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Abstract. Behavior Trees are commonly used to model agents for robotics
and games, where constrained behaviors must be designed by human ex-
perts in order to guarantee that these agents will execute a specific chain
of actions given a specific set of perceptions. In such application areas,
learning is a desirable feature to provide agents with the ability to adapt
and improve interactions with humans and environment, but often dis-
carded due to its unreliability. In this paper, we propose a framework
that uses Reinforcement Learning nodes as part of Behavior Trees to ad-
dress the problem of adding learning capabilities in constrained agents.
We show how this framework relates to Options in Hierarchical Rein-
forcement Learning, ensuring convergence of nested learning nodes, and
we empirically show that the learning nodes do not affect the execution
of other nodes in the tree.

Keywords: Behavior Trees, Reinforcement Learning, Hierarchical Re-
inforcement Learning, Agent Modeling, Robotics, Games

1 Introduction

Some applications require a strict control of autonomous agents, i.e., the agent
must be reliable to perform the right action in the right moment to achieve its
goals, with minimum (ideally zero) chance to fail. For example, consider a large
robot that interacts with humans in an industry. This robot must operate very
carefully in order not to damage other equipments neither harm humans.

A Behavior Tree (BT) is a plan representation and decision making tool
for modeling autonomous agents mainly used in the video games industry, but
gaining attention in robotics, control theory and general agent modeling. BT's are
appealing because they allow human experts to design constrained behaviors. We
define a constrained behavior as a control block that guarantees the execution
of a specific chain of actions given a specific set of perceptions.

Behavior Trees provide several powerful features to model constrained agents,
such as: reliability that the agent will perform exactly the behaviors designed by
the expert; flexibility to reuse behaviors, and build and maintain large models
without losing readability; and an easiness to debug and identify possible errors.
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However, Behavior Trees also have limitations, for example: 1) in general, a
good agent must have a large set of behaviors in order to respond differently to
the events in the environment, but a BT model depends entirely on the expert
manual work, therefore, creating good agents demands much time and effort
from the expert to design and test this large set of behaviors; 2) the lack of
variation in behaviors (due to the cost in terms of time or effort to make more
behaviors) makes the agent predictive and repetitive, which can be a negative
factor in applications where the agent interacts with humans; 3) the Behavior
Tree does not have any adaptation mechanism, therefore, agents cannot adapt
to changes in the environment neither improve the initial expert design, this can
also be an issue when agents interact with humans.

One way to bring adaptiveness and avoid repetitiveness is using learning
algorithms. Reinforcement Learning (RL), in particular, can be used to model
learning agents that can adapt to unknown environments and optimize their per-
formance in real time and in an online way. However, learning is often discarded
in applications that require constrained agents because it can bring harmful
problems to the agent and to the task, some problems include: it may not guar-
antee convergence or stability, making the agent unreliable; it may require too
much data or time to be trained; large robots, for example, may bring danger
to equipments or living beings; the robot itself can be damaged; characters con-
trolled by computer in competitive games, for example, may learn bad actions
from humans; it may not generalize, performing poorly in other environments
than those presented on training; may converge to sub-optimal behaviors and
never change again.

In this paper we address the problem of adding learning capabilities to con-
strained agents by using Reinforcement Learning together with Behavior Trees,
keeping the advantages and features of BTs and RL while minimizing the risks of
learning. To achieve this, we define a new node in the Behavior Tree, the learning
node, which embeds a local Reinforcement Learning model without changing the
overall tree structure. Based on this node, we propose a general framework for
modeling constrained yet adaptive agents that is related to the Options frame-
work in Hierarchical Reinforcement Learning.

