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Email: first.lastname@tuebingen.mpg.de

†Computational Learning and Motor Control lab
University of Southern California, Los Angeles, CA, USA

Abstract—The Gaussian Filter (GF) is one of the most widely
used filtering algorithms; instances are the Extended Kalman
Filter, the Unscented Kalman Filter and the Divided Difference
Filter. GFs represent the belief of the current state by a Gaussian
with the mean being an affine function of the measurement. We
show that this representation can be too restrictive to accurately
capture the dependences in systems with nonlinear observation
models, and we investigate how the GF can be generalized to
alleviate this problem. To this end, we view the GF from a
variational-inference perspective. We analyse how restrictions on
the form of the belief can be relaxed while maintaining simplicity
and efficiency. This analysis provides a basis for generalizations
of the GF. We propose one such generalization which coincides
with a GF using a virtual measurement, obtained by applying
a nonlinear function to the actual measurement. Numerical
experiments show that the proposed Feature Gaussian Filter
(FGF) can have a substantial performance advantage over the
standard GF for systems with nonlinear observation models.

I. INTRODUCTION

Decision making requires knowledge of some variables of
interest. In the vast majority of real-world problems, these
variables are latent, i.e. they cannot be observed directly and
must be inferred from available measurements. To maintain an
up-to-date belief over the latent variables, past measurements
have to be fused continuously with incoming measurements.
This process is called filtering and its applications range from
robotics to estimating a communication signal using noisy
measurements.

A. Dynamical Systems Modelling

Dynamical systems are typically modelled in a state-space
representation, which means that the state is chosen such
that the following two statements hold. First, the current
observation depends only on the current state. Secondly, the
next state of the system depends only on the current state.
These assumptions can be visualized by the belief network
shown in Figure 1.

We assume the system to be stationary, i.e. there is no
explicit dependence on time. Therefore, the absolute time
indices are irrelevant. Only the time difference within a figure
or equation is of importance. To simplify notation, we will use
the indices 1, 2, 3 throughout the paper.

x1 x2 x3

y1 y2 y3

Figure 1. The belief network which characterizes the evolution of the state
x and the observations y.

A stationary system can be characterized by two functions.
The process model

x2 = g(x1, v2) (1)

describes the evolution of the state. Without loss of generality,
we can assume the noise v2 to be drawn from a Gaussian with
zero mean and unit variance, since it can always be mapped
onto any other distribution inside of the nonlinear function
g(·). The observation model

y2 = h(x2, w2) (2)

describes how a measurement is produced from the current
state. Following the same reasoning as above, we assume the
noise w2 to be Gaussian with zero mean and unit variance.
The process and observation models can also be represented
by distributions. The distributional form of both models are
implied by their functional form

p(x2|x1) =

∫
v2

δ(x2 − g(x1, v2))p(v2) (3)

p(y2|x2) =

∫
w2

δ(y2 − h(x2, w2))p(w2) (4)

where δ is the Dirac delta function. While both representations
contain the exact same information, sometimes one is more
convenient than the other.

B. Exact Filtering

The desired posterior distribution over the current state
p(x2|y:2) can be computed recursively from the distribution
over the previous state p(x1|y:1); the subscript (: t) denotes
all time steps up to t. This recursion can be written in two
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Figure 2. A taxonomy of filtering algorithms.

steps, a prediction step

p(x2|y:1) =

∫
x1

p(x2|x1)p(x1|y:1) (5)

and an update step

p(x2|y:2) =
p(y2|x2)p(x2|y:1)∫

x2

p(y2|x2)p(x2|y:1)
. (6)

Kalman [10] found the solution to these equations for linear
process and observation models with additive Gaussian noise.
However, filtering in nonlinear systems remains an important
area of research. Exact solutions [2, 5] have been found for
only a very restricted class of process and observation models.
For more general dynamical systems, it is well known that
the exact posterior distribution cannot be represented by a
finite number of parameters [11]. Therefore, the need for
approximations is evident.

C. Approximate Filtering

Approximate filtering methods are typically divided into
deterministic, parametric methods, such as the Unscented
Kalman Filter (UKF) [9] and the Extended Kalman Filter
(EKF) [19], and stochastic, nonparametric methods such as
the Particle Filter (PF) [7]. In this paper, we argue that there
is a more fundamental division between filtering methods.

