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Abstract

This paper proposes a new approach to model the tem-

poral dynamics of a sequence of facial expressions. To this

purpose, a sequence of Face Image Descriptors (FID) is

regarded as the output of a Linear Time Invariant (LTI) sys-

tem. The temporal dynamics of such sequence of descrip-

tors are represented by means of a Hankel matrix.

The paper presents different strategies to compute

dynamics-based representation of a sequence of FID, and

reports classification accuracy values of the proposed rep-

resentations within different standard classification frame-

works. The representations have been validated in two

very challenging application domains: emotion recogni-

tion and pain detection. Experiments on two publicly avail-

able benchmarks and comparison with state-of-the-art ap-

proaches demonstrate that the dynamics-based FID rep-

resentation attains competitive performance when off-the-

shelf classification tools are adopted.

1. Introduction

Facial expression analysis and emotion recognition are

of interest in several domains such as human-computer in-

teraction and social behavior understanding. Especially in

socially assistive robotics [23] and computational behav-

ioral science [24], [19], recognition of face expressions and

emotions may help either to improve interactions with a

robot, or to study people’s social engagement in collabo-

rative tasks [17], [35].

Moreover, face expression analysis could be useful in au-

tomatic pain monitoring, which in turn may help to ensure

proper treatment to the patient [20]. Recent works, such

as [21],[12], [27], [2],[25], [26], [9], [10] have focused on

pain/no-pain detection and pain intensity estimation. These

problems require the analysis of spontaneous facial expres-

sions in the wild, namely under strong variations of head

pose and face expressions. Pain detection suffers also of the

difficulty to annotate the data in an objective way. Whilst

patient’s self-report is inexpensive and does not require for

special skills, it has the drawback to be subjective, and it

lacks of specific timing information [20]. Therefore, not

only there are strong inter-patient variations in face expres-

sions, but there are variations also in the pain self-reports.

Typically, approaches for emotion recognition tend to

extract a representation of the face appearance, and adopt

some classification framework. Some approaches [29] use

a frame-based representation; others [6], [18], [30] use also

temporal information. The latter works are motivated by the

fact that face emotions are not instantaneous and the tem-

poral evolution of face image descriptors (FIDs) can help to

discriminate among emotions. Holistic representation of a

sequence of FIDs, such as [29], lacks of temporal informa-

tion, which instead proved to be useful [3].

In this paper, we propose to use the temporal dynamics

of a sequence of FIDs to recognize among different emo-

tions. Dynamics-based methods for emotion recognition

have been proposed in [6] where a descriptor based on the

movement of facial landmarks along the image sequence,

and spatio-temporal appearance features are adopted. While

[6] attempts to embed information about the dynamics at a

feature representation level, works such as [18], [30] at-

tempt to account for the temporal structure of the sequences

of FIDs in the emotion model.

In contrast to these works, we propose to model a se-

quence of FIDs as the output of a Linear Time Invari-

ant (LTI) system in order to perform dynamics-based emo-

tion recognition. System identification [13], [8] or com-

pressive sensing-based techniques [28] could be used to

compare different emotion instances. However, previous

works [14], [16] have shown that it may be possible to avoid

the burden of performing system identification by represent-

ing the output of a LTI system through the corresponding

Hankel matrix. Therefore, in this paper we explore the use



of Hankel matrices in the domain of face analysis. The use

of Hankel matrices, jointly with the dissimilarity score in

[14], presents advantages in terms of space and time com-

plexity.

In this paper, we propose different strategies to compute

a dynamics-based representation that employs Hankel ma-

trices. Our dynamics-based representation permits to easily

compare sequences of different lengths. Comparison of se-

quences of different length is one of the major challenge

in emotion classification. We present experiments in two

different kinds of applications: emotion recognition and

pain detection, and we conduct an extensive validation on

two publicly available benchmarks. The first benchmark

is the extended Cohn-Kanade dataset [19], which allows

us to study the validity of this kind of feature representa-

tion for emotion recognition; the second dataset is the very

challenging PAINFUL dataset [20], which allows us to

study the proposed feature representation for pain localiza-

tion in the wild. Our experiments show that, with standard

and widely used classifiers such as nearest neighbor, linear

SVM and HMM, our dynamics-based emotion representa-

tion allows us to consistently achieve state-of-the-art per-

formance in emotion recognition in comparison to methods

that use more complex machinery and costly training pro-

cedure.

