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Abstract— This paper considers the problem of estimating
the covariance of roto-translations computed by the Iterative
Closest Point (ICP) algorithm. The problem is relevant for
localization of mobile robots and vehicles equipped with depth-
sensing cameras (e.g., Kinect) or Lidar (e.g., Velodyne). The
closed-form formulas for covariance proposed in previous
literature generally build upon the fact that the solution to
ICP is obtained by minimizing a linear least-squares problem.
In this paper, we show this approach needs caution because the
rematching step of the algorithm is not explicitly accounted for,
and applying it to the point-to-point version of ICP leads to
completely erroneous covariances. We then provide a formal
mathematical proof why the approach is valid in the point-
to-plane version of ICP, which validates the intuition and
experimental results of practitioners.

I. INTRODUCTION

This paper considers the covariance of relative roto-
translations obtained by applying the well-known Iterative
Closest-Point (ICP) algorithm [1], [2] to pairs of successive
point clouds captured by a scanning sensor moving through
a structured environment. This so-called scan matching [3],
[4], [5] is used in mobile robotics, and more generally
autonomous navigation, to incrementally compute the global
pose of the vehicle. The resulting estimates are typically
fused with other measurements, such as odometry, visual
landmark detection, and/or GPS. In order to apply probabilis-
tic filtering and sensor fusion techniques such as the extended
Kalman filter (EKF) e.g. [6], [7], EKF variants [8], [9],
particle filtering methods, or optimization-based smoothing
techniques to find a maximum likelihood estimate as in
Graph SLAM [10], the probability distribution of the error
associated to each sensor is required. Since these errors are
typically assumed to be zero-mean and normally distributed,
only a covariance matrix is needed.

Contrarily to conventional localization sensors, the co-
variance of relative roto-translation estimates will not only
depend on sensor noise characteristics, but also on the
geometry of the environment. Indeed, when using ICP for
scan matching, several sources of errors come into play:

1) the presence of geometry in one scan not observed in
the subsequent one(s), that is, lack of overlapping.

2) mismatching of points, that is, if scans start far from
each other the ICP may fall into a local (not global)
minimum, yielding an erroneous roto-translation esti-
mate.
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3) even if 1) and 2) do not occur, the computed estimate
will still possess uncertainty due to sensor noise and
possibly underconstrained environments, such as a
long featureless corridor.

In practice, the first problem can be addressed by rejecting
point pairs with excessive distance metrics or located close
to the scanning boundaries [11], and the second by using
dead reckoning estimates to pre-align scans or employing
a sufficiently fast sampling rate. We will thus focus on the
third source of error.

The covariance of estimates obtained from a scan matching
algorithm (such as ICP) can be obtained as follows [12], [13].
The estimated transformation x̂ output by the algorithm is
defined as a local argmin of a cost function J(x, z) of the
transformation x and the data z (scanned point clouds). As
a result we always have ∂

∂xJ(x̂, z) = 0. By the implicit
function theorem x̂ is a function of the data z around this
minimum. Because of the above identity, a small variation
δz in the data will imply a small variation δx in the estimate
as ∂2J

∂x2 δx+ ∂2J
∂z∂xδz = 0, so that δx = −(∂

2J
∂x2 )−1 ∂2J

∂z∂xδz. As
a result if δz denotes the (random) discrepancy in the mea-
surement due to sensor noise, the corresponding variability
in the estimates δx = x̂− x gives E(δxδxT ) = cov(x̂) as

cov(x̂) :=

(
∂2J

∂x2

)−1
∂2J

∂z∂x
cov(z)

∂2J

∂z∂x

T (
∂2J

∂x2

)−1
(1)

Our goal is to point out the potential lack of validity of this
formula for ICP covariance computation, but also to charac-
terize situations where it can safely be used. Specifically, the
problem with (1) is that it relies on δx = −(∂

2J
∂x2 )−1 ∂2J

∂z∂xδz,
which is based on the local implicit function theorem, and
which only holds for infinitesimal variations δx, δz. In the
case of ICP, infinitesimal means sub-pixel displacements.
Indeed when matching scans, the rematching step performed
by the ICP makes the cost function far from smooth, so that
the Taylor expansion

∂J

∂x
(x̂+∆x, z) =

∂J(x̂, z)

∂x
+
∂2J(x̂, z)

∂x2
∆x+O(∆x2) (2)

which is true in the limit ∆x→ 0 may turn out to be com-
pletely wrong for displacements ∆x larger than only a few
pixels. An example of this will be given in Section II-A.2. On
the other hand, if the registration errors are projected onto a
reference surface as in point-to-plane ICP [2], Equation (1)
will provide valid results. This will be formally proven in
Section III.