To the best of our knowledge, all existing filtering al-
gorithms either compute expectations with respect to the
conditional distribution p(x2|y:2) or with respect to the joint
distribution p(x2, y2|y:1). In Figure 2, we divide approximate
filtering algorithms according this criterion. The computa-
tional power required to numerically compute expectations
with respect to p(x2|y:2) increases exponentially with the
state dimension, limiting the use of such methods to low
dimensional problems. In contrast, expectations with respect
to the joint distribution p(x2, y2|y:1) can be approximated
numerically with linear complexity in the state dimension. In
Section III, we show how this fundamental difference arises.

Since conditional expectation methods suffer from the curse
of dimensionality, we focus on joint expectation methods in
this paper. To the best of our knowledge, all such methods
approximate the true joint distribution p(x2, y2|y:1) with a
Gaussian distribution q(x2, y2|y:1) and subsequently condition
on y2, which is easy due to the Gaussian form. This approach
is called the Gaussian Filter, of which the well known EKF
[19], the UKF [9] and the Divided Difference Filter (DDF)
[15] are instances [21, 8].

Morelande and Garcia-Fernandez [14] show that for non-
linear dynamical systems, Gaussians can yield a poor fit to
the true joint distribution p(x2, y2|y:1), which in turn leads
to bad filtering performance. To address this problem, we
search for a more flexible representation of the belief that can
accurately capture the dependences in the dynamical system,
while maintaining the efficiency of the GF.

In Sections II to IV, we first review existing filtering
methods, in particular the GF. Then we find some desiderata
for the form of the approximate belief in Section V to provide
a basis for efficient generalizations of the GF. In Section VI,
we propose one possible form of the approximate belief and
show that this generalization coincides with the GF using a
virtual measurement given by a nonlinear function of the actual
measurement. Numerical examples in Section VII highlight
the potential performance gains of the proposed filter over the
standard GF.

II. APPROXIMATE PREDICTION

We start out with the distribution p(x1|y:1) computed in the
previous time step. The representation of the beliefs might be
parametric, such as a Gaussian, or it might be nonparametric,
e.g. represented by a set of samples. In any case, the goal
is to find the prediction p(x2|y:1) given the previous belief.
When there is no closed form solution to (5), we have to settle
for finding certain properties of the predicted belief p(x2|y:1)
instead of the full distribution. For all filtering algorithms
we are aware of, these desired properties can be written as
expectations ∫

x2

f(x2)p(x2|y:1). (7)

For instance with f(x2) = x2, we obtain the mean µ, and
with f(x2) = (x2 − µ)(x2 − µ)T , we obtain the covariance.
These expectations can then be used to find the parameters
of an approximate distribution. A widely used approach is
moment matching, where the moments of the approximate
distribution are set to the moments of the exact distribution.
We will analyse such methods in more detail below. What is
important here is that we are always concerned with finding
expectations of the form of (7).

We substitute (5) in (7) in order to write this expectation in
terms of the last belief and the process model:∫

x2

f(x2)p(x2|y:1) =

∫
x2

f(x2)

∫
x1

p(x2|x1)p(x1|y:1). (8)



Substituting the distributional process model (3) and solving
the integral over x2, which is easy due to the Dirac distribution
δ, we obtain∫
x2

f(x2)p(x2|y:1) =

∫
x1,v2

f(g(x1, v2))p(v2)p(x1|y:1). (9)

For certain process models g and functions f , it is possible to
find a closed form solution. In general, however, this integral
has to be computed numerically. Since p(v2) is the Gaussian
noise distribution and p(x1|y:1) is the previous belief in the
representation of choice, it is generally possible to sample
from these two distributions. This is crucial since it allows
for efficient numerical integration.

One possibility is to use Monte Carlo sampling to approx-
imate the expectation from (9). The standard deviation of the
estimate is proportional to 1√

L
, with L being the number

of samples. The dimension of the state does not affect the
standard deviation of the estimate [16].

Another possibility is to use deterministic numerical inte-
gration algorithms, such as Gaussian quadrature methods. The
complexity of such methods typically scales linearly with the
state dimension [21].

Which particular numeric integration method is used to
compute the approximate expectations is inconsequential for
the results presented in this paper. What is important is that
expectations of the type required in the prediction step can
be approximated efficiently, even for a high dimensional state.
This is unfortunately not the case for the update step, which
is the issue we are addressing in this paper.

III. APPROXIMATE UPDATE

The goal of the update step is to obtain an approximation
of the posterior p(x2|y:2), based on the belief p(x2|y:1) which
has been computed in the prediction step.