The remainder of this paper is structured as follows. Section [2] presents an
overview of Behavior Trees, together with the formal definition of this tool.
Section [3| describes the basics of the Reinforcement Learning through Markov
Decision Processes and expands it to Hierarchical Reinforcement Learning and
Semi-Markov Decision Processes. Section [d] presents the basis of the proposed
framework and a proof that it is related to the Options framework of Hierarchical
Reinforcement Learning. The proposed framework is also validated empirically
in Section [p| with two agent simulation experiments using a fire control scenario.
Section [6] discusses the relation of this framework with other related works on
Behavior Trees and Reinforcement Learning. Finally, Section [7] presents the final
notes and discusses the future works.
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2 Behavior Trees

A Behavior Tree (BT) is a plan representation and decision making tool used
to model and control autonomous agents. This tool was created in the game
industry [7] with fast adoption by the game development community. BTs are
commonly used to model NPCs (Non-Playable Characters or Characters Con-
trolled by the Computer) and they are viewed as an alternative to FSMs (Finite
State Machines), HFSMs (Hierarchical Finite State Machines) and hand-coded
rules via scripting. Since 2012, there are some efforts to apply BT's on robotics,
including modeling and controlling of UAVs [10], fault tolerance in hybrid and
multi-robot systems [4][2] and an attempt to unify notation and formalize Be-
havior Trees as controller, proving the relation to CHDSs (Controlled Hybrid
Dynamical Systems) [9]. We follow the description proposed by (Marzinotto et
al., 2014), which is the most formal and coherent description of Behavior Trees
in the current literature, but with a few minor changes (please refer to Section
[6] for a comparison).

Behavior Trees provide several features that are important for real-time,
constrained and complex application:

— readability: all information, transitions, connections, relations and condi-
tions modeled by BT's are explicit and compact. This is especially useful for
maintenance and collaborative work;

— maintainability: because transitions in BT are defined by the structure
in an explicit way (the model is not black box), nodes can be designed
independently from one another, thus, when adding, modifying or removing
nodes (or subtrees) it is not necessary to change other pieces of the model.

— scalability: when a BT has many nodes, it can be decomposed into small
subtrees saving the readability of the graphical model.

— reusability: due to the independence provided by BT, the nodes and sub-
trees can be reused in other models and projects.

— goal-oriented: although the nodes are independent from one another, they
still are related by the structure of the model. This allows designers to build
specific sub-trees for a given goal without losing flexibility of the model.

— parallelization: parallelization is possible (and easy to do) because all
worker processes are locally contained to the parallel node.

We define a Behavior Tree as a Directed Rooted Tree G(V, £) with |V| nodes
and |€| directed edges. For a pair of connected nodes, the outgoing node is called
parent and the incoming node is called child. The child-less nodes are called leaves
while the parent-less node is called root, which must have only a single child.
The nodes standing between the root and the leaves are called internal. Each
subtree in the model defines a different behavior. A single leaf node is called a
primitive behavior (also called trivial or atomic behavior). Composed behaviors
use combinations of primitive behaviors and other composed ones, defining a
behavior hierarchy.

Periodically, the root generates a tick signal and propagate it through the
tree branches according to the algorithm defined by each node type. When the
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tick reaches a leaf node, a computation is made and the node returns a state
value: SUCCESS, FAILURE or RUNNINGE Then the returned state value is
propagated back and forth through the tree according to the algorithm defined
by each node type. The tick signal stops when it reaches the root.

Each node in the tree, except the root, belongs to one of the following cate-
gories: Composite, Decorator, Action or Condition. Figure [I] presents the visual
example of them. Nodes of each one of these categories have a specific responsi-
bility and constraints in the tree:

— Composite: nodes of this category are commonly referred to as control-
flow nodes, because their role is to propagate the tick signal to its children,
respecting some defined order. Composite nodes must decide which child will
be ticked and which state value will be returned. A composite node can have
one or more children and preferably does not perform any computation more
than the necessary to choose the children to tick. Composites are represented
graphically by squares with a symbol or rectangles with text.

— Decorator: the goal of decorator is to change the behavior of its child by ma-
nipulating the returned state value or changing the child ticking frequency.
For example, the decorator may invert the result state of its child, similarly
to the NOT operator, or it can repeat the execution of the child for a given
number of times. Decorators have only a single child and are represented
graphically by rhombuses.

