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Abstract

For many stochastic dynamic systems, the Mean First Passage Time
(MFPT) is a useful concept, which gives expected time before a state of
interest. This work is an extension of MFPT in several ways. (1) We show
that for some systems the system-wide MFPT, calculated using the second
largest eigenvalue only, captures most of the fundamental dynamics, even
for quite complex, high-dimensional systems. (2) We generalize MFPT
to Mean First Passage Value (MFPV), which gives a more general value
of interest, e.g., energy expenditure, distance, or time. (3) We provide
bounds on First Passage Value (FPV) for a given confidence level. At
the heart of this work, we emphasize that for our goals, many hybrid
systems can be approximated as Markov Decision Processes. So, many
systems can be controlled effectively using this framework. However, our
framework is particularly useful for metastable systems. Such systems
exhibit interesting long-living behaviors from which they are guaranteed to
inevitably escape (e.g., eventually arriving at a distinct failure or success
state). Our goal is then either minimizing or maximizing the value until
escape, depending on the application.

1 Introduction

First Passage Time, aka First Hitting Time, gives survival duration by answering
“how long it will take on average before a specific event (or set of events) occurs”.
In discrete time models, one usually calculates the expected number of discrete
time steps of survival, which corresponds to Mean First Passage Time (MFPT).
While different initial conditions (states) generally result in different MFPTs,
for some systems a scalar called system-wide MFPT is an accurate estimate
across a large set of states. Although this paper also contains some useful ideas
and extensions for systems for which this does not hold, some parts will build on
the mentioned property. In this paper, we will abuse the notation and MFPT
will refer to system-wide MFPT. Values for each state will be contained in the
MFPT vector.

Of particular interest to the authors, stability of metastable systems can
potentially be well represented by (system-wide) MFPT. These systems can be
natural or human-made. They exist in a precarious state of stability, appearing
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to be locally stable for long periods of time until an external disturbance per-
turbs the system into a region of state space with a qualitatively different local
behavior. Since these systems are guaranteed to exit these locally well-behaved
regions with probability one given enough time, they cannot be classified as “sta-
ble”, but it is also misleading to categorize them simply as “unstable”. A toy
example of metastable systems is a ball in a hollow on terrain where a sufficient
disturbance would cause the ball to roll into another local minimum, as depicted
in Figure 1. Physicists have explored this phenomenon in detail and have de-
veloped a number of tools for quantifying this behavior [1, 2, 3, 4]. Metastable
processes have been observed in many other branches of science and engineering
including familiar systems such as crystalline structures [5], flip-flops [6], and
neuroscience [7].

Figure 1: Cartoon with multiple locally-stable equilibria under deterministic
conditions. With sufficient noise in the model, the particle is guaranteed to
transition from one local minimum to another (back and forth), although transi-
tions may still be quite rare. From region A’s perspective, “escape” corresponds
to moving to region B. Figure inspired by [8] and [9].

More recently, the tools for quantifying metastable systems has been applied
to walking robots to predict how a robot will perform over variable terrain
for a given control policy [8, 10]. For such analyses, the walking robot, the
environment, the system noise, and the control actions can be modeled together
as a Markov chain. Assuming that the initial state of the robot lies within a so-
called “metastable region” of state space, the eigenvalues of the state transition
matrix of the Markov chain, specifically the largest eigenvalue not associated
with the (absorbing) failed system state, can be used to predict the number of
steps the robot can take before failing. While this approach is described in some
detail in [8], we have found when building upon the basic concepts that many
important aspects of the analytic approach are not immediately obvious nor (as
yet) well-documented. In this paper, we attempt to clarify the overall approach
and the utility of the results, using simple toy examples.

To show the applicability of our methods to various problems we consider
hybrid systems, which may exhibit either or both continuous and discontinu-
ous dynamics. The requirement is the ability to model the full dynamics as
a Markov chain. This can be done in many applications where a meaningful
“step” definition can be proposed. As we justify in subsection 3.1, we will model
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the escape of interest (e.g., moving from region A to B in Fig. 1, or falling of a
walking robot) as an absorbing halt state.

In previous work, we have used the Mean First Passage Time (MFPT) to
characterize the average number of Markov chain steps until reaching an absorb-
ing failure state. In this paper, we present a more generalized concept – First
Passage Value (FPV) – and discuss both the mean and variability of a value
of interest for a metastable system. Calculating different values corresponds to
adopting different rewards. This was suggested in [10] and applied in [11].

The rest of this paper is organized as follows. In Section 2, we provide some
motivating examples, which we will use to illustrate for the rest of the paper.
In Section 3, we use the eigenvalues of the state transition matrix to calculate
MFPT and discuss the relevance of employing a system-wide MFPT. Sections 4
and 5 introduces the FPV metric, which builds on MFPT. Finally, we conclude
with control applications in Sec. 6.