A. Computation of Conditional Expectations

As for the prediction, when there is no exact solution to
(6), we compute expectations with respect to the posterior∫
x2
r(x2)p(x2|y:2), where r(·) is an arbitrary function. We

insert (6) to express this expectation in terms of the observation
model and the predicted distribution:∫

x2

r(x2)p(x2|y:2) =

∫
x2

r(x2)p(y2|x2)p(x2|y:1)∫
x2

p(y2|x2)p(x2|y:1)
. (10)

Both the numerator and the denominator can be written as∫
x2

f(x2)p(y2|x2)p(x2|y:1) (11)

with f(x) = r(x) for the numerator and f(x) = 1 for
the denominator. The update step thus amounts to computing
expectations of the form of (11).

As in the prediction step, we can approximate this expec-
tation either by sampling, which is used in Sequential Monte

Carlo (SMC) [7, 4], or by applying deterministic methods such
as Gaussian quadrature [12].

There is, however, a very important difference to the pre-
diction step. We now need to compute the expectation of a
function f weighted with the observation model p(y2|x2). If
these weights are very small at most evaluation points, the
numeric integration becomes inaccurate, an effect known as
particle deprivation in particle filters [4].

Unfortunately, this effect becomes worse with increasing
dimensionality. To see this, consider a simple example with
predictive distribution p(x2|y:1) = N (x2|0, I) and observation
model p(y2|x2) = N (y2|x2, I). Both the state and measure-
ment dimensions are equal to D. Computing the expected
weight, i.e. the expected value of the likelihood, yields

E[p(y2|x2)]=

∫
x2,y2

p(y2|x2)p(y2|x2)p(x2|y:1) = (2
√
π)−D. (12)

That is, the expected weight decreases exponentially with the
dimension D. In fact, it is well known that the computational
demands of such methods increase exponentially with the
state dimensionality [13, 3, 16]. Thus, methods that rely on
the computation of conditional expectations are restricted to
dynamical systems which either have a simple structure such
that expectations can be computed analytically, or are low
dimensional such that numeric methods can be used.

B. Computation of Joint Expectations

There are a number of approaches which avoid computing
such expectations with respect to the conditional distribution
p(x2|y:2). Instead, these methods express the parameters of the
approximate posterior q(x2|y:2) as a function of expectations
with respect to the joint distribution:∫
x2,y2

f(x2, y2)p(y2, x2|y:1)=

∫
x2,y2

f(x2, y2)p(y2|x2)p(x2|y:1) (13)

Inserting the observation model from (4) into the joint expec-
tation above and solving the integral over y2 yields∫

x2,y2

f(x2, y2)p(y2, x2|y:1) =

∫
x2,w2

f(x2, h(x2, w2))p(w2)p(x2|y:1).

(14)

This term has the same form as the expectation in the
prediction step (9). It is an integral of an arbitrary function
with respect to probability densities that can be sampled. This
allows us to approximate this expectation efficiently, even for
high dimensional states.

C. Conclusion

The insight of this section is that computing expecta-
tions numerically with respect to the conditional distribution
p(x2|y:2) requires exponential computational power in the
state dimension, whereas the complexity of computing expec-
tations with respect to the joint distribution p(x2, y2|y:1) scales



linearly with the state dimension. Note that expectations with
respect to the marginals p(x2|y:1) and p(y2|y:1) are a special
case of an expectation with respect to the joint distribution
and can be computed efficiently as well.

In the remainder of the paper, we only consider the update
step. Thus, the only variables we require are x2 and y2; x1

will not be considered. Therefore, we drop the indices for
ease of notation. Furthermore, we make the dependence on y:1

implicit. That is, p(x2, y2|y:1) becomes p(x, y) and p(x2|y:2)
becomes p(x|y), etc.

IV. THE GAUSSIAN FILTER

The advantage in terms of computational complexity of joint
expectation filters over conditional expectation filters comes
at a price: The approximate posterior q(x|y) must have a
functional form such that its parameters can be computed
efficiently from these joint expectations. To the best of our
knowledge, all existing joint expectation filters solve this issue
by approximating the true joint distribution p(x, y) with a
Gaussian distribution:

q(x, y) = N
((

x
y

) ∣∣∣(µx
µy

)
,

(
Σxx Σxy
Σyx Σyy

))
. (15)

The parameters of this approximation are readily obtained by
moment matching, i.e. the moments of the Gaussian are set to
the moments of the exact distribution:

µx =

∫
x

xp(x)

µy =

∫
y

yp(y)

Σxx =

∫
x

(x− µx)(x− µx)T p(x)

Σyy =

∫
y

(y − µy)(y − µy)T p(y)

Σxy =

∫
x,y

(x− µx)(y − µy)T p(x, y).