— Action: action nodes are obligatorily leaves, they do not propagate the tick
signal. Instead, they perform some computation to change the environment
or the internal state of the system, and return a state value. Actions of a
robot may involve sending signals to the engines, playing sound through
speakers or turning on lights, while the actions of a NPC may involve exe-
cuting animations, performing spatial transformations, playing sounds, etc.
Actions are represented graphically by rectangles.

— Condition: like action nodes, conditions are obligatorily leaves and perform
some computation instead of propagating the tick signal. The difference is
that, a condition node does not change the environment or any internal
variable in the system, it only checks whether a certain condition has been
met or not. To accomplish that, the node commonly has a target variable
and a criterion to base the decision. Examples of condition nodes: “is obsta-
cle close?”, “is other agent visible?”, “is battery low?” or “am I hungry?”.
Conditions are represented graphically by ellipses.

An action returns SUCCESS if it could be completed; it returns FAILURE
if, for any reason, it could not be finished; or returns RUNNING if the action
is still executing. A condition node returns SUCCESS if the condition has been
met, otherwise it returns FAILURE. It never return RUNNING. Composite and

1 We also use a special state called ERROR, which is always propagated immediately
back to the root (similar to RUNNING). This state is not always described as part
of BTs core, but sometimes is useful for debugging.
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Fig. 1. The visual representation of each node category (and the Root). From left to
right: Root, Composite, Decorator, Condition and Action

Decorators handle SUCCESS and FAILURE differently, but, in general, they
return RUNNING as soon as they receive it.

There are no common core decorator, action or condition node type, they
depend on the task. However, there are five core composite node types: Sequence,
Priority, MemSequence, MemPriority and Parallel. Figure [2| shows the visual of
these nodes. There can be other types depending on the application of the model,
but these are generic and necessary nodes to build a complete controller [9]. Each
node type works in a specific way:

— Sequence: when a Sequence node is ticked, it propagates the tick signal to
its children sequentially. If any child returns FAILURE or RUNNING, the
Sequence stops the propagation and returns the received state. However, if all
Sequence children return SUCCESS, the Sequence also returns SUCCESS.
This node is represented graphically by an arrow —.

— Priority: a Priority node (sometimes called Selector) also propagates the
tick signal to its children sequentially when the node is ticked. If any child
returns SUCCESS or RUNNING, the Priority stops the propagation and
returns the received state. If all children return FAILURE, the Priority also
returns FAILURE. This node is represented graphically by a question marker
0

— MemSequence: the MemSequence is a version of Sequence with memory.
It works in a similar way to Sequence, but when a child ¢ returns RUNNING,
the MemSequence node will not propagate the next tick to nodes preceding
i (i.e., it will only tick i, i + 1, i + M). This node is represented graphically
by an arrow — together with an asterisk .

— MemPriority: MemPriority is the memory version of Priority. It does the
same as MemSequence does for Sequence. This node is represented graphi-
cally by a question marker ? together with an asterisk .

— Parallel: when a Parallel node is ticked, it propagates the tick to all its chil-
dren at the same time. Then it returns SUCCESS if S children or more return
SUCCESS}; it returns FAILURE if F or more return FAILURE. Otherwise,
it returns RUNNING. This node is represented graphically by a double arrow
=.

Notice that, with the exception of Parallel, all composite nodes propagate
the tick sequentially, creating the notion of priority among behaviors in the
tree. There are two common ways to represent a Behavior Tree in a 2D layout:
horizontally and vertically. A composite node ticks its children from left to right
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Fig. 2. The visual representation of the core node types. From left to right: Sequence,
Priority, MemSequence, MemPriority, Parallel

in a vertical view, or from top to bottom in a horizontal view. Expanding this
idea, we can say that the left/top branch of the tree (starting from the root)
is the behavior with the highest priority, while the right/bottom branch of the
tree has the lowest priority. This characteristic is essential for a controller, e.g.,
avoiding collisions or falls is more important than exploring the environment.
Please refer to the figures at Section [5| to real examples of a Behavior Tree
model.