2 Some Motivating Examples

In this section we provide five motivating examples. The first three of them are
discrete-time with no control action and can be easily represented in the form
of a Markov chain. We will later discuss how to deal with more general systems
in Section 6. In all these examples, we are initially interested in discrete time
steps before hitting a state of interest. We will later investigate how to calculate
metrics other than discrete time.

2.1 Coin Toss

Consider tossing an unfair coin, for which the probability of having heads is
0.01. Say we are interested in the number of flips before two heads in a row.
Then, we have three possible states: (1) Heads-heads, (2) Tails in the last
flip (including ‘not-flipped yet’), (3) Tails-Heads (including ‘flipped once to get
heads’). Figure 2 shows the corresponding Markov Chain.

132 0.01

0.99

0.99

0.99

0.01
0.01

Figure 2: Markov Chain representing unfair coin toss to get two heads in a row.
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2.2 Epidemics

Consider the discrete susceptible-infected-susceptible (SIS) model as in [12]. We
are interested in number of discrete time steps to everyone being healthy. As a
toy example, we will consider a network of only 2 people. Then, there are four
states possible as listed in Table 1.

Table 1: Explanation of each state

State 1 State 2 State 3 State 4

Patient 1 Susceptible Susceptible Infected Infected

Patient 2 Susceptible Infected Susceptible Infected

Let ‘the probability of recovery when a node is infected’ be δ = 0.01, and
‘the probability to be infected when the other node is infected’ be β = 0.8.

2.3 Europe Tour

Consider a person traveling between some of the largest cities in Europe shown
in Figure 3. After spending a day that person either stays in the same city,
or moves to one of the connected cities. The probability of action is directly
proportional to the population of the next city. For example when in London,
this person stays there with probability 0.5922, moves to Berlin with probability
0.2507, or moves to Paris with probability 0.1571. Staying in London has the
highest probability because it is more populated than Paris and Berlin. In this
example, we will investigate number of days before reaching a specific city, say
Istanbul.

Figure 3: Populations of Europe’s most populated 8 cities excluding Russia.
Table 2 provides information about the road map drawn in this figure. Cities
are ordered by their population as indicated in parenthesis, e.g., Athens (State
3) is the third most crowded city in this map.
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2.4 Legged Locomotion

Arguably just like humans, underactuated two-legged robots are destined to fall
down when the terrain is rough enough. We would like to estimate the number
of steps before falling. The more steps taken on average, the more stable the
robot is considered to be. Please see [13] for an application of the tools presented
in this paper, where stability is dramatically increased by optimizing for number
of steps.

Also, [14] provides a comparison between Lyapunov-based approach versus
using the tools of this paper on a hybrid system, namely, the Rimless Wheel.

2.5 Driving a Car

Again arguably, given enough time (millions of years if necessary), any driver
will be involved in an accident. The same is and will be true for autonomous cars
including the Google car. We might be interested in, for example, the number of
intersections before an accident, or the average number of miles driven between
accidents. This example is provided just to motivate following sections, but we
have not yet modeled it.

3 Absorbing Markov Chains

We will refer to a “state of interest” as a “halt state”, e.g., two heads in a row,
everybody being healthy, being in Istanbul, falling of a robot, or accident for
a car. Without loss of generality, we define this halt state to be State 1 (x1).
Any halt state will be absorbing.

3.1 Why Absorbing?

Note that the epidemics model in the previous section is already absorbing
because when both patients are susceptible (State 1), the state will not change
(i.e., noone can become infected).

Let’s consider the coin toss example. State 1 is not absorbing, i.e., two heads
in a row does not imply next flip to be heads. However, if we are interested in
the number of flips before reaching State 1, then we should modify the Markov
Chain by modeling State 1 to be absorbing as in Figure 4. This modification
corresponds to the game ending when two heads are in a row. The dynamics
until State 1 do not change, but the modification allows us calculate the number
of flips before State 1.

Similarly, for the Europe tour example, if we are interested in the number
of days before going to Istanbul, we should model the state of being in Istanbul
as absorbing.

For the following, we focus on the toy example shown in Figure 4, which will
be used to illustrate our analysis.
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132 10.99

0.99

0.01
0.01

Figure 4: Figure 2 modified by modeling State 1 to be absorbing.