(16)

All of these expectations can be computed efficiently for
reasons explained in the previous section.

After the moment matching step, we condition on y to
obtain the desired posterior, which is a simple operation since
the approximation is Gaussian:

q(x|y)=N(x|µx+ΣxyΣ−1
yy (y−µy),Σxx−ΣxyΣ−1

yy ΣTxy). (17)

This approach is called the Gaussian Filter (GF) [8, 18, 21].
Widely used filters such as the EKF [19], the UKF [9] and
the DDF [15] are instances of the Gaussian Filter, differing
only in the numeric integration method used for computing
the expectations in (16).

While much effort has been devoted to finding accurate
numeric integration schemes for computing these expectations,
there seems to be no joint expectation method using a non-

Gaussian joint approximation q(x, y). The posterior (17),
which we ultimately care about, is therefore Gaussian in the
state x with the mean being an affine function of y. As
we show in the experimental section, this form can be too
restrictive to accurately capture the relationship between the
measurement and the state in nonlinear settings. This leads to
information about the state being discarded and ultimately to
poor filtering performance.

V. GENERALIZATION OF THE GAUSSIAN FILTER

In this section, we investigate whether it is possible to find
a more general form of the approximate posterior q(x|y) that
still allows for efficient computation of the parameters. To
this end, we write the problem of finding the parameters of
the approximation as an optimization problem.

In the GF, the parameters Θ of the Gaussian belief q(x, y|Θ)
are found by moment matching. For a Gaussian approxima-
tion, moment matching is equivalent to minimizing the KL-
divergence [1]

KL[p(x, y)|q(x, y|Θ)] =

∫
x,y

log

(
p(x, y)

q(x, y|Θ)

)
p(x, y). (18)

By minimizing (18) with respect to Θ, we can thus retrieve the
GF. Furthermore, the KL-divergence has convenient analytic
properties. It is a widely used objective for matching distribu-
tions and can be justified from an information theoretic point
of view [1].

Having found an appropriate objective for the approxi-
mation, it is natural to ask if it is possible to find more
general, non-Gaussian approximations. The form of q(x, y|Θ)
is restricted by the requirement of being able to condition
on y in closed form in order to find the approximate con-
ditional q(x|y,Θ). This requirement is met automatically if
we choose the form of the conditional distribution and the
marginal distribution separately, instead of picking a form
for the joint distribution. The joint distribution is then given
by q(x, y|Θ) = q(x|y, θ)q(y|ϑ), where we have split the
parameter set Θ into θ and ϑ. Any conditional and marginal
distributions can be combined to form a valid joint distribu-
tion. Hence, the respective parameter sets θ and ϑ can be
chosen independently. Imposing any constraints tying the two
parameter sets together would restrict the flexibility of the joint
distribution unnecessarily.

Inserting this factorization into (18), we obtain

KL[p(x, y)|q(x, y|Θ)]=c(ϑ) + KL[p(x, y)|q(x|y, θ)] (19)

where we have collected all terms independent of θ in c(ϑ).
Since only the conditional distribution is of interest, we will
maximize with respect to θ. Hence, we can drop the terms
which do not depend on θ, which leads to the objective
function

KL[p(x, y)|q(x|y, θ)] =

∫
y,x

log

(
p(x, y)

q(x|y, θ)

)
p(x, y). (20)



Note that this is a somewhat unusual KL-divergence, since it
compares a joint distribution with a conditional distribution.
However, this configuration is very desirable in this context.
We can directly obtain the approximate posterior distribution
q(x|y, θ) from the exact joint distribution p(x, y) by minimiz-
ing (20) with respect to θ. Only expectations with respect to
the joint distribution p(x, y) are required, and we have seen
that these can be approximated efficiently.

A. Desiderata for the Form of the Approximation

In the following, we seek conditions on the form of q(x|y, θ)
that allow for an efficient minimization of (20) with respect
to θ.

First, q(x|y, θ) has to integrate to one in x since it is
a probability distribution. We can enforce this condition by
writing

q(x|y, θ) =
r(x, y, θ)∫
x
r(x, y, θ)

(21)

with r(x, y, θ) being any positive function whose integral in
x over the real domain is finite and non-zero.