3 Reinforcement Learning

We address the problem of adding capacity of learning to an agent that acts
without supervision from experts (i.e., input-output pairs are never presented)
in real-time applications (i.e., it must learn continuously) and preferably in an
online fashion (i.e., update the model upon the arrival of a new piece of infor-
mation). This problem can be formulated as a Markov Decision Process (MDP)
problem, which is the common basis for the Reinforcement Learning task.

In an MDP problem, a learning agent interacts with an environment with
discrete time steps t = 1,2,3,.... On each time step, the agent observes the
system state s, € S and performs and action a; € A,,, where A, is a finite and
non-empty set of admissible actions for a state s. As consequence of the agent
action, the system generates a reward r;;; according to an expected immediate
reward function R(s,a) = E{riy1|s: = s,a; = a} and a next state s;y1 with a
transition probability of P(s'|s,a) = P(st41 = §'|st = s,a: = a).

The goal of the agent is to learn a policy 7 : & x A — [0,1], where A =
U,es As (the set of all actions), that maximizes the expected discounted future
reward from each state s [15]:

V7 (s) = E{res1 + yrepe +V2reas + ... |m, 850 = s} (1)
=E{rey1 + V7 (st41) |7, 8¢ = s}

= Z (s, a) R(s,a)+fsz(s’|s,a)V”(s’) : (2)

a€A,

where 7 (s, a) is the probability of a policy 7 choosing an action a in the state
s, and 7y € [0, 1] is a discount-rate parameter. V™ (s) is called the value function
for 7, and denotes the value of the state s when following a policy 7. An optimal
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policy 7* is any policy that corresponds to the unique optimal value function
V*(s), defined as:

V*(s) = max V7 (s) (3)

us

= max E{rip1 + V" (st41)|st = s,a¢ = a}
ac€Ag

a€A,

max R(s,a)—i—vZP(sﬂs,a)V*(s') . (4)

Unfortunately, the only solutions to Equations [2| and [4] are the Equations
and [3| [I4], respectively, which cannot be computed without knowing R(s,a)
and P(s’|s,a). Alternatively, we can define a state value function Q™(s,a) that
works upon pairs of states and actions, rather than just states. @™ (s, a) denotes
the value of taking an action a while in a state s under a policy m, therefore:

Q" (s,a) = E{riy1 +yreqe + Vrips + ... |7, 8¢ = s,a; = a}
= R(s,a) +’}/ZP(S/‘S,CL)V7‘—(S/)

s’

= R(s,a) +7 Z P(s'|s,a) Z n(s’,a)Q7(s',ad),

s’ a’

and its respectively optimal value Q*(s, a):

Q*(s,a) =maxQ"(s,a)

= R(s,a) + 7 Z P(s']|s,a) max Q*(s', a’).

Supposing that at each state s, the agent performs an action a and receives
a reward r, and then observes the new state s’. We can approximate Q*(s, a) by
updating an estimate Q(s,a):

Qr+1(s,a) = (1 — ax)Qk(s,a) + ay {7“ +7 max Qr(s',a)|, (5)

where aj is a time-varying learning-rate parameter. This process is called Q-
learning, which is a classical and widely used Reinforcement Learning algorithm.
With this update process, Q) converges to Q* with probability 1 if at the limit,
all admissible state-action pairs are updated infinitely often, and ay decays with
time, regardless of the policy being followed [I4][1].

3.1 Hierarchical Reinforcement Learning

While most classical reinforcement learning relies on the configuration described
by MDPs, Hierarchical Reinforcement Learning (HRL) models have their basis
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on Semi Markov Decision Processes (SMDPs) [I]. Due to the generalization of
SMDPs, these hierarchical models are able to explore the temporal aspects of
the tasks and reduce the impact of the curse of dimensionality by splitting the
task space into several subproblems.