3.2 The Analysis

The state distribution vector at step n is denoted by p[n] and defined by

pi[n] := Pr(x[n] = xi). (1)

So pi[n] corresponds to the probability of being at state xi at step n. Since
probability cannot be negative, p[n] is a non-negative vector, and because the
system has to be at a state at any step, p[n] sums to 1. The state transition ma-
trix, aka the Markov matrix or the stochastic matrix, has the following structure
by definition:

Ts{ij} := Pr(x[n+ 1] = xj | x[n] = xi). (2)

So, the element of Ts on the ith row and jth column gives the probability
of transitioning from state xi to state xj . To illustrate, the Markov chain of
Figure 4 is represented with

Ts =

 1 0 0
0 0.99 0.01

0.01 0.99 0

 . (3)

Similar to non-negativity of p[n], we have Ts{ij} ≥ 0. And because any state
will transition (possibly to the halt state or the starting state itself) after each
step, each row sums to one. For the rest of the paper, we assume the number
of states is ` > 1. So, the state transition matrix is ` by `. The state transition
matrix gives the next state distribution, given the current one:

p[n+ 1] = T ′s p[n] = (T ′s)
n+1p[0], (4)

where the prime (′) symbol denotes the transpose operation.
Let λ be an eigenvalue of Ts. Then, there exists a non-zero vector v such

that
Tsv = λv. (5)

As shown in [15], we next show that every eigenvalue λ of Ts satisfies |λ| ≤ 1.
Let k be such that |vj | ≤ |vk| for all 1 ≤ j ≤ `. Equating the k-th components
in equation (5) gives ∑

j

Ts{kj}vj = λvk. (6)
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We then have

|λvk| = |λ| |vk| =
∣∣∣∣∑
j

Ts{kj}vj

∣∣∣∣
≤
∑
j

Ts{kj}|vj | ≤
∑
j

Ts{kj}|vk| = |vk|,
(7)

where we used Ts{kj} ≥ 0 and
∑
j Ts{kj} = 1. |λ||vk| ≤ |vk| implies |λ| ≤ 1.

For the rest of the paper, we will prefer working with the transpose of Ts to
make the following sections easier to follow. Since Ts is square, T ′s has the same
eigenvalues as Ts. Due to the nature of transpose operation and the structure
of Ts, each column of T ′s sums to one.

Remember that x1 is an absorbing state, which represents the end of game,
no matter how the system escaped (e.g., the robot slipped or hit the wall).
Then, T ′s has the following form:

T ′s =

[
11×1 T1

0 T̂

]
`×`

. (8)

Note that λ = 1 and v = [1 0 ... 0]′ satisfies the equation

T ′sv = λv. (9)

To distinguish (possibly non-distinct) eigenvalues, we will note them by λj ,
where 1 ≤ j ≤ `. Without loss of generality, we will let λ1 = 1 and the
associated basis vector be v1 = [1 0 ... 0]′.

Existence of Jordan normal form for any square matrix is fundamental to
Linear Algebra. Consider a Jordan normal form of T̂ given by

T̂ = V̂ Ĵ V̂ −1, (10)

Then, as we will verify, a Jordan normal form of T ′s is given by

T ′s = V JV −1, (11)

where J =

[
1 0

0 Ĵ

]
, (12)

and V =

[
1 −[1 ... 1]V̂

0 V̂

]
. (13)

Note that the sum of each column of V equals zero, except the first one. Fur-
thermore, these columns form a basis in R`. Equation (11) can be verified as
follows. The inverse of V is

V −1 =

[
1 [1 ... 1]

0 V̂ −1

]
. (14)
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Then, the right hand side of (11) can be calculated as[
1 [1 ... 1]− [1 ... 1]V̂ Ĵ V̂ −1

0 V̂ Ĵ V̂ −1

]
=

[
1 [1 ... 1](I − T̂ )

0 T̂

]
. (15)

Equation (11) is thus verified because T1 + [1 ... 1]T̂ = [1 ... 1] (columns of T ′s
sum to one).

The spectrum of T̂ , denoted by σ(T̂ ), is the set of distinct eigenvalues of T̂ .
The spectral radius of T̂ is given by

ρ(T̂ ) = max
λ∈σ(T̂ )

|λ|. (16)

Let the spectral radius be r = ρ(T̂ ). Remembering that T̂ is a non-negative
square matrix, we present the following two facts, which are proven in [16].

1. r ∈ σ(T̂ ) (i.e., r is an eigenvalue of T̂ ).

2. T̂ z = rz for some z ∈ N = {v| v ≥ 0 with v 6= 0}

We will let λ2 := r and v2 will refer to the associated column in V . Then,
v2 = [−‖z‖1 z′]

′
. Now, let us consider the following state distribution

φ :=

[
0

z′

‖z‖1

]′
= v1 +

1

‖z‖1
v2. (17)

We will call φ the metastable distribution. Note that it is a valid initial state
distribution since it sums to one and each element is non-negative. Back to our
toy example, we have

λ2 ≈ 1− 9.9020× 10−5 and φ ≈

 0
0.9901
0.0099

 (18)

This metastable distribution represents a simple probability distribution: The
state is x2 with probability ≈0.9901 and it is x3 with probability ≈0.0099. The
first element of φ, i.e., the probability of being at x1, is zero, by definition (of
not yet having escaped). It is actually interesting that the second element in φ
is higher than the probability of having tails in a flip. Yet, this is true as can be
verified by exactly solving for φ and λ2 using the method we will show shortly.

