arXiv:1412.4629v1 [cs.PL] 15 Dec 2014

Towards Live Programming in ROS with PhaROS and LRP

Pablo Estef6!, Miguel CampusanoQ, Luc Fabresse-,

1

Johan Fabry?, Jannik Laval®, and Noury Bouraqadi'

Abstract— In traditional robot behavior program-
ming, the edit-compile-simulate-deploy-run cycle
creates a large mental disconnect between program
creation and eventual robot behavior. This signif-
icantly slows down behavior development because
there is no immediate mental connection between the
program and the resulting behavior. With live pro-
gramming the development cycle is made extremely
tight, realizing such an immediate connection. In
our work on programming of ROS robots in a more
dynamic fashion through PhaROS, we have experi-
mented with the use of the Live Robot Programming
language. This has given rise to a number of
requirements for such live programming of robots.
In this text we introduce these requirements and
illustrate them using an example robot behavior.

I. INTRODUCTION

In Live Programming [7], the development cy-
cle is made extremely tight: program edits are
continuously integrated in the always-running pro-
gram and their effects are immediately visible. As
a result, there is no cognitive dissociation between
writing the code and observing its execution, and
hence programmers have an immediate connec-
tion with the program they are making.

In this paper, we present early experiments
introducing live programming into the develop-
ment cycle of robotic applications. We target
the ROS [6] middleware because it is a de-
facto standard that moreover has an availability of
numerous packages provided by an active com-
munity backed by the Open Robotics Software
Foundation.

However, ROS does not provide any support
for live programming. The development cycle of
ROS introduces a clear cut between the edit,
compile, and run steps of software development.
This division already appears in its core concepts

IDépt. IA - Ecole des Mines de Douai
firstname.lastname@mines-douai.fr
http://car.mines-douai.fr

2PLEIAD and RyCH labs, Computer Science Department
(DCC), University of Chile, Chile

since a ROS package is a static entity, whereas a
ROS node is a run-time entity.

Nodes to run as well as their name spaces and
parameters are statically expressed in a .launch
file and cannot be changed at run-time. So, the
whole architecture of a ROS-based application is
static and, traditionally, any small change requires
restarting the entire application.

As a first step in exploring live programming
with ROS, we combined the Live Robot Program-
ming (LRP) language [3]: a high-level DSL for
live programming of robots, with PhaROS [2]: a
bridge between ROS and the dynamic language
Pharo [1], [5]. This work served as the foundation
for the integration of ROS in LRP. As a result of
these experiments, we have encountered a number
of requirements for live programming with LRP
and ROS, and we present them in this text.

II. REQUIREMENTS FOR LIVE PROGRAMMING
ROBOTS WITH ROS

A ROS application is a graph of nodes con-
nected by topics. Enabling liveness in ROS im-
plies making it possible to dynamically change
any part of the graph. This means :

Requirement 1: Starting and stopping indi-
vidual nodes or subsets of nodes as many times
as required during the application lifetime. For
instance, when two nodes are communicating
through a topic and the subscriber is shut down,
when relaunched it should reconnect and resume
communication.

Requirement 2: Changing node parameters
at run-time after the node has been launched.

Requirement 3: Partially or fully replacing
node code at run-time without stopping it.

Requirement 4: Changing node connections
at run-time (i.e. the edges of the graph). For any
given node, we should be able to dynamically
change topics to which it subscribes or publishes.

http://car.mines-douai.fr

III. PROPOSED SOLUTION: LRP+PHAROS

Our solution is implemented using the Pharo
dynamic language. It consists of the LRP DSL
combined with PhaROS: a ROS client for Pharo.

A. LRP

Live Robot Programming (LRP) [3] is a live
programming language, of nested state machines,
together with an interpreter and visualization (all
of which is implemented in Pharo). This kind of
machines are said to map well to the problem
domain, which is corroborated by the fact that
multiple Robocup teams have performed outstand-
ingly in the football competition using these lan-
guages [4], [8].

The main differentiator of LRP with regard to
other languages using the nested state machine
paradigm is its nature as a live programming
language. Because of this, LRP code is always
running and LRP has a well-defined semantics
for how it behaves in the face of code that is
syntactically malformed, incomplete or erroneous
programs, and changes to the code while a pro-
gram is running. Put briefly, as a live program-
ming language, the priority is to keep the program
running in spite of a wide variety of errors. Also,
program changes are integrated while the code
runs, only restarting program execution when this
integration cannot be performed. A full discussion
on these features and the language in general is
however outside of the scope of this paper. For
more information we refer to published work [3],
as well as the LRP website'.