In a SMDP, the learning agent considers the time during transition between
states. This means that, when observing a state s, an agent performs an action
a that takes 7 time step&ﬂ to move to a new state s’. Now, the joint probability
is rewritten to P(s’,7|s,a) and the expected immediate reward function R(s,a)
now gives the amount of discounted reward expected to accumulate over the
waiting time in s given a [I]. Equations for the optimal value function V* and
the optimal state value function @Q* are also rewritten to:

* _ T l * (!
V*(s) = (Eré’ié R(s,a) + /Zv P(s',7|s,a)V*(s) |, (6)
and
Q*(s,a) = R(s,a) + Z’YTP(S',TI& a) max Q*(s',a’), (7)
respectively.

One successful approach based on SMDPs is the Option framework proposed
in (Sutton et al., 1999). An option is a generalization of an action in a way that it
can call other options upon the execution, creating the idea of a hierarchy. When
an option is initiated, it can call another option, then this new option can call
another one, and so on until it finds a primitive option (the actions of the MDP
framework). An option can be defined as 3-tuple (Z, u, ), consisting of an input
set Z C S, a semi-Markov policy p: & x O — [0,1] (where O = {J,.5 Os), and a
termination condition 8 : S — [0, 1]. A given option can only be initiated if, and
only if, the current state s is an element of Z. While executing, it chooses the next
option o with probability u(s,0), the environment changes to state s’, where the
option terminates with probability 3(s’). Notice that p is a semi-Markov policy
over policies, i.e., it can choose the next option based on the entire history h of
states, actions, and rewards since the option was initiated [IJ.

With this approach, the option-value function for y is:

Q"(s,0) =E{rey1 +yriso+ . 97 e + . |E(op, 5, 1) (8)

where £(op, s,0) is the event of p being initiated at time ¢ in s, and ou is
the semi-Markov policy that follows o until it terminates after 7 time steps and
then continues according to u. Respectively, the optimal function are rewritten
to:

Qb(s0) = R(5,0) + 3 P(/l5,0) s Qb(s'.0) (9)

2 Here, we assume 7 to be discrete, but it can be extended to continuous without much
impact [I]
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where:

P(3/|870) = Zp(sl’T)’yT (10)

for all s € S, where p(s’, 7) is the probability that o terminates in s’ after T
steps when initiated in state s. The corresponding Q-learning update is:

Qr+1(s,0) = (1 — ax)Qx(s,0) + ax [7“ +97 Jnax Qr(s',0") |, (11)

4 Learning Framework

We propose a framework for modeling agents that follow behaviors strictly as
modeled by a human expert, and still are able to learn from experience. This
framework allows an expert to manually define which behaviors an agent will
have, to specify when and in which order the behaviors will be executed, and to
specify where learning can be applied. Behavior Trees are used as the base mod-
eling tool for our framework, due to their advantages such as described in Section
2] In summary, BTs are compact, easy to understand, maintain and reuse, they
scale well, have expressive power and can be easily parallelized. We also adopt
Reinforcement Learning in order to support our modeling tool, providing the
capacity to learn in real time with the agent experiences. With RL, agents can
optimize actions in specific situations and be able to adapt to changes on the
environment configuration and dynamics.

In order to make Reinforcement Learning work together with Behavior Trees
we propose the use of Learning Nodes. Within this approach, Reinforcement
Learning can be embedded into Behavior Trees in a modular and reusable way.
We propose two uses of these custom nodes: as action and as composite.

In the Learning Action Node, the expert must choose how to represent the
state s, the actions A, and the reward r, according to the task. Suppose, for
example, a robot with an action node to “grab an object”. This node can use
RL in order to learn how to grab different kinds of objects or improve how to
grab a known object in different positions. In this case, the state could be the
position of the object relative to the robot’s hand, the actions could be the
different joint configurations in the robot’s arm, and the reward function would
return a positive value if the robot could grab the object, otherwise it would
return a negative value.