Taking a step when φ is the initial condition, we obtain

T ′sφ = T ′s

(
v1 +

1

‖z‖1
v2

)
= v1 +

λ2
‖z‖1

v2. (19)

Naturally, the resulting distribution is also non-negative and sums to one. In
addition, the first element is

1 +
λ2
‖z‖1

(−‖z‖1) = 1− λ2. (20)
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This means the system escaped with probability 1 − λ2. Furthermore, given
the system did not escape, we also have φ as the final probability distribution
for the states. This can be seen by zeroing the first element of T ′sφ and scaling
to sum to one. Then we have the following result: When φ is the initial state
distribution, the probability of escaping is 1 − λ2, the probability of staying
in the same distribution (φ) is λ2. In our toy example, these can be seen by
calculating

T ′sφ ≈

0.0001
0.9900
0.0099

 and

T ′sφ− (1− λ2)

1
0
0


∥∥∥∥∥∥T ′sφ− (1− λ2)

1
0
0

∥∥∥∥∥∥
1

= φ. (21)

Note that λ2 ≈ 1− 9.9020× 10−5 is close to one. This will be the case (actually
1−λ2 will be much smaller in many cases) when we are interested in absorbing
Markov chains with “rare escapes”.

For this toy example, we can write φ and λ2 in exact form as mentioned.
This is done simply by solving the right hand side of (21) and noting ‖φ‖1 = 1.
In practice, a numerical eigenvalue solution gives fast and accurate results, even
for quite complex (e.g., 411,000 states in [8]) models.

We then calculate the average number of steps before escape, given the initial
condition was φ, i.e. p[0] = φ. This corresponds to the term Mean First Passage
Time (MFPT) in [8]. The higher MFPT is, the more stable a system is said
to be. There are two cases depending on the probability of taking a step: If
λ2 = 1, then the probability of escape is zero. In this case the system will
take infinitely many steps without escaping to the halt state. The other case
(λ2 < 1) is relatively more complicated and interesting as explained next. Note
that from this point on we’ll focus on the case λ2 < 1.

3.3 (System-wide) First Passage Time (FPT)

Given the probability of taking a step without escaping is λ2 < 1, the probability
of taking n steps only, equivalently escaping at the nth step is simply

Pr(x[n] = x1, x[n− 1] 6= x1) = λn−12 (1− λ2). (22)

Realize that as n → ∞, the right hand side goes to zero, i.e., the system will
eventually escape. Note that we also count the step which ended up escaping
as a step. This can be verified considering escaping at the first step (taking 1
step only). When n = 1 is substituted, we get 1 − λ2 as expected. Then, the
expected (mean) number of steps can be calculated as

9



MFPT = E[FPT ]

=

∞∑
n=1

n Pr(x[n] = x1, x[n− 1] 6= x1)

=

∞∑
n=1

nλn−12 (1− λ2) =
1

1− λ2
,

(23)

where we used the fact that λ2 < 1. As a result, MFPT can then be calculated
using

M =

{
∞ λ2 = 1,

1
1−λ2

λ2 < 1.
(24)

The MFPT of our toy example is

1

1− λ2
≈ 1.0099× 104. (25)

So, in the toy example if we start with the initial state distribution φ given in
(18), then the system will take approximately 10,099 steps on average.

The standard deviation of FPT can be calculated by

E[FPT 2] =

∞∑
n=1

n2 Pr(x[n] = x1, x[n− 1] 6= x1)

=

∞∑
n=1

n2λn−12 (1− λ2) =
1 + λ2

(1− λ2)2

=⇒
√
E[FPT 2]− (E[FPT ])2 = M

√
λ2. (26)

This corresponds to M
√
λ2 ≈ 10, 098.5. For our toy example, as for any

metastable system, λ2 being close to one results in a standard deviation close
to the mean!

We are also interested in obtaining the MFPT vector, m, which gives the
MFPT for each state.

mi :=

0 i = 1,

1 +
∑
j

Ts{ij}mj otherwise. (27)

The equation above says it will take zero steps to go to the halt state if the
system escaped already. Otherwise, the number of steps until halt is 1 less after
a step is taken. For the toy example, this means m1 = 0, m2 = 1 + 0m1 +
0.99m2 + 0.01m3, and m3 = 1 + 0.01m1 + 0.99m2 + 0m3. These equations can
be solved to get

m =

 0
1.01× 104

104

 . (28)
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This means if we start at state x2, we expect to take 1.01 × 104 steps before
escape.

