čáp, Milan Rollo, Jiří Vokřínek, and Michal Pěchouček.
Deployment of multi-agent algorithms for tactical operations on uav
hardware (demonstration). In Proceedings of AAMAS 2013 (to
appear), 2013.

[13] Trevor Scott Standley. Finding optimal solutions to cooperative
pathfinding problems. In Maria Fox and David Poole, editors, AAAI.
AAAI Press, 2010.

[14] Pavel Surynek. A novel approach to path planning for multiple robots
in bi-connected graphs. In Proceedings of the 2009 IEEE international
conference on Robotics and Automation, ICRA’09, pages 928–934,
Piscataway, NJ, USA, 2009. IEEE Press.

[15] Jur Van Den Berg, Stephen Guy, Ming Lin, and Dinesh Manocha.
Reciprocal n-body collision avoidance. Robotics Research, pages 3–
19, 2011.

[16] Jur van den Berg and Mark Overmars. Prioritized motion planning
for multiple robots. In IROS, pages 430–435, 2005.

[17] Glenn Wagner and Howie Choset. M*: A complete multirobot path
planning algorithm with performance bounds. In IROS, pages 3260–
3267, 2011.

[18] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinat-
ing hundreds of cooperative, autonomous vehicles in warehouses. In
Proceedings of the 19th National Conference on Innovative Applica-
tions of Artificial Intelligence - Volume 2, IAAI’07, pages 1752–1759.
AAAI Press, 2007.