In the Learning Composite Node, the expert must also choose how to rep-
resent the state s, but the actions A are the children of the composite node.
So, given a state s, the Learning Composite Node selects among the N children
c1,C2,...,cn. The reward function could be provided according to the task or it
could use the state value returned from children ticks (i.e., positive reward for
SUCCESS and negative reward for FAILURE).

As an application example of a Learning Composite Node, consider an agent
in a life simulation. The agent has 5 major behaviors (those which are connected
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directly to the root’s unique child): “find food”, “eat”, “rest”, “hide”’and “run
from predators”. These behaviors can be simple action nodes or complex subtrees
with several other nodes. For this example, the goal of this agent is to learn when
to use these behaviors in order to maximize the chance to survive. In this case,
these behaviors would be children of a Learning Composite Node, thus being
the actions A. The state s could be a series of variables, such as the presence of
predator, distance from food, hungry level, health level, etc. The reward function
of this example could the a combination of one or more variables, such as the
hungry level, fatigue, health level, etc.

To make a formal definition of these two nodes, we exploit the Options
approach for Hierarchical Reinforcement Learning. Reminding that an option
(Z, 1, B) is only initiated if the state s € Z, and while executing the option uses
the policy p to decide which option o (action) will be executed, based on the
history h of past states, actions and rewards since the beginning of execution of
that option. After that, the environment generates a new state s’ with probabil-
ity P(s'|s,0). We argue that, the Behavior Tree defined here can be modeled as
a specialization of an Option-based Hierarchical Reinforcement Learning.

Theorem 1. A Behavior Tree with core nodes is a specialization of Options in
Hierarchical Reinforcement Learning.

Proof. Following the definition presented in Section [3] an option has the fol-
lowing characteristics: 1) it is a hierarchical combination of other options or it
is a primitive option (action of MDP); 2) it has an input set Z, a termination
condition 8 and a policy p; 3) the policy p can choose other options based on
the history h of past states, actions and rewards since the beginning of execu-
tion of that option. In Section [2] we defined a hierarchical behavior exactly as
an option. All nodes in a BT have an input set Z = S because they are not
evaluated before the execution, thus the input set is equal to the whole state set.
All nodes also have a termination condition § defined by each node type (e.g.,
the termination condition of a Priority node is: one child returning SUCCESS or
all children returning FAILURE). Composite and decorator nodes have a fixed
policy w that always calls children sequentially, while actions and conditions
are related to primitive options (does not have a policy, instead they perform
some interaction with the environment). The core composite nodes depend on
the temporal aspect of SMDPs, because their selection of a child ¢; depends the
execution of all children cg,...,c;j—2,¢;—1.

Given this theorem, we can define:

Definition 1. A Learning Composite Node can be seen as an option withZ = S,
with children c1,ca,...,cn as possible actions, a termination condition 8 =1 if
Tick(c;) € {SUCCESS, FAILUREY}, and a policy pu to be learned.

and

Definition 2. A Learning Action Node can be seen as an option with T = S,
with actions a € Ag, a termination condition [, and a policy u to be learned.
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As result from Theorem [I} we can also exploit the features provided from
the Options framework [I4], such as: both learning nodes can be trained using
Q-Learning; guarantee of convergence for nested nodes with the same conditions
to a single Q-Learning model; due to the division of the space, the nodes can
converge faster than a single learning model; nodes can be interrupted by prior-
itized behaviors without problem; intra-option learning can be used to speed up
global convergence among the tree.