By using (8), it is straightforward to obtain

m =

[
0

(I − T̂ ′)−11

]
. (29)

To be able to calculate (29), we need (I− T̂ ′) to be invertible. This is equivalent
to having λ2 < 1, which is the hidden assumption we made while defining the
MFPT vector. The system-wide MFPT calculated in (23) can be also obtained
by

M = m′φ =
1

‖z‖1
[1 ... 1](I − T̂ )−1z. (30)

This makes sense because each state has its own MFPT, and MFPT of the
metastable distribution is just a convex combination of each state’s MFPT
weighted according to φ. We show the equivalence next.

M̂ =
1

‖z‖1
[1 ... 1](I − T̂ )−1z

=
1

‖z‖1
[1 ... 1](I − T̂ )−1(I − T̂ + T̂ )z

=
1

‖z‖1
[1 ... 1](I + (I − T̂ )−1T̂ )z

=
1

‖z‖1
[1 ... 1]z +

1

‖z‖1
[1 ... 1](I − T̂ )−1T̂ z

= 1 + λ2
1

‖z‖1
[1 ... 1](I − T̂ )−1z

= 1 + λ2M̂ =⇒ M̂ = 1/(1− λ2) = M

(31)

Note that M is upper bounded by the largest element in m. In fact, any initial
state distribution, p[0], will have an MFPT that is a convex combination of the
mi values.

3.4 Why (system-wide) MFPT?

We would like to answer why we should be using MFPT of the metastable
distribution. First of all, it is a lower bound for average steps taken from at
least one of the states, because it is a convex combination of mis. So, there are
state(s) at least as stable. Secondly, it is a good measure of overall stability.
Often systems quickly converge to their metastable distributions, where MFPT
becomes the true value. Thirdly, system-wide MFPT also has advantages over
calculating the MFPT vector. In case Ts is very large, estimating the second
largest eigenvalue is relatively very easy, whereas finding the inverse to calculate
MFPT vector costs more time. Also, a scalar representing the stability is much
easier to understand than a possibly huge vector.
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Let’s assume (Ts) has distinct eigenvalues. Please see [17] for other cases.
Let the initial distribution be

p[0] = c1v1 + c2v2 + ...c`v`. (32)

Note that c1 = 1 to have ‖p[0]‖1 = 1. Then,

p[n] = (T ′s)
np[0] = v1 + c2λ

n
2 v2 + ...+ c`λ

n
` v`. (33)

In the light of this section we see that the metastable distribution is also
given by

φi = lim
n→∞

Pr(X[n] = xi |X[n] 6= x1]), (34)

when the limit exists. (It does for distinct eigenvalues)

3.5 How quickly is the Initial Distribution Forgotten?

First, let’s explain what we mean by being “forgotten”. We say the initial
distribution (condition) is forgotten if either the distribution is the metastable
distribution (p = φ) or the game ended (halt state) (p = [1 0 ... 0]′). So,
the question can be paraphrased as “how quickly do we converge towards the
metastable distribution, given the system is not absorbed yet?”. For systems
with distinct eigenvalues, we propose using

memory constant =
1− λ2

1− |λ3|
. (35)

We are motivated by the fact that
∑∞
n=0 λ

n
i = 1/(1 − λi) for |λi| < 1.

Although this holds for complex λi values too, since |λni | = |λi|n, we use 1/(1−
|λi|) to quantify how many steps it takes before vanishing. The higher λ3 is, the
slower the initial condition is forgotten, i.e., the more steps are required to forget
the same amount of initial condition information (1/(1 − |λ3|) is higher). We
look at λ3, because it gives the worst case scenario, i.e., it gives a conservative
value. We divide (1/(1 − |λ3|) by M = 1/(1 − λ2) to get a relative memory
constant, which is upper bounded by 1.

It is also worth noting that to get a memory constant of 10−6, we need
λ2 = 1 − 10−6(1 − |λ3|) > 1 − 10−6, or equivalently MFPT M > 106. Thus,
small memory constants require metastability.

If the memory constant is very close to one, then we have another mode
almost as stable (as the one associated with λ2). In such cases it may be useful
to use the next |λi| instead of |λ3|, until we have a memory much smaller than
one.