Furthermore, for the objective in (20) to be well defined, the
support of q(x|y, θ) has to contain the support of p(x, y). Since
p(x, y) could be any distribution, we will choose the form
q(x|y, θ) such that it has infinite support; that is, q(x|y, θ) > 0
everywhere, which implies r(x, y, θ) > 0. This condition is
enforced by writing the approximate distribution as

q(x|y, θ) =
ef(x,y,θ)∫
x
ef(x,y,θ)

(22)

with f(x, y, θ) = log(r(x, y, θ)). The question we will address
in the following is what f has to look like in order to obtain
an efficient filtering algorithm.

Substituting q(x|y, θ) in (20), we obtain

KL[p(x, y)|q(x|y, θ)] = C+∫
y

log

∫
x

ef(x,y,θ)

 p(y)−
∫
y,x

f(x, y, θ)p(x, y)
(23)

where we have collected the terms which do not depend on θ
in C. By setting the derivative with respect to θ to zero, we
obtain a criterion for stationarity

∫
y

∫
x

∂f(x, y, θ)

∂θ
q(x|y, θ)

p(y)=

∫
y,x

∂f(x, y, θ)

∂θ
p(x, y). (24)

If we choose f(·) such that the objective (23) is convex in θ,
then (24) is a sufficient condition for optimality.

Before this system of equations can be solved, all the
integrals have to be computed. The integral over x on the
left-hand side of (24) is an expectation with respect to the
parametric approximation. Since the integrand depends on un-
known parameters, this inner integral cannot be approximated

numerically. Therefore, f has to be chosen such that there is
a closed form solution.

In general, the outer integral over y cannot be solved in
closed form since p(y) can have a very complex form, de-
pending on the dynamical system. However, expectations with
respect to p(y) can be efficiently approximated numerically,
as discussed above. Numeric integration is possible only if
the integrand depends on no other variable than the ones
we integrate out. Therefore, we require f to be such that,
after analytically solving the inner integral over x, all the
dependences on θ can be moved outside of the integral over
y.

On the right-hand side of (24), we evaluate an expectation
with respect to p(x, y). Again, it is not possible for general
dynamical systems to find a closed form solution, but nu-
merical expectations with respect to p(x, y) can be computed
efficiently. To allow for numerical integration, f must be such
that all the dependences on θ can be moved outside of the
integral over x and y.

Finally, after computing the integrals, we have to solve
the system of equations (24) in order to find the optimal θ.
Therefore, f(·) should be such that this solution can be found
efficiently.

It is not clear how the most general q(x|y, θ) complying
with the above desiderata can be found. Nevertheless, this
discussion can guide the search for more general belief repre-
sentations than the affine Gaussian, which leave the efficiency
of the GF intact. The following section provides an example.

VI. THE FEATURE GAUSSIAN FILTER

We propose to generalize the affine Gaussian approximate
posterior of the GF by allowing for nonlinear features φ(y) of
the measurement. More formally, we choose f in (22) as

f(x, y,Γ,Σ) = −1

2
(x− Γφ(y))TΣ−1(x− Γφ(y)) (25)

with parameters θ = (Γ,Σ) and φ an arbitrary feature
function. This leads to an approximate distribution (22), which
is Gaussian in x but can have nonlinear dependences on y,

q(x|y,Γ,Σ) = N (x|Γφ(y),Σ). (26)

In the following, we show that because this approximation
complies with the desiderata from the previous section, the
parameters can be optimized efficiently. We refer to the
resulting filtering algorithm as the Feature Gaussian Filter
(FGF). Finally, we show that the FGF is essentially equivalent
to the standard GF using a virtual measurement, obtained by
mapping the actual measurement through a nonlinear function.

A. Finding Γ

The derivative with respect to Γ is

∂f(x, y,Γ,Σ)

∂Γ
= Σ−1(x− Γφ(y))φ(y)T (27)



and the corresponding analytic integral can readily be solved
since the approximate distribution is Gaussian in x:∫

x

∂f(x, y,Γ,Σ)

∂Γ
q(x|y,Γ,Σ) = 0. (28)

Inserting these results into (24), we can solve for Γ

Γ = E[xφ(y)T ]E[φ(y)φ(y)T ]−1. (29)

B. Finding Σ

The matrix Σ is constrained to be positive definite, such
that the approximate distribution (26) is Gaussian. As it turns
out, the unconstrained optimization yields a positive definite
matrix. Thus, there is no need to take this constraint into
account explicitly.