LRP is designed for the programming of robot
behaviors, and the communication between LRP
and the actual robot is through the use of APIs
of specific robot platforms or middleware. The
integration of ROS in LRP [3] was achieved based
on the results of the experiments we report here.

The LRP language is built based on the follow-
ing concepts:

e Machines with states and different kinds of

transitions.

« Transitions that occur on events, timeouts or

immediately after entering in a state.

« Action blocks are snippets of Smalltalk code

that have access to the complete Smalltalk
environment, as well as LRP variables.

"Website URL: http:/pleiad.cl/Irp

e Variables can be defined in machines, are
initialized when declared using an action
block, and are lexically scoped.

e Events are explicitly defined, triggering if
their action block evaluates to true, i.e. any
piece of Smaltalk code can serve as a guard
for an event.

o States can have action blocks that are run
when entering, leaving or when they are
active, again enabling any piece of Smalltalk
code to be used.

o States can also define state machines, which
enables nesting.

B. PhaROS

PhaROS [2] provides a framework and a set
of tools for developing ROS nodes in the Pharo
language and environment. Pharo is a pure object-
oriented programming language coupled with a
dynamic environment.

In PhaROS, ROS nodes are reified as objects,
allowing the developer to build and control their
execution at a higher level of abstraction. PhaROS
also contains tools allowing the deployment of
catkin packages: It automatizes the generation of
xml launch files, makefiles, type and scripts cre-
ation. The intent of this is to let the programmer
focus on programming and not on creation and
maintenance of infrastructure.

PhaROS nodes can be restarted as many times
as needed, due to the dynamic nature of the
Pharo environment. Instances of ROS nodes can
be terminated at any time and are garbage col-
lected. New instances can be launched directly
from Pharos without a need to restart ROS as
they transparently reconnect with external existing
ROS topics or parameters.

C. Integration of LRP and PhaROS

As said above, LRP relies on the existence of an
API to the robot (middleware) being used. In our
experiments we worked with a Robulab robot that
runs ROS and therefore we needed to construct
such an APIL.

To do this, we implemented a bridge module
to ROS as well as a specific interface for the
Robulab. The former takes the role of a facade
class (facade in Figure 1). It provides access to
external ROS resources such as topics or parame-
ters. The latter, a RobulabBridge class, is tailored to

http://pleiad.cl/lrp

/command_velocity

N RobulabBridge
Driver

LRP Node

O ROS node

—> ROS topic ---

O Pharo object

Messages between
objects

Fig. 1. ROS graph of application shown in experiment.

the Robulab and provides an API for the features
specific to the robot, hiding the particularities of
ROS. Note that this abstraction of specifying an
API specific to the features of the robot can be
generalized to any ROS node, where the facade
could be simply reused.

The robot’s node (Driver in Figure 1) consumes
messages on the /command_velocity topic and pub-
lishes messages on the /laser and /pose topics.
Hence, the RobulabBridge provides methods that
wrap messages to and from these topics such as:

« forward: linearSpeed publishes on the /com-
mand_velocity topic to make the robot move
linearly forward at a linearSpeed speed.

« turn: angularSpeed similar to forward:, mak-
ing the robot rotate at angularSpeed.

o isThereARightObstacle: minimumDistance
selects laser data corresponding to the front-
right part of the laser beam, and checks if
there is an obstacle at a distance less or
equal than minimumDistance.

IV. EXPERIMENT: WRITING AN OBSTACLE
AVOIDER

In this section, we report on an experiment
written in LRP that runs on top of PhaROS and
therefore uses ROS. The example we present is
simple, but interesting nonetheless because it ex-
emplifies what is possible with live programming.
Videos of the experience are available on http:
/lcar.mines-douai.fr/ .

In the experiment, we will change a mobile
robot’s obstacle avoidance behavior incrementally

var f_vel := [0.25])

var t_vel :=[0.5])

var min_distance := [0.5])

var robulab := [RobulabBridge uniquelnstance])

(
(
(
(

Listing 1. Initialization of the live programming session

at runtime. First we will implement a simple
solution that lets the robot move without crashing
into obstacles. After that the behavior will be
evolved by adding obstacle avoidance. All of
this will be done without needing to restart any
part of the ROS platform or equipment used, all
software changes are immediately perceived as
robot behavior changes.

The experiment was performed using a Robulab
robot which can be translated and/or rotated on
the floor. The robot is equipped with a Sick S300
laser range sensor, which detects obstacles up to
30 meters within 270 degrees around the robot.
Technical specifications of the robot are available
on its website?.