When the eigenvalues are not necessarily distinct, we may have λ2 = |λ3|.
This case is very similar to the one just explained.
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3.6 Epidemics

For the epidemics model outlined in Section 2.2, the stochastic matrix is given
by

Ts =

[
1 0 0 0

(1−β)δ (1−δ)(1−β) βδ β(1−δ)
(1−β)δ βδ (1−δ)(1−β) β(1−δ)
δδ δ(1−δ) δ(1−δ) (1−δ)(1−δ)

]

=


1 0 0 0

0.002 0.198 0.008 0.792
0.002 0.008 0.198 0.792
0.001 0.0099 0.0099 0.9801

 .
(36)

λ2 is such that MFPT is M = 6.8383 × 103. In addition, λ3 = 0.19, and the
memory constant is 1.8× 10−4. Small memory constant results in states having
a MFPT close to either zero or M .

m =


0

6822.7
6822.7
6838.7

 φ =


0

0.0122
0.0122
0.9757

 (37)

3.7 Europe Tour

We now look at the example provided in Section 2.3. We have λ2 = 0.866 and
λ3 = 0.6355. As a result MFPT is M = 7.4643 and the memory constant is
0.3676. Due to the high memory constant, we see a high variation between the
MFPT of each state.

m =



0
8.4084
1.265
4.5381
10.6749
2.064
2.2767
8.2196


φ =



0
0.4620

0
0.2006
0.1028
0.0253
0.0338
0.1754


(38)

As an interesting fact, note that there is a zero probability of being in Athens
in the metastable distribution, because you can only go to Athens from Istanbul,
which is the absorbing state.

3.8 Modified Europe Tour

Since metastable systems with a small memory constant are of interest to the
authors, we modify the Europe tour example by hypothetically assuming the
population of Paris is 1 billion instead. Then, we have a MFPT of M = 10, 823
and the memory constant drops to 1.1688 × 10−4. This results in system-wide
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MFPT being more “valid”, because most of the states either have a MFPT close
to either zero or M .

m =



0
10, 825

1
10, 652
10, 825
2, 121
10, 674
10, 824


φ =



0
0.0081

0
0.0034
0.0031

0
0.0027
0.9826


(39)

This time in addition to Athens, Kiev also no longer appears in the metastable
distribution. This is because within several steps we will typically move directly
from Kiev to either Istanbul (the absorbing state) or Berlin. The latter almost
implies going to Paris in the following step due to high population there. Kiev
has a MFPT that is not very small or close to the system-wide MFPT, because
m1 = 0, m4 ≈M , and

m6 = Ts{61}m1 + Ts{64}m4 + Ts{66}m6 (40)

implies

m6 ≈
Ts{64}

1− Ts{66}
= 2, 153. (41)

4 Measuring Metrics Other Than Steps

Calculating the discrete time to a state of interest has potential to be very useful,
but in some applications we might be interested in metrics other than discrete
time. To illustrate, we will build on the modified Europe Tour of Section 3.8.
Instead of how many decisions it took before reaching Istanbul, we might be
interested in travel-time or distance to Istanbul. For this matter, we propose
the term Mean First Passage Value (MFPV), where “value” depends on the
task, e.g., Mean First Passage Distance.

4.1 Mean First Passage Value (MFPV)

First, note that Mean First Passage Value (MFPV) is a generalization of MFPT.
Equivalently, MFPT is a special case of MFPV, where value is discrete time
steps.

Let us start by redefining m from (27) as the MFPV vector, which gives the
MFPV for each state, as

mi :=

0 i = 1∑
j

Ts{ij}Tv{ij} +
∑
j

Ts{ij}mj otherwise, (42)
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where Tv{ij} is the value (reward) of transitioning from state xi to xj . For
example, travel from Rome to Paris takes 12 hours 46 minutes. Then, we can
calculate vector m as

m =



0

(I − T̂ ′)−1



∑
j

Ts{2j}Tv{2j}

.

.

.∑
j

Ts{`j}Tv{`j}




. (43)

And the (system-wide) MFPV is simply

M = m′φ. (44)

4.2 Modified Europe Tour

For the modified Europe tour example and the information provided in Table 2,
Mean First Passage Distance is 325.68 thousand km. This is achieved by setting,
for example, Tv{24} = 1, 098 km, which corresponds to the distance between
London and Berlin.

Table 2: Explanation of each state

Time (h:m) Distance (km)

London (2) - Paris (8) 5:06 454

London (2) - Berlin (4) 10:25 1,098

Madrid (5) - Paris (8) 11:10 1,270

Rome (7) - Paris (8) 12:46 1,419

Berlin (4) - Paris (8) 9:18 1,055

Berlin (4) - Kiev (6) 14:41 1,329

Berlin (4) - Istanbul (1) 21:39 2,210

Kiev (6) - Istanbul (1) 19:00 1,459

Rome (7) - Istanbul (1) 22:46 2,262

Athens (3) - Istanbul (1) 11:13 1,095

To calculate the travel-time only (excluding the days spent in a city), we set
Tv{ii} = 0. Then, it takes 128 days on average before we are in Istanbul. The
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MFPV vector for this case is

m =



0
128.4756
0.4674

126.6098
128.7334
25.9478
127.0149
128.2681


days. (45)

On the other hand, if we also include the days spent in a city (remember that
a decision is made after spending a day in the city), we need to set Tv{ii} = 1
day to obtain MFPV of 29 years, which is much higher than 128 days. One
reason of this is because once in Paris, there is a 0.9825 probability to stay in
Paris.