5 Experimental Validation

In this Section, we present two simulated fire control scenarios to validate em-
pirically the proposed framework. The following experiments use discrete state
and action Q-Learning in the Learning Nodes. However, continuous versions of
Q-Learning could be used. We also used the Behavior3 library and editor [I3]
for modeling the Behavior Trees. All experiments and custom code are available
onlind’

Both experiments execute 30 trials, each with 400 iterations. At the beginning
of each trial the experiment is reset. All charts show the average results of the 30
trials. The environment is divided into infinite rooms. In each room, the agent
can perform 3 possible actions: save victim, use extinguisher X and change room.
Any given room has 50% of chance to have a victim in the wreckage; if there is a
victim, the agent must save it first. A room also has 50% of chance to have one
of 3 types of fire (types 1,2 and 3, with 1/3 chance each); if there is a fire, the
agent must extinguish it before leaving the room and after saving the victim.
There are 3 types of extinguishers (types A, B and C), each extinguisher can
extinguish only one type of fire, randomly chosen in the beginning of the trial;
this map is unknown to the agent. If the room has no victim and no fire, the
agent must go to the next room. If, at any moment, the wrong extinguisher is
used, the room is lost and the agent must change to the next room.

5.1 Scenario 1

In this scenario, all actions are instantly. Figure [3| shows the Behavior Tree
that models the learning agent. Notice that, after the root child, there are three
branches: the first, with highest priority, represents the behavior save victim; the
second branch, represents use extinguisher X; and the last branch, with lowest
priority, represents change room.

We use a learning action node for use extinguisher X behavior. This node
must learn which extinguisher can be used for each fire type; it is configured
to receive the state s = (fire type), where fire type = {1, 2,3}, and with actions
a = {A, B,C}; this node also receives the reward of +10 if it could extinguish
the fire and —10 otherwise.

Table [ shows the ratio between the correct activations of the three main
behaviors over the total expected activations (i.e., the accuracy for behavior

3 All code will be available in |http://renatopp.com /researchl after revision.
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(0 Change Room

Fig. 3. The Behavior Tree model for the first agent. Only a single action node (Use
Extinguisher) has learning capabilities.

usage). All behaviors are called correctly 100% of the time, this is due to the
tree dynamics that allow the expert to model a strict sequence of behaviors.
Notice that, this table also shows that the learning node (Use Extinguisher)
does not affect the execution of other behaviors in the tree. Figure [d] shows the
convergence of the node’s accuracy during the experiment, compared with the
random baseline.

Accuracy

—— Use Extinguisher
- - Random Baseline

0.0
0

50 100 150 200 250 300 350 400
Iterations

Fig. 4. Accuracy of the “Use Extinguisher” node (a learning action node) compared
with the random baseline.

5.2 Scenario 2

In this scenario, we add more complexity to the task. The agent actions save
victim and use extinguisher X now take time to complete, depending on the
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Table 1. Accuracy of behavior usage.

Behavior Accuracy
Save Victim 1.0
Use Extinguisher 1.0
Change Room 1.0

fire intensity. Any given fire has an intensity fire intensity € {1,2,3}, chosen
randomly for each room. The fire intensity specifies how many ticks the agent
needs to perform the actions (i.e., when fire intensity is 0, all actions are instantly;
when it is 1, actions take 1 tick to be completed; and so on). The fire intensity
is reduced by 1 each tick when the right extinguisher is being used. Notice that
change room is always instantly and the use of the wrong extinguisher makes
the agent lose the room.

d Save Victim

(Ieaming) Select Behavior D

(learning) Use Extinguishea

Change Room

Fig. 5. The Behavior Tree model for the second agent using two nested Learning Nodes.

Figure [§] shows the Behavior Tree that models the learning agent for this
scenario. Now, it uses 2 learning nodes. The first, similar to the one used in the
first scenario, is a learning action using the state s = (fire type), where fire type =
{1,2,3}, and actions a = {A, B, C}; this node receives the reward of W

while using the right extinguisher (i.e., +10 when the fire is extinguished), and
—10 if the wrong extinguisher is used.

Table 2. Accuracy of behavior usage.

Behavior Accuracy
Save Victim 0.974
Use Extinguisher  0.991
Change Room 0.991

The second learning node is the root child, which must learn which behav-
ior must be executed given the state s = (has victim?, has fire?). The node’s
children are the actions a = {save victim, use extinguisher, change room}. This
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node receives the rewards: —10 if the node tries to save and there is no victim,
—1 while saving the victim, and +10 when the victim is saved; —10 if trying to
extinguish a non-existing fire, —1 while extinguishing it, and 410 when the fire
is extinguished; and +10 when the agent leaves the room at the right moment
and —10 otherwise.