Our paper is an extension and rigorous justification of the
results of [13] and [14]. Our main contributions are to point
out the potential shortcomings of a blind application of (1)
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to point-to-point ICP in Section II, and then to provide a
formal mathematical proof based on geometry arguments in
Section III for the validity of (1) for point-to-plane ICP.
Finally the results are illustrated on a simple 3D example
in Section IV.

II. MATHEMATICAL FRAMEWORK

Consider using ICP for scan matching (either in 2D or
3D). We seek to find the transformation between two clouds
of points {pk}1≤k≤N and {qi}1≤i≤M . This transformation
is X = (R, p), a roto-translation such that the action of X
on a vector p is Xp := Rp + T . Let π(k,X) denote the
label j of the point qj in the second cloud which is the
closest to Xpk. The basic point-to-point ICP [1] consists of
the following steps:

1) initialize Xold = (I, 0)
2) choose a set of N indices k and define π(k,Xold) such

that qπ(k,Xold) is the point in the second cloud which
is the closest to Xold pk

3) find Xnew as the argmin of
∑
k ||Xnew pk −

qπ(k,Xold)||2
4) if Xnew converged to Xold then quit, else Xold =

Xnew and goto 2)
We see that the goal pursued by the ICP is to minimize the
function

J({pi}, {qi};σ,X) :=
∑
k

||Xpk − qσ(k))||2 (3)

over the roto-translation X and the matching σ :
{1, · · · , N} 7→ {1, · · · ,M}. As a result, ICP acts as a
coordinate descent which alternatively updates X as the
argmin X of J for a fixed π, and the argmin π of J for a fixed
X (the latter being true only for point-to-point ICP). This is
what allows to prove local convergence of point-to-point ICP
as done in [1]. Because of the huge combinatorial problem
underlying the optimization task of jointly minimizing J over
the transformation and the matching, ICP provides a simple
and tractable (although computationally heavy) approach to
estimate X . The ICP algorithm possesses many variants,
such as the point-to-plane version where the cost function
is replaced by

J({pi}, {qi};σ,X) :=
∑
k

||(Xpk − qσ(k)) · nσ(k)||2 (4)

that is, the registration error is projected onto the surface unit
normal vector of the second cloud at qσ(k). An alternative to
this in 2D exploited in [13] consists of creating a reference
surface Sr in R2 by connecting adjacent points in the second
cloud {qi} with segments, and then employing cost function

J(Sr, {pk};X) :=
∑
k

||Xpk −Π(Sr, Xpk)||2 (5)

where Π(Sr, ·) is the projection onto the surface Sr.

Definition 1 We define the ICP cost function as
J({pi}, {qi};π(·, X), X), that is, the error function
J({pi}, {qi};σ,X) with closest neighbor matching.

Definition 2 The stability of the ICP in the sense of [14]
is defined as the variation of the ICP cost function when X
moves a little away from the argmin X̂ .

Definition 2’s terminology comes from the theory of dynam-
ical systems. Indeed, the changes in the ICP cost indicate the
ability (and speed) of the algorithm to return to its minimum
when it is initialized close to it. If the argmin X̂ is changed to
X̂+δX and the cost does not change, then the ICP algorithm
output will remain at X̂ + δX and will not return to its
original value X̂ .

Meanwhile, although closely related, the covariance is
rooted in statistical considerations and not in the dynamical
behavior of the algorithm:

Definition 3 The covariance of the ICP algorithm is defined
as the statistical dispersion (or variability), due to sensor
noise, of the transformation X̂ computed by the algorithm
over a large number of experiments.

A. Potential lack of validity of (1)

1) Mathematical insight: Consider the ICP cost function
J({pi}, {qi};π(X, ·), X). To simplify notation we omit the
point clouds and we let F (X) be the function X →
J(π(X, ·), X). At convergence we have by construction of
the ICP algorithm at the argmin ∂2J(π(X̂, ·), X̂) = 0, where
the ∂2 denotes the derivative with respect to the second
argument. As the closest point matching X → π(X, ·) is
locally constant (except on a set of null measure), since
an infinitesimal change of each point does not change the
nearest neighbors except if the point is exactly equidistant
to two distinct points, we have

d2F

dX2
(X̂) = ∂22J(π(X̂, ·), X̂)

that is, the matching can be considered as fixed when
computing the Hessian of X → J(π(X, ·), X) at the argmin.
But the first-order approximation

∂2J(π(X̂ + δX, ·), X̂ + δX)

≈ ∂2J(π(X̂, ·), X̂) + ∂22J(π(X̂, ·), X̂)δX

can turn out to very poorly model the stability of the
algorithm at the scale δX = ∆X of interest to us, pre-
cisely because when moving away from the current argmin,
rematching occurs and thus π(X̂ + ∆X, ·) 6= π(X̂, ·).