The derivative with respect to Σ−1 is

∂f(x, y,Γ,Σ)

∂Σ−1
= −1

2
(x− Γφ(y))(x− Γφ(y))T (30)

and the corresponding analytic integral in x is∫
x

∂f(x, y,Γ,Σ)

∂Σ−1
q(x|y,Γ,Σ) = −1

2
Σ. (31)

Inserting these results into (24), we can solve for Σ

Σ = E[(x− Γφ(y))(x− Γφ(y))T ]. (32)

C. Connection to the Gaussian Filter
In the following we show that for a feature φ(y) =

(c, ϕ(y)T )T , which contains a constant c 6= 0 and an arbitrary
sub-feature ϕ, the FGF is equivalent to the GF using ŷ = ϕ(y)
as the measurement. Inserting φ(y) = (c, ŷT )T into (29), we
obtain

Γ =
(
µx−ΣxŷΣ−1

ŷŷ µŷ

c ΣxŷΣ−1
ŷŷ

)
(33)

with the parameters µ(·) and Σ(·) as defined in (16). The mean
of the approximate posterior is

Γφ(y) = µx + ΣxŷΣ−1
ŷŷ (ŷ − µŷ). (34)

Inserting this result into (32), we obtain the covariance

Σ = Σxx − ΣxŷΣ−1
ŷŷ ΣTxŷ. (35)

Clearly, these equations correspond to the GF equations (17).
This means that, if the feature vector φ(y) contains a constant,
the FGF is equivalent to the GF using the virtual measurement
ŷ = ϕ(y) instead of y. In particular, with a feature φ(y) =
(1, yT )T , we retrieve the standard GF.

Applying nonlinear transformations to the physical sensor
measurements before feeding them into a GF is not uncommon
in robotics and other applications (see [6, 20, 17] for example).
The formal analysis herein provides insight into the effect
of such nonlinear transformations and reveals why they are
beneficial. Namely, they allow for a better fit of the conditional
distribution. While these transformations are often motivated
from physical insight or introduced heuristically, we provide
a different interpretation of φ as a means of improving the

fit of the posterior by allowing for more expressive nonlinear
features. This shall be highlighted in the examples in Section
VII, where we use monomials of increasing order as generic
features.

D. Feature Selection

The above analysis shows that adding nonlinear features
gives the approximate distribution more flexibility to fit the
exact distribution. Overfitting is not possible since we are
minimizing the KL-divergence to the exact distribution. It
therefore makes sense to use as many features as the com-
putational speed requirements allow.

Ideally, one would choose a feature which maps the mea-
surement to a representation which relates to the state linearly.
If this is not possible, then generic features such as monomials
can be used.

E. Computational Complexity

The only cause of a difference in computational complexity
between the standard GF and the FGF is the difference in
the dimension of the measurement y and the feature φ(y).
This means that the feature dimension has to be chosen such
that the required computational speed is attained. The feature
dimension can even be lower than the dimension of the actual
measurement if the standard GF is too slow.

VII. ANALYSIS AND SIMULATION OF THE FEATURE
GAUSSIAN FILTER

As the previous analysis suggests, it is beneficial to augment
the measurement with nonlinear features since this gives the
approximation more flexibility to fit the exact distribution, i.e.
to achieve a lower KL-divergence (23). In this section, we
illustrate this effect in more detail for two dynamical systems.

A. Estimation of Sensor Noise Magnitude

The measurement process (2) of a dynamical system can
often be represented by a nonlinear observation model with
additive noise

h(x,M,w) = h̃(x) +Mw (36)

where h̃ is a nonlinear function of the system state, and the
matrix M determines the magnitude of the sensor noise (recall
that w is Gaussian with zero mean and unit variance). Often,
the sensor accuracy (i.e. the matrix M ) is not precisely known,
or it may be time varying due to changing sensor properties
and environmental conditions. It is then desirable to estimate
the noise matrix M alongside the state x. In the following, we
show that this is not possible with the standard GF, but can
be achieved with the FGF.