4.3 The Value

Often, one wishes to include multiple objectives in a single value function, for
example for walking robots penalizing failure events (e.g., falling down) while
also rewarding fast speed and low energy use. This can be achieved since the
value (i.e., cost function) does not need to have a physical correspondence,
number of steps minus 10−3 times energy consumption is a valid value definition.
Please see [11] for further details and usage of this example.

5 Confidence Levels on Value

In some applications, instead of the mean FPV, we may want to have a conser-
vative FPV bound for a particular “confidence level”, pr. That is, one would
observe a value above LFPT with probability pr, and one would observe a value
below UFPT with probability pr.

5.1 First Passage Time (FPT)

The probability of taking more than LFPT steps is λLFPT
2 . Then, the lower

bound on number of steps taken with probability pr can be calculated by

LFPT(pr) = logλ2
pr. (46)

Note that LFPT(1)=0, so we can only guarantee taking a single step, which leads
to the halt state. The probability of taking less than UFPT steps is 1−λUFPT−1

2 .
Then, the upper bound on number of steps taken with probability pr is

UFPT(pr) = logλ2
(1− pr) + 1. (47)
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Note that lim
pr→1

UFPT(pr) = ∞, so it may take infinitely many steps before

converging to the halt state (theoretically). We can then limit the FPT for a
given probability

LFPT ≤ FPT ≤ UFPT. (48)

To have LFPT<UFPT we require pr > λ2/(1 + λ2), which is approximately
0.5 for λ2 ≈ 1. To illustrate the advantage of looking to FPT, let’s consider
the modified Europe tour example. The probability of the journey taking more
than M = 10, 823 days is only 36.79 %. On the other hand, we have

1, 140 ≤ FPT(0.9) ≤ 24, 921

108 ≤ FPT(0.99) ≤ 49, 842.
(49)

These numbers are not coincidence. As λ2 → 1, the probability of taking M
steps is

lim
λ2→1

λ
1/(1−λ2)
2 =

1

e
≈ 0.3679. (50)

In fact, 0.3679 is an upper limit for the probability of taking 1/(1 − λ2) steps
for any λ2. In addition, when λ2 and pr are close to one, we have

LFPT(pr) =
ln(pr)

ln(λ2)
≈ 1− pr

1− λ2
= (1− pr)M, (51)

UFPT(pr) =
ln(1− pr)
ln(λ2)

+ 1 ≈ −ln(1− pr)M, (52)

where M denotes MFPT.
Note that LFPT is of interest for walking systems, to give a conservative

bound on steps to failure, while UFPT would be helpful in modeling epidemics,
to get a conservative time when everyone will be healthy (i.e., recurrence to an
“all-healthy” system state).

5.2 First Passage Value

Using MFPT and MFPV we can calculate value per step. We then, simply use

FPV =
MFPV

MFPT
FPT. (53)

When the value is the distance in the modified Europe tour example, we obtain

3.4× 104 ≤ FPV(0.9) ≤ 7.5× 105

3.2× 103 ≤ FPV(0.99) ≤ 1.5× 106.
(54)

So, with probability 0.99, the journey will take more than 3.2 thousand or less
than 1.5 million kilometers.
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6 Control Applications

In order to control a system, one needs a goal, e.g., for the Europe tour example,
trying to go to Istanbul as quickly as possible. It is then useful to quantify the
performance towards achieving that goal, e.g., number of days before reaching
Istanbul would be a meaningful metric to minimize. We believe FPV tool would
give useful metrics for many applications. To illustrate, the more steps a walking
robot takes before falling, the more stable it is said to be. Once we quantify the
performance, we can optimize the control.

For the examples we studied in the previous sections, there was no control.
We just illustrated how to calculate FPV for a given Markov Chain. There
are two ways control action comes into play: Low-level and high-level. Let’s
explain by illustrating with the Europe tour. Say the probability for city change
is directly proportional to population to the power k, where 1 ≤ k ≤ 3. What
we previously studied was a special case of this setting with k = 1. Any choice
of k will give a Markov Chain, for which we calculate FPV as shown. Choosing
k is the low-level control problem. Moreover, if we are capable of choosing
an integer k every time a city is to be chosen, then we have three low-level
controllers available. Deciding which one to use for a given city is the high-level
control problem.