A. Stop when an obstacle is detected

First, we will define the four variables that
we will use during the experiment. Listing 1
shows how they all are defined. f_vel and t_vel are
both linear and angular velocities for the robot
respectively (set to 0.25 [m/s] and 0.5 [rad/s]
respectively) and min_distance (set to 0.5 [m]) is
the minimum distance to a physical object to be
considered as an obstacle. The fourth variable is
initialized with a reference to an instance of Rob-
ulabBridge class, presented before. Note that t_vel
it is not used in the first behavior we implement,
but it could be added later at runtime.

The first behavior to describe in LRP is to make
the robot move forward and stop when an obstacle
is detected in front. So a simple program should
consider two states: forward and stop (lines 2 to
5 in Listing 2). When entering the forward state,
due to the statement in line 3 the program will
send the message forward: with f_vel as argument
to the robulab variable.

As a result the robot will move forward with a
speed of f_vel [m/s]. When the robot detects that
there is an obstacle at distance of min_distance

2Website URL: http://www.robosoft.com/products/
indoor-mobile-robots/robulab/robulab-10.html

http://car.mines-douai.fr/
http://car.mines-douai.fr/
http://www.robosoft.com/products/indoor-mobile-robots/robulab/robulab-10.html
http://www.robosoft.com/products/indoor-mobile-robots/robulab/robulab-10.html

©

(machine Tito
(state forward
(onentry [robulab forward: f_vel]))
(state stop
(onentry [robulab stop]))
(on obstacle forward —> stop t—stop)
(on noObstacle stop —> forward t—forward)
(event obstacle
[robulab isThereAnObstacle: min_distance])
(event noObstacle
[(robulab isThereAnObstacle: min_distance) not])

(spawn Tito forward)

Listing 2. First behavior of state machine describing its states,
transitions and events in LRP

(state turnLeft
(onentry [robulab turn: t_vel]))
(state turnRight
(onentry [robulab turn: t_vel negated]))
(on rightObstacle stop —> turnLeft t—Iturn)
(on leftObstacle stop —> turnRight t—rturn)
(on noObstacle turnLeft —> stop t—tlstop)
(on noObstacle turnRight —> stop t—trstop)
(event rightObstacle [robulab isThereARightObstacle:
min_distance])
(event leftObstacle [robulab isThereALeftObstacle:
min_distance])

Listing 3.
behavior

Aditional code for including obstacle avoidance

[m] or closer, the obstacle event will occur, as
specified in line 8, and the machine will perform
a state change from forward to stop through the
t-stop transition (line 6). When entering the stop
state (line 5) the message stop is sent to the robulab
making the robot stop moving. If suddenly the
obstacle disappears, the event notObstacle occurs
(lines 10-11), and through the t-forward transition,
the machine changes to forward state making the
robot move again.

The last line of Listing 2 initializes the state
machine in the forward state.

B. Avoiding obstacles

Now we have the robot stopped in front of
an obstacle, so the current status is stop. Next,
a simple obstacle avoidance behaviour is added:
the robot will turn left or right when an obstacle
is detected and when there is no obstacle it will
move forward, as already defined.

We define two more states: turnLeft and turn-
Right (lines 1 to 4 in Listing 3). They are reached

by a simple obstacle detection algorithm, and in
them the message turn: is sent to robulab with
the same speed (t_turn) but a different direction
depending on the state. Considering the obstacle
detection algorithm, the RobulabBridge provides
useful methods to know if the obstacle is in the
left or the right side of the front of the robot.
These are used to emit rightObstacle or leftObstacle
events when needed (lines 9 through 10). These
events make the machine change from stop to the
turning states by the t-tlturn and t-trturn transitions
(lines 5 and 6). When no obstacle is detected,
noObstacle is raised and machine changes the state
to stop, via the transitions of lines 7 and 8, which
will be immediately followed to a transition to
forward via t-forward.

When writing this code, immediately when
the lines of codes defining the rightObstacle or
leftObstacle events are added, one of these occur
(since the robot is stopped at an obstacle). This
then makes the robot turn to avoid the obstacle,
and move forward when the obstacle is avoided.

V. REQUIREMENTS EVALUATION

In this section, the fulfilment of requirements
listed in Section II is discussed.

Requirement 1: This requirement is fulfilled
for PhaROS nodes. In PhaROS nodes are objects
with specific methods for both initializing and
finalization. Once they are finalized, they do not
continue working nor interacting with the rest of
the ROS platform. Nodes can be restarted multiple
times, reconnecting to necessary topics and start
publishing immediately.