The plan of the work is as follows. In Section 2, we

present works that are related to our feature representation.

In Section 3 we describe how we use a Hankel matrix to

represent face emotions. In Section 4 we provide details of

the adopted classification frameworks and in Section 5, we

present extensive validation of the dynamics-based repre-

sentation. Finally, in Section 6, we present conclusions and

future directions.

2. Related Work

There is an extensive literature on face recogni-

tion [37], [15] and on facial expression analysis [35], [7].

Here we focus on works that try to embed the temporal

structure of the sequence of facial expression either in the

feature representation step or in the emotion-model.

In particular, [11] uses a Constrained Local Model

(CLM) to obtain facial landmarks. Then it extracts patches

around these markers. A sparse representation of the

patches is obtained by applying non-negative matrix factor-

ization. Classification is performed by least-square SVM.

In [6], a descriptor based on the movement of facial land-

mark points over time, jointly with spatio-temporal appear-

ance features is extracted for each face image sequence. The

method attempts to measure horizontal and vertical move-

ments of tracked landmarks of different face parts such as

eyebrows, eyelids, cheeks, and lip corners. To account for

temporal changes in the face appearance, Complete Lo-

cal Binary Patterns from Three Orthogonal Planes (LBP-

TOP) [36] are used. Classification is performed by SVM.

In [22], restricted Boltzmann machine with local interac-

tions (LRBM) is used to capture spatio-temporal patterns

in the data. RBM is used as a generative model for data

representation, and data need to be pre-aligned.

Since a sequence of FIDs is a time series, and may be

affected by temporal warping, in [18] time-series kernel

methods are used for emotional expression estimation using

landmark data only. The work shows that emotion recog-

nition may be done by adopting either the Dynamic Time

Warping (DTW) kernel or the Global Alignment (GA) ker-

nel [4, 5]. Our approach does not require any alignment of

the data, and enables the comparison of sequences of differ-

ent temporal duration.

To capture temporal information about the sequence of

FIDs, Bayesian networks can be adopted. Wang et al. [33]

propose to use Interval Temporal Bayesian Network (ITBN)

to capture the spatial and temporal relations among primi-

tive facial events. First, primitive facial events are identi-

fied, then ITBN is applied to model the interactions of prim-

itives for expression recognition. In [30], a Bayesian ap-

proach is used to model dynamic facial expression temporal

transitions. A face appearance representation is computed

in terms of Local Binary Patterns (LBP), and an expression

manifold is derived for multiple subjects. A Bayesian tem-

poral model (similar to HMM with a non parametric ob-

servation model) of the manifold is used to represent facial

expression dynamics.

In this paper, we model a sequence of FIDs by means of

a dynamical system of unknown parameters. The param-

eters of the dynamical system are embedded in our Han-

kel matrix-based representation. Such representation aims

at capturing the correlation among different face parts over

time. Hankel matrices have already been adopted for action

recognition in [14], which adopts a Hankel matrix-based

bag-of-words approach, and in [16], which models an ac-

tion as a sequence of Hankel matrices and uses a set of

HMM trained in a discriminative way to model the switch-

ing between LTI systems. In contrast to these papers, we

use Hankel matrices to describe the temporal dynamics of

sequences of FIDs. We compare different strategies to com-

pute a dynamics-based representation that employs Hankel

matrices. We also test the effectiveness of our representa-

tion for emotion recognition within several standard classi-

fication frameworks.

3. Dynamics-based Emotion Representation

In this paper, a sequence of face images is processed

to extract a feature representation on a frame-by-frame ba-

sis. This process yields to a time series of feature vectors

[yo� . . . � yτ ], where yt is the feature representation associ-

ated with the t-th face image. Such temporal sequence can

be regarded as the output of an LTI system of unknown pa-



rameters [31].

3.1. Representation of Temporal Dynamics

In a linear time invariant system, two linear equations

regulate the behavior of the system as follows:

xk�1 = A · xk + wk;

yk = C · xk. (1)

The first equation is known as the state equation and in-

volves the variable xk ∈ Ru, which represents the u-

dimensional internal state of the LTI system. The second

equation is known as the measurement equation and pro-

vides a link between the state of the system xk and the

v-dimensional observable measurement yk. In such equa-

tions the matrices A and C are constant over time, and

wk ∼ N�0� Q) is uncorrelated zero mean Gaussian mea-

surement noise.