Whereas a closed form estimate of ∂22J(π(X̂, ·), X̂) is
easy to calculate, obtaining a Taylor expansion around the
minimum which accounts for rematching would require
sampling the error function all around its minimum, leading
to high computational cost [15].

2) Illustration: Consider a simple 2D example of a scan-
ner moving parallel to a flat wall using point-to-point ICP.
Figures 1 and 2 illustrate the fallacy of considering a second-
order Taylor expansion of the cost, i.e. computing the cost
with fixed matching. Indeed, Fig. 2 displays the discrepancy
between the true ICP cost and its second-order approximation
around the minimum when moving along a 2D wall. We
see that rematching with closest point correctly reflects the



underconstraint/inobservability of the environment, since the
cost function is nearly constant as we move along the feature-
less wall. On the other hand, the second-order approximation
does not. This proves the Hessian ∂2J

∂X2 to the cost at the
minimum does not correctly reflect the change in the cost
function value, and thus the stability of the algorithm.

Fig. 1. Point-to-point ICP illustration. (a) The first cloud is made of 10
equally spaced collinear points (e.g., scans of a flat wall), the second cloud is
obtained by duplication. To ensure overlap we focus on the central points. (b)
While translating the second cloud to the right, no re-matching occurs. (c)
Translation and re-matching with closest points. The costs J corresponding
to cases b and c are shown in Fig. 2.

Fig. 2. Point-to-point ICP results from Fig. 1. Dashed line: plot
of the second-order approximation to the cost J(π(X̂, ·), X̂) + 0 +
∂2

∂X2 J(π(X̂, ·), X̂)(X − X̂)2 versus translations. Due to the quadratic
form of the cost (3) the second-order approximation is also equal to
J(π(X̂, ·), X), i.e. the cost with matching held fixed (Fig 1 case b). Solid
line: Plot of the true ICP cost J(π(X, ·), X), i.e. accounting for re-matching
with closest points (Fig 1 case c).

Regarding covariance, it is easy to see that Equation (1)
will not reflect the true covariance of the ICP either, as the
true covariance should be very large (ideally infinite) along
the wall’s direction, which can only happen if ∂2J

∂X2 is very
small, but which is not the case here.

B. Covariance of linear least-squares

Consider the linear least-squares minimization problem
with cost function

J(x) =
∑
i

||di −Bix||2 (6)

The solution is of course

x̂ =

(∑
i

BTi Bi

)−1(∑
i

BTi di

)
(7)

Let A := (
∑
iB

T
i Bi), which represents the (half) Hessian

1
2∂

2
2J of the cost function J . Note that AT = A. If the

measurement di satisfies di = Bix+wi where x is the true

parameter and wi a noise, the covariance of the least squares
estimate over a great number of experiments is

cov(x̂) = E
〈
(x̂− x)(x̂− x)T

〉
= E

〈
A−1

(∑
i

BTi wi

)[
A−1

(∑
j

BTj wj

)]T〉
= A−1

∑
i

∑
j

(
BTi E(wiw

T
j )Bj

)
A−1 (8)

which indeed agrees with (1). Furthermore, if the wi’s are
identically distributed independent noises with covariance
matrix E(wiw

T
j ) = σ2Iδij , we recover the well-known result

[16, Thm. 4.1] that

cov(x̂) = σ2A−1
(∑

i

BTi Bi

)
A−1 = σ2A−1

meaning the (half) Hessian to the cost function A encodes
the covariance of the estimate.