10

0.8

Accuracy
o
o

I
IS

0.2

- Select Behavior
—— Use Extinguisher
- - Random Baseline

0.0
0 50 100 150 200 250 300 350 400

Iterations

Fig. 6. Accuracy of the composite and action Learning Nodes.

Again, Table [2] shows the accuracy of the behavior usage. In this case, be-
haviors are called correctly 97% to 99% of the time, differing from the previous
result in scenario 1. This difference is because the learning process needs a step
of trial and error to learn the most effective behavior. Figure [6]shows the conver-
gence of both node’s accuracy during the experiment compared with the random
baseline.

6 Related Work

Behavior Trees were created as alternative to Hierarchical Finite State Machines
(HFSMs) and similar methods, aiming to provide more flexible controller for
Non-Playable Characters (NPCs) in video games [7]. The method had a quick
acceptance in the game industry and, recently, it has been applied to robotics
[10] [9] [3] [4] [2], where BTs received a more formal and standard definition.
We base our developments on the work of (Marzinotto et al., 2014), where the
authors prove the relation of Behaviors Trees to Controlled Hybrid Dynamical
Systems (CHDSs). Our work has some differences to theirs. Firstly, we define the
Behavior Tree as a Directed Rooted Tree (DRT) and not as a Directed Acyclic
Graph (DAG) because we consider that multi parenting is only done in the
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implementation level, not in the modeling level. We also prefer the term Prior-
ity over Selector, due to the similarity to the Sequence node. We also consider
MemSequence and MemPriority as core nodes and not extension to core nodes.
Different from almost all descriptions of BT's, we represent the model graphically
in a horizontal layout due to legibility and space. In our layout, the priority is
given from top to bottom.

Naturally, this is not the first time a custom node is proposed to Behavior
Trees. For example, (Johansson et al., 2012) proposed an emotional node which
uses an “emotion function” to sort the node’s children according to the agents
feelings; (Palma et al., 2011) and (Florez-Puga et al., 2009) propose a query
node that looks for possible subtrees in a Case-Based Reasoning (CBR) systems,
resulting in dynamic trees. As far as we known, there is no use of a custom
learning node neither the use of Reinforcement Learning with Behaviors Trees
in the current literature.

We show that our framework has a close relation to the Options framework
[15], but it has also similarities to other models of Hierarchical Reinforcement
Learning, such as the Hierarchies of Abstract Machines [12] and the MAXQ
model [5]. As a general case, authors in Hierarchical Reinforcement Learning
area see the manual division of behaviors as a problem to be dealt while we use
this as an intrinsic part of our approach, i.e., the manual definition of behaviors
is viewed as a mean to use prior and expert knowledge of the problem.

7 Conclusion

We have proposed a framework to use Reinforcement Learning in behavior-based
agents, providing adaptiveness to physical or virtual agents while respecting the
constraints modeled by the expert. Based on Behavior Trees, we proposed the
creation of a new type of Composite and Action node, called Learning Node,
in which we embed a Q-Learning algorithm to perform a local learning, with-
out affecting how other nodes work. We show that this framework is related
to Hierarchical Reinforcement Learning, being a specialization of the Options
framework, thus ensuring convergence of nested learning nodes, allowing them
to be interrupted before the task is completed and allowing the use of intra-
option learning for more complex models.

We also validate our framework empirically using experiments in simulated
fire control scenarios. The experiments show how to use the expert knowledge to
model the behavior choices without interference of the learning nodes, and con-
firms that nested learning nodes can converge and work with temporal actions.

This framework provides the formalization needed to expand the research on
adaptive and constrained behavior-based agents using Behavior Trees and Rein-
forcement Learning. We expect to further improve this framework by extending
it with capabilities for working in non-stationary and continuous state space,
allowing us to create agents for more complex environments.
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