We define an augmented state x̂ := (x;m), where m is
a column vector containing all the elements of the noise
matrix M . The observation model in distributional form is
p(y|x̂) = p(y|x,m) = N (y|h̃(x),MMT ). The state x and
the parameters m stem from independent processes, and we
therefore have p(x̂) = p(x)p(m). Let us now apply the
standard GF to this problem by computing the parameters in



(16). In particular, we compute the covariance between the
augmented state and the measurement

Σx̂y =

∫
x,m,y

(
x− µx
m− µm

)
(y − µy)T p(y|x,m)p(x)p(m). (37)

The integral over y can be solved easily since p(y|x,m) is
Gaussian,

Σx̂y =

∫
x,m

(
x− µx
m− µm

)
(h̃(x)− µy)T p(x)p(m). (38)

Interestingly, the second factor does not depend on m. There-
fore, the integral over m is solved easily and yields

Σx̂y =

∫
x

(
x− µx
µm − µm

)
(h̃(x)− µy)T p(x) =

(
Σxy

0

)
. (39)

As a result, there is no linear correlation between the measure-
ment y and the parameters m. Inserting this result into (17)
shows that the innovation corresponding to m is zero. The
corresponding part of the covariance matrix does not change
either. The measurement has hence no effect on the estimate
of m. It will behave as if no observation had been made. This
illustrates the failure of the GF to capture certain dependences
in nonlinear dynamical systems.

In contrast, if a nonlinear feature in the measurement y is
used, the integral over y in (37) will not yield h̃(x), but instead
some function depending on both x and m. This dependence
allows the FGF to infer the desired parameters.

Numerical example: For the purpose of illustrating the
theoretical argument above, we use a small toy example. We
consider a single sensor, where all quantities in (36), including
the standard deviation M , are scalars. Since we are only
interested in the estimate of M , we choose h̃(x) = 0. The
observation model (36) simplifies to

h(M2, w2) = M2w2. (40)

Note that we have reintroduced time indices. Picking a simple
process model and an initial distribution

g(M1, v2) = M1 + 0.1v2 (41)
p(M1) = N (M1|5, 1) (42)

the dynamical system (1), (2) is fully defined. This example
captures the fundamental properties of the FGF as pertaining
to the estimation of sensor noise intensity M . The same
qualitative effects hold for multivariate systems (36) for the
reasons stated above.

In Figure 3, we plot the exact conditional distribution
p(M2|y2) implied by this system in grayscale. This distri-
bution was computed numerically for the purpose of com-
parison. It would, of course, be too expensive to use in a
filtering algorithm. The overlaid orange contour lines show the
approximate conditional distribution q(M2|y2) obtained with
the standard GF. No matter what measurement y2 is obtained,
the posterior q(M2|y2) is the same. The GF does not react to
the measurements at all.

Figure 3. Estimation of sensor noise magnitude: Density plot of the
true conditional distribution p(M2|y2) with overlaid contour lines of the
approximate conditional distribution q(M2|y2) of the GF in orange and of
the FGF in blue.
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Figure 4. Estimation of sensor noise magnitude: The simulated noise
parameter M is shown in black, together with the mean and standard deviation
of the estimates obtained with the GF (orange) and the FGF (blue).

The true conditional distribution p(M2|y2) depends on
y2, which means that the measurement does in fact contain
information about the state M2. However, the approximation
q(M2|y2) made by the GF is not expressive enough to capture
this information, which results in a very poor fit to p(M2|y2).

The standard GF is the special case of the FGF with the
feature φ(y) = (1, y)T . Let us take the obvious next step
and add a quadratic term to the feature φ(y) = (1, y, y2)T .
The resulting approximation is represented by the blue con-
tour lines in Figure 3. Clearly, q(x2|y2) now depends on
the measurement y2, which allows the FGF to exploit the
information about the state x2 contained in the measurement.
The approximation q(x2|y2) of the FGF has a more flexible
form, which allows for a better fit of the true posterior.

To analyse actual filtering performance, we simulate the
dynamical system and the two filters for 1000 time steps.
The results are shown in Figure 4. As expected, the standard
GF does not react in any way to the incoming measurements.
The FGF, on the other hand, is capable of inferring the state
M from the measurement y, as suggested by the theoretical



Figure 5. Nonlinear observation model: Density plot of the true conditional
distribution p(x2|y2) with overlaid contour lines of the approximate condi-
tional distribution q(x2|y2) of the GF in orange and of the FGF in blue.

analysis above.

B. Nonlinear Observation Model

In this section, we investigate how the theoretical benefit
of adding nonlinear features translates into improved filtering
performance for systems with nonlinear observation models.
To clearly illustrate the difference of GF and FGF, we choose
a simple system with a strong nonlinearity (step function).
Given the theoretical analysis herein, it is to be expected that
the insights gained from this artificial example extend to more
realistic nonlinear problems in robotics and other applications.