C. Application to point-to-point ICP

The application of the least-squares covariance formulas
to point-to-point ICP can be done as follows [17]. Note in
the 3D case the roto-translation X is a member of SE(3),
the Special Euclidean Lie group with associated Lie algebra
se(3) 3 ξ. Using homogeneous coordinates this writes

X =

[
R p
0 1

]
, R ∈ SO(3), p ∈ R3

ξ =

[
S(xR) xT

0 0

]
, xR ∈ R3, xT ∈ R3

where S(·) is the 3 × 3 skew-symmetric matrix S(a)T =
−S(a) such that S(a)b = a × b, a, b ∈ R3. The map exp :
se(3) → SE(3) is the matrix exponential eξ := I + ξ +
(1/2!)ξ2 + · · · . As explained in Section I, we can assume
the scans to be aligned by ICP start out close to each other.
This means X ∈ SE(3) is close to identity and ξ ∈ se(3)
is close to zero, such that

X = eξ ≈ I + ξ =⇒ Xp ≈ p+ xR × p+ xT . (9)

We can thus consider the ICP estimate X̂ as parameterized
by x̂ = (x̂R, x̂T ) ∈ R6. Specifically we define the linear map
L : R6 → se(3), L(x̂) = ξ̂ such that I+L(x̂) ≈ X̂ 3 SE(3)
for X̂ close to identity. The output model Ym of the ICP is
then written as

Ym = X̂ = I + L(x̂) = I + L(x) + L(δx) = X + L(δx)

where δx = x̂−x and L(δx) can be viewed as a zero-mean
noise term with associated covariance E(δxδxT ) = cov(x̂)
by (1).

Using (9) in the point-to-point ICP, the cost function (3)
with matching fixed at its convergence value x̂ writes

J(π(x̂, ·), x) =
∑
i

‖pi + S(xR)pi + xT − qπ(x̂,i)‖2

which can be rewritten in the sum-of-squares form (6) with

di = pi − qπ(x̂,i), Bi = [S(pi) − I]



The Hessian A = 1
2∂

2
2J =

∑
iB

T
i Bi is then equal to∑

i

[
−S(pi)

2 S(pi)
−S(pi) I

]
D. Application to point-to-plane ICP

For point-to-plane ICP, the cost function (4) with matching
fixed at its convergence value x̂ and approximation (9) is
given by

J(π(x̂, ·), x) =
∑
i

[
(xR× pi +xT + pi− qπ(x̂,i)) ·nπ(x̂,i)

]2
Using the scalar triple product circular property (a× b) · c =
(b× c) · a, this can also be rewritten in form (6) with

di = nTπ(x̂,i)(pi − qπ(x̂,i))

Bi =
[
−(pi × nπ(x̂,i))T −nTπ(x̂,i)

]
and the Hessian A = 1

2∂
2
2J =

∑
iB

T
i Bi is equal to∑

i

[
(pi × nπ(x̂,i))(pi × nπ(x̂,i))T (pi × nπ(x̂,i))nTπ(x̂,i)

nπ(x̂,i)(pi × nπ(x̂,i)) nπ(x̂,i)n
T
π(x̂,i)

]
The above expression models the Hessian of
J({pi}, {qi};x, π(x̂, ·)) and was given in [14], who
argue by intuition that it models the stability of the point-to-
plane ICP algorithm. We will formally prove this fact — that
the point-to-plane Hessian correctly captures the behavior of
the true ICP cost function J({pi}, {qi};x, π(x, ·)) around x̂
— in Section III.

III. A RIGOROUS MATHEMATICAL RESULT FOR
POINT-TO-PLANE ICP

The present section is devoted to prove that as far as point-
to-plane ICP is concerned, and unlike the point-to-point case,
Equation (2) and hence (1) is indeed valid, even for large ∆x.
In fact, a bound on ∆x depending on the curvature of the
scanned surface is given, allowing to characterize the domain
of validity of the formula. This result is novel and provides a
rigorous framework to justify the intuitive arguments in [14].

Theorem 1 Consider a 2D environment made of (an en-
semble of disjoint) smooth surface(s) Sr having maximum
curvature κ. Consider a cloud of points {ai} obtained by
scanning the environment. Consider the cost J(π(x, ·), x)
obtained by matching the cloud {ai} with the displaced cloud
{ai}+xR×{ai}+xT where x := (xR, xT ) are the motion
parameters. As 0 is a global minimum the gradient vanishes
at x = 0. The following second-order Taylor expansion

J(π(x+ ∆x, ·), x+ ∆x)

= J(π(0, ·), 0) + ∂22J(π(0, ·), 0)||∆x||2 +O(κ||∆x||3)
(10)

is valid for ∆x sufficiently small, but large enough to let
rematching occur.