Requirement 2: Typically, node parameters
are statically defined in a .launch file and once
launched, they are cannot be changed. In contrast,
in PhaROS a ROS node is an object and their
parameters are materialized as fields accesible
through methods. As a consequence, they can
be changed at run-time either by any piece of
Smalltalk code, for example inside an action block
of an LRP program. Furthermore, parameters can
also be changed at startup when using the ros-
run command using command-line options for
changing parameters (rosrun package node _param-
eter=value).

Requirement 3: The logic behind the use
of data from subscriptions, its processing and

publishing can be modified when the PhaROS
node was already launched. This is illustrated in
detail in Section IV as the response of the robot
to obstacles evolved at runtime. More specifically,
the developer tuned robot behavior in an iterative
development process to get the expected response.

Requirement 4: By default in ROS, node
connection relies on topic names that are hard-
wired inside the code of nodes. Still, at deploy-
ment time this can be altered using namespaces.
Changing node connections at run-time means
changing topic names and namespaces at run-
time. PhaROS provides runtime subscription/pub-
lishing which implies that topics are created when
the ROS node is being executed.

VI. RELATED WORK

To the best of our knowledge, LRP is the
only work that proposes the live programming
of robot behaviors through nested state machines.
Live programming was originally proposed by
Tanimoto on Viva [7], a visual programming lan-
guage for image manipulation. We are aware of
two DSLs for robot behavior programming based
on nested state machines: the Kouretes Statechart
Editor [8] and XABSL [4].

VII. CONCLUSION

In this work we have presented four require-
ments to support live programming of robots in
ROS: starting and stopping ROS nodes, changing
node parameters, hot code swapping and connec-
tions between nodes being made at run-time. We
illustrated the need for these requirements through
an example.

We have shown that the solution we propose
fulfills these four requirements for ROS nodes
created in PhaROS.

Moreover, we found that developing robot be-
haviors in the LRP language was quite straightfor-
ward. The straightforward use of state machines
avoids the programmer losing focus on the task at
hand due to setup or technical issues intervening.

Also, the RobulabBridge class made LRP code
easy to write and understand, as it abstracts the
robot resources and provides access through a
rich APIL Finally, we consider that the solution of
LRP through PhaROS is an effective approach for
enabling live programming for ROS applications.

(1]
[2]

(3]

[4]

[3]
(6]

(71

(8]

REFERENCES

A. Bergel, D. Cassou, S. Ducasse, and J. Laval. Deep Into
Pharo. Square Bracket Associates, 2013.

S. Bragagnolo, L. Fabresse, J. Laval, P. Estef6, and
N. Bouraqadi. Pharos: a ros client for the pharo language.
http://car.mines-douai.fr/category/pharos/, 2014.

J. Fabry and M. Campusano. Live robot programming. In
A. Bazzan and K. Pichara, editors, Advances in Artificial
Intelligence - IBERAMIA 2014, number 8864 in Lecture
Notes in Computer Science. Springer-Verlag, 2014. To
Appear.

M. Lotzsch, M. Risler, and M. Jingel. XABSL - A prag-
matic approach to behavior engineering. In Proceedings of
IEEE/RSJ International Conference of Intelligent Robots
and Systems (IROS), pages 5124-5129, Beijing, China,
2006.

O. Nierstrasz, S. Ducasse, and D. Pollet. Pharo by
Example. Square Bracket Associates, July 2010.

M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng. Ros: an open-source
robot operating system. In ICRA Workshop on Open
Source Software, 2009.

S. Tanimoto. VIVA: A visual language for image process-
ing. Journal of Visual Languages & Computing, 1(2):127—
139, June 1990. http://dx.doi.org/10.1016/S1045-
926X(05)80012-6.

A. Topalidou-Kyniazopoulou, N. I. Spanoudakis, and
M. G. Lagoudakis. A case tool for robot behavior
development. In X. Chen, P. Stone, L. Sucar, and T. Zant,
editors, RoboCup 2012: Robot Soccer World Cup XVI,
volume 7500 of Lecture Notes in Computer Science, pages
225-236. Springer Berlin Heidelberg, 2013.

	I Introduction
	II Requirements for Live Programming Robots with ROS
	III Proposed Solution: LRP+PhaROS
	III-A LRP
	III-B PhaROS
	III-C Integration of LRP and PhaROS

	IV Experiment: writing an obstacle avoider
	IV-A Stop when an obstacle is detected
	IV-B Avoiding obstacles

	V Requirements evaluation
	VI Related Work
	VII Conclusion
	References