Remember that the first three examples in Section 2 were all discrete-time.
So, they were special cases of hybrid systems, which may have either or both
discontinuities and continuous phases. For systems in which an exact (discrete)
Markov chain does not naturally exist, we can create one, using the meshing
process described below.

6.1 Hybrid Model

Let x, γ, and ζ be the internal state, the randomness system experiences, and
the control action respectively. To illustrate, for a walking robot, x is the
robot’s state, γ is random variable representing factors such as terrain variation
or system noise, and ζ is the control action which may be a function of x and γ.
We define vector y := [x; γ; ζ] to represent them all. Then our general hybrid
model is represented as

ẏ = f(y) y ∈ C
y+ = g(y) y ∈ D.

(55)

C and D are known as flow and jump sets [18]. Note that this setting is compat-
ible with less general cases like continuous and discrete systems with/without a
control action or randomness.

6.2 Meshing for Markov Decision Process (MDP) Model

The first step is choosing a Poincaré-like section, noted by S, which does not
necessarily decrease the dimension of the state. However, if the system has not
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yet escaped (from the region of interest), it needs to keep passing through this
section. For example, the hybrid dynamics of walking systems are punctuated
by discrete impacts when a foot comes into contact with the ground. These
impacts provide a natural discretization of the robot motion.

After defining this section, we abuse the notation and refer to x ∈ S simply
by x. Then, the next state (intersecting S) is a function of the current state
x[n], the randomness experienced γ[n], and the controller action during that
step ζ[n] i.e.,

x[n+ 1] = h(x[n], γ[n], ζ[n]). (56)

To obtain a (discrete) Markov Decision Process (MDP) model, we need to
have finite sets for control action, randomness, and state. The first one is
rather easy, we simply design finitely many low-level controllers. The second
(randomness), is straightforward to handle when number of noise sources is low,
e.g., when randomness is in the slope ahead for a walking robot, randomness
set is just one dimensional, which is very easy to discretize by meshing. State
space can be discretized similarly when the state is low dimensional. However,
if the state is high dimensional, discretization is not as intuitive. In case the
intrinsic dimension is low, we can still mesh by cleverly exploring the reachable
state space, as explained in [13].

Once we have finite control, randomness and state sets, we simply simu-
late for each possible h(x, γ, ζ) to obtain a MDP similar to Figure 5, where
γ[n] ∈ {γ1, γ2} and ζ[n] ∈ {ζ1, ζ2}, i.e., there are two available actions (low-
level control) and two possible randomness. Also there are just 3 states, that is
x[n] ∈ {x1, x2, x3}.

132

(ζ1, γ1)

132

(ζ1, γ2)

132

(ζ2, γ1)

132

(ζ2, γ2)

Figure 5: Representation of a Markov Decision Process with two available ac-
tions and two possible randomness

6.3 Policy for ζ

Next, we describe the methodology for deriving the Markov chain model from
a MDP. A policy, π, is what determines which (low-level) control action to take
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at each step. It is the high-level control. Optimal and robust policies can be
obtained using dynamic programming tools [10, 19]. Let’s say, we decide to use
policy

π(x[n], γ[n]) =


ζ2 if x[n] = x2 and γ[n] = γ1

ζ1 if x[n] = x2 and γ[n] = γ2

ζ1 if x[n] = x3 and γ[n] = γ1

ζ2 if x[n] = x3 and γ[n] = γ2.

(57)

Notice that we don’t determine a control action for state x1, since nothing can
be done differently at halt state. When we use ζ[n] = π(x[n], γ[n]), (56) becomes

x[n+ 1] = h(x[n], γ[n], π(x[n], γ[n])), (58)

which is a function of the state and randomness only. The result is illustrated
in Figure 6.

132

(π, γ1)

132

(π, γ2)

Figure 6: MDP of Figure 5 after applying policy π defined in (57)

6.4 Distribution for γ

The last step before obtaining an absorbing Markov chain is to assume a dis-
tribution for randomness. For Figure 6, say P (γ2) = 0.01, i.e., with probability
0.01, γ[n] will be γ2. We then obtain Figure 4, which we already studied. More
complicated systems will end up being surprisingly similar to Figure 4.

7 Conclusion

In this paper, we studied First Passage Time, which is a survival metric. After
providing some motivational examples, we presented system-wide Mean First
Passage Time (MFPT), which is calculated using the second largest eigenvalue
of the stochastic transition matrix. We showed that for metastable systems,
system-wide MFPT is an accurate indicator across a large set of states, includ-
ing those frequently visited. We then introduced Mean First Passage Value
(MFPV), which gives a more general value of interest, e.g., energy expenditure,
distance, or time. We then provided bounds on First Passage Value (FPV) for
a given confidence level. The last section of this paper was perhaps the most
important one, because it showed how these tools explained can be used to
low-level and high-level control a hybrid systems.
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