Note that if the environment is made of disjoint planes, we
have κ = 0 and both cost functions agree exactly. The
remainder of this section is devoted to the proof of the
theorem, and a corollary proving the result remains true in
3D.

A. Details of result

The proof of the previous theorem is based on the follow-
ing.

Proposition Consider the assumptions of Theorem 1.
Around the minimum x = 0 the cost with fixed matching

J(π(0, ·), x)

=
∑
i

[
(ai + xR × ai + xT − aπ(0,i)) · ni

]2
differs from the true ICP cost in the following way

J(π(x, ·), x)

=
∑
i

[
(ai + xR × ai + xT − aπ(x,i)) · ni + ψi

]2
where the approximation error ψi is already second order in
the function arguments as |ψi| ≤ 8κ(‖xR × ai + xT ‖)2 as
long as κ|si − sπ(x,i)| ≤ 1 where si and sπ(x,i) denote the
curvilinear abscissae of the points ai and aπ(x,i) along the
surface Sr.

To begin with, note that the condition κ|si − sπ(x,i)| ≤ 1
is independent of the chosen units as κ|si − sπ(x,i)| is
dimensionless. To fix ideas about the validity condition,
assume the environment is circular with an arbitrary radius.
The above condition means that the Taylor expansion is
proved valid as long as the displacement yields a rematching
with the nearest neighbor at most 1 rad (57.3◦) along the
circle from the initial point. We see this indicates a large
domain of validity. Note that in case where the environment
is a line both functions coincide exactly.

Fig. 3. Illustration for the proof.

To prove the result, assume the surface where point i
lies is parameterized by γ(s) with curvilinear abscissa s,
and with maximum curvature κ. Such a curve has tangent
vector γ′(s) with ‖γ′(s)‖ = 1 and normal vector γ′′(s) with
‖γ′′(s)‖ ≤ κ, the curvature. The point cloud {ai} ∈ R2

is obtained by scanning this environment at discrete points
γ(s1), γ(s2), · · · . We assume the surfaces (here curves) are
sufficiently disjoint so that under the assumptions of the
Proposition, ai and its closest point aπ(x,i) lie on the same
curve of maximum curvature κ. By writing xR × ai + xT +
ai−aπ(x,i) = xR×ai+xT +ai−aπ(0,i)+aπ(x,i) we see the



error made for each term i is ψ := (aπ(0,i) − aπ(x,i)) · ni =
(ai − aj) · ni where we let j := π(x, i) and we used the
obvious fact that π(0, i) = i. To study ψi expand γ(s) about
s = si using Taylor’s theorem with remainder:

γ(s) = γ(si) + γ′(si)(s− si) +

∫ s

si

γ′′(u)(u− si)du

Take s = sπ(x,i) := sj and project along the normal ni:

(γ(sj)− γ(si)) · ni = (sj − si)γ′(si) · ni

+

∫ sj

si

γ′′(u) · ni(u− si)du

Note γ′(si) · ni = 0 since γ′(si) is the (unit) tangent vector
to the curve at s = si. Taking absolute values of both sides,

|ψi| = |(bj − bi) · ni| ≤
1

2
[max
u
‖γ′′(ũ)‖]|sj − si|2

≤ 1

2
κ|sj − si|2

≤ 1

2
κ (4‖xR × ai + xT ‖)2

as claimed. Only the last inequality needs be justified. It
stems from the following result:

Lemma If no rematching occurs, i.e. i = j, then ψi = 0. If
i 6= j, we have for κ|si − sj | ≤ 1 the inequality |si − sj | ≤
4‖xR × ai + xT ‖.

Indeed, rematching occurs only if the displaced point xR ×
ai + xT is closer to aj , as illustrated in Fig. 3. But this
implies the distance between the displaced point and ai is
greater than half the distance between ai and aj (see Fig. 3),
that is ‖aj−ai‖ ≤ 2‖ai+xR×ai+xT −ai‖. Now, another
Taylor expansion yields γ(sj) − γ(si) = γ′(si)(sj − si) +∫ sj
si
γ′′(u)(u − si)du. Using ‖γ′(s)‖ = 1 and ‖γ′′(s)‖ ≤ κ

we get ‖γ(sj)− γ(si)‖ ≥ |sj − si|− 1
2κ(sj − si)2 ≥ 1

2 |sj −
si|, the latter inequality steming from the assumption that
κ|sj − si| ≤ 1. Gathering those results we have thus proved

2‖xR×ai+xT ‖ ≥ ‖aj−ai‖ := ‖γ(sj)−γ(si)‖ ≥
1

2
|sj−si|

which allows to prove the Lemma, and in turn the Proposi-
tion.