The process model, the observation model, and the initial
state distribution are given by

g(x1, v2) = x1 + v2 (43)
h(x2, w2) = x2 + w2 + 50H(x2) (44)

p(x1) = N (x1|0, 5) (45)

where H(·) is the Heaviside step function.
In Figure 5, we plot the true conditional density p(x2|y2)

with overlaid orange contour lines of the approximate condi-
tional distribution q(x2|y2) obtained using the standard GF.
The contour lines reflect the estimator structure of the GF
in (17). The mean of the approximate density q(x2|y2) is
an affine function of the measurement y2. For nonlinear
observation models, this coarse approximation can lead to loss
of valuable information contained in the measurement y2.

The approximate density q(x2|y2) obtained using a feature
φ(y) = (1, y, y2, y3)T , which is represented by the blue
contour lines in Figure 5, fits the true posterior much better.
This illustrates that nonlinear features allow for approximate
posteriors with much more elaborate dependences on y.

Figure 6 shows how this difference translates to filtering
performance. When x is far away from zero, the nonlinearity
has no effect: the system behaves like a linear system. The
density plot in this regime would be centered at a linear part
of the distribution, and both filters would achieve a perfect fit.
Both the standard GF and the FGF are therefore optimal in that
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Figure 6. Nonlinear observation model: We plot the simulated state x (black)
and the means and standard deviations of the estimates obtained with the GF
(orange) and the FGF (blue).

case. When the state is close to zero, however, the advantage
of the FGF becomes apparent. Its tracking performance is
good even when the state is close to the nonlinearity of the
observation model, due to more flexibility in y2 of the posterior
approximation q(x2|y2).

VIII. CONCLUSION

We showed that the GF can be understood as an optimal ap-
proximation to the exact distribution, subject to the constraint
that the form of the belief q(x|y) be Gaussian in x and affine
in y. Theoretical analysis and simulations showed that this
form can be too restrictive to accurately represent the belief
in nonlinear systems. We discussed how this constraint can
be relaxed while maintaining the efficiency of the GF. This
analysis served as a basis for potential generalizations of the
GF.

We proposed one such generalization, the Feature Gaussian
Filter (FGF). The name is motivated by the fact that the FGF
is equivalent to a GF that uses a virtual measurement, or
feature, which is obtained by applying a nonlinear function to
the actual measurement. We showed both theoretically and in
simulation that using nonlinear features can significantly im-
prove the performance of the GF. For instance, the practically
relevant problem of estimating the sensor noise magnitude
alongside the state cannot be tackled by the standard GF
because the expressive power of its belief is too limited. We
showed that this issue can be resolved by the FGF.

The results obtained in the simulation examples herein
are promising and suggest that the FGF may yield superior
filtering performance for nonlinear problems in robotics and
other applications. Analysing the performance of the FGF in a
more realistic, high dimensional scenario remains future work.

Whether it is possible to find an approximate posterior of a
more general form than in the FGF, while complying with the
requirements derived in Section V, is another open question.
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[18] S. Särkkä. Bayesian filtering and smoothing. Cambridge
University Press, 2013.

[19] H.W. Sorenson. Kalman Filtering: Theory and Appli-
cation. IEEE Press selected reprint series. IEEE Press,
1960.

[20] J. Vaganay, M.J. Aldon, and A. Fournier. Mobile robot
attitude estimation by fusion of inertial data. In IEEE
International Conference on Robotics and Automation,
1993.

[21] Y. Wu, D. Hu, M. Wu, and X. Hu. A numerical-
integration perspective on Gaussian filters. IEEE Trans-
actions on Signal Processing, 2006.

http://statweb.stanford.edu/~owen/mc/
http://statweb.stanford.edu/~owen/mc/

	I Introduction
	I-A Dynamical Systems Modelling
	I-B Exact Filtering
	I-C Approximate Filtering

	II Approximate Prediction
	III Approximate Update
	III-A Computation of Conditional Expectations
	III-B Computation of Joint Expectations
	III-C Conclusion

	IV The Gaussian Filter
	V Generalization of the Gaussian Filter
	V-A Desiderata for the Form of the Approximation

	VI The Feature Gaussian Filter
	VI-A Finding 
	VI-B Finding 
	VI-C Connection to the Gaussian Filter
	VI-D Feature Selection
	VI-E Computational Complexity

	VII Analysis and Simulation of the Feature Gaussian Filter
	VII-A Estimation of Sensor Noise Magnitude
	VII-B Nonlinear Observation Model

	VIII Conclusion