B. Extension to the 3D case

Corollary The results hold in 3D where κ denotes the
maximum of the Gauss principal curvatures.

The corollary can be proved in exactly the same way as
the theorem, by studying the discrepancy between both cost
functions term-by-term. The idea is then merely to consider
the plane spanned by the unit normal ni and the segment
relating ai and aj . This plane intersects the surface Sr at
a curve, and the same process can be applied as in the 2D
case. The curvature of this curve is by definition less than
the maximum Gauss principal curvature of the surface.

IV. ILLUSTRATION OF THE RESULTS IN 3D

The covariance of scan matching estimates is computed
using Equation (8), which requires a model of the measure-
ment noise wi via its covariance E(wiw

T
j ). Modeling noise

of depth sensors is a separate topic and will not be considered
in the present paper. Regardless, it’s clear from (8) that
the Hessian A of the cost function plays a key role in
this computation. We now demonstrate using a very simple
numerical example in 3D that the Hessian of the point-to-
plane correctly models the behavior of the ICP algorithm.

Consider a 3D scan {pi} of a plane wall by a depth
camera located perpendicularly d units away as shown in
Figure 4. A depth image of NH by NV pixels (function
of the hardware) captures a surface measuring H by V
units (function of the optical field of view and distance d)
such that ai = [xi yi d]T where −H/2 ≤ xi ≤ H/2,
−V/2 ≤ yi ≤ V/2.

H

V(0,0,d)

x

z

y

Fig. 4. Scan of 3D plane wall with NH horizontal and NV vertical points
distributed symmetrically about origin.

Assume a previous scan {qi} with associated surface nor-
mals {ni} was captured with the same camera orientation at
distance d′ such that qi = [x′i y′i d′]T , ni = [0 0 −1]T

where −H ′/2 ≤ x′i ≤ H ′/2, −V ′/2 ≤ y′i ≤ V ′/2. From
Section II-D we have

A =
∑
i


y2i −xiyi 0 0 0 yi
−xiyi x2i 0 0 0 −xi

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
yi −xi 0 0 0 1



=


Ψ 0 0 0 0 0
0 Ξ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 N


where

∑
x2i := Ξ,

∑
y2i := Ψ and

∑
1 := N are non-zero.

By inspection this A possesses three zero eigenvalues with
associated eigenvectors (e3, e4, e5) ∈ R6, indicating that in
this case rotations about the z axis and translations along
the x and y axes are unobservable to scan matching, which



agrees with physical intuition about Figure 4. Although A is
singular, (8) can still be computed by removing x3, x4 and
x5 from the state vector x = [xR xT ], thus deleting the
third, fourth and fifth columns of Bi or equivalently rows and
columns of A. In this way only the covariance of observable
parameters will be estimated.

Now consider using the point-to-point Hessian given in
Section II-C. In this case we have

A =
∑
i


d2 + y2i −xiyi −dxi 0 −d yi
−xiyi d2 + x2i −dyi d 0 −xi
−dxi −dyi x2i + y2i −yi xi 0

0 d −yi 1 0 0
−d 0 xi 0 1 0
yi −xi 0 0 0 1



=


Nd2 + Ψ 0 0 0 −Nd 0

0 Nd2 + Ξ 0 Nd 0 0
0 0 Ξ + Ψ 0 0 0
0 Nd 0 N 0 0
−Nd 0 0 0 N 0

0 0 0 0 0 N


By inspection this A is full rank and so it does not have
zero eigenvalues. Since we know there are three unobserv-
able directions, the point-to-point ICP Hessian provides a
completely wrong model of the scan matching observability
(and in turn covariances), exactly as predicted.

V. CONCLUSION

In this paper we have provided a rigorous mathematical
proof — a novel result to the best of our knowledge — why
the closed-form formula (1) and its linearized version (8)
provide correct roto-translation estimate covariances only in
the point-to-plane variant of ICP, but not point-to-point.

This paper has not investigated the modeling of the
noise term wi which appears in the linearized covariance
formula (8). We know that assuming this term to be inde-
pendent and identically distributed Gaussian noise will lead
to erroneous (overly optimistic) estimates of covariance, as
noted in [17] for instance. We are currently investigating
how to rigorously derive a closed-form expression to obtain
a valid and realistic covariance matrix for 3D depth sensor-
based scan matching.
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