It is well known [32] that, given a sequence of output

measurements [yo� . . . � yτ ] from Eq.1, its associated trun-

cated block-Hankel matrix is

�H =

�





y0� y1� y2� . . . � ym
y1� y2� y3� . . . � ym�1

. . . . . . . . . . . . . . .

yn� yn�1� yn�2� . . . � yτ





 � (2)

where n is the maximal order of the system, τ is the tempo-

ral length of the sequence, and it holds that τ = n+m− 1.
The Hankel matrix embeds the observability matrix Γ of

the system, since �H = Γ ·X , where X = [x0� x1� · · · � xτ ]
is a matrix formed by the sequence of internal states of the

LTI system.

As previously done in [14], [16], we normalize the Han-

kel matrix �H as follows:

H =
�H

�

|| �H · �HT ||�

. (3)

and compare two Hankel matrices Hp and Hq by:

d�Hp� Hq) = 2− ||Hp ·H
T
p +Hq ·H

T
q ||� . (4)

Such score, introduced in [14], does not define a dis-

tance. Instead, it roughly approximates the subspace angle

between the spaces spanned by the columns of the Hankel

matrices.

3.2. Dynamics-based Expression Representation

In this paper we propose to use a Hankel matrix to rep-

resent the dynamics of a sequence of face images whose

feature representation yields to a time series of vectors

Y = [yo� . . . � yτ ].
We compare three different dynamics-based emotion

representations, that we describe in the following.

• Single Hankel matrix representation: this represen-
tation uses the whole time series Y to build the Hankel

matrix. We note that, even if the sequences may have

different length, the matrix H ·HT used in Eq. 4 is a

squared symmetric matrix and Hankel matrices of se-

quences of different lengths are easily comparable.

• Sliding window-based representation: while the for-
mer representation assumes segmentation of the frame

sequence into emotions, this representation could over-

come this requirement by representing Y through a

sequence of overlapping temporal window (similar to

[16]). However, it may also limit the applicability of

some classification frameworks (such as linear SVM)

because sequence representations may have different

lengths.

• LTI Codebook-based representation: in this rep-

resentation, a bag-of-LTI-systems approach is used.

First, the sequence Y is represented by means of a

single Hankel matrix H . From a training set, a code-

book of LTI systems C = �Ci}, with Ci representing

a Hankel matrix, is computed by using K-medoids on

the dissimilarity score in Eq. 4. The representation of

a time series Y is formed by concatenating the dissim-

ilarity score of the Hankel matrix H and each of the

elements Ci in the codebook. L2-normalization is ap-

plied on the extracted descriptor. Sequences of FIDs

are represented by descriptors of the same length.

4. Adopted Classification Framework

We have tested our dynamics-based emotion represen-

tations within several classification frameworks in order to

test their robustness.

• Nearest Neighbor Classifier �NN): given the

dynamics-based representation of a test sequence, the

predicted class is determined by the class label of the

nearest sequence in the training set;

• Codebook-based Support Vector Machine

�CSVM): Linear one-vs-all SVM models1 are

trained on the LTI codebook-based representation,

and the estimated margin is used to classify the test

sequence.

• Dynamic Time Warping and NN �DTW+NN): this
method is applied to the sliding window-based repre-

sentation. DTW2 is used to align sequences of Han-

kel matrices. The Hankel matrices of each temporal

window are compared through the score in Eq. 4. Af-

ter aligning a test sequence with each sample in the

1We have used the Matlab implementation for linear SVM.
2We have used a slightly modified implementation of the code available

at http://www.ee.columbia.edu/ln/rosa/matlab/dtw/



training set, NN classifier is used to predict the test se-

quence class.

• Nearest Neighbor and Majority Vote �NN+V): this
method assumes that the sliding window-based Hankel

matrix representation is used. Inspired by [34], we

use the NN classifier to predict the class label of each

temporal window. Majority vote is used to predict the

class of the test sequence.

• Hidden Markov Model: this method assumes the

sliding window-based Hankel matrix representation is

used. Similarly to [16], a HMM is used to model the

transition from a LTI system to the other. In con-

trast to [16], we use standard HMM3 with indepen-

dently estimated state spaces. The number of states

has been empirically set to 10. States are initialized

by K-medoids and are not updated during the training

procedure. We train an HMM for each class and use

maximum-likelihood to classify a test sequence.

5. Experimental Results

This paper focuses on the analysis of face expressions

in two challenging application domains: emotion recogni-

tion and pain detection. In the following, first we detail the

frame-based representation adopted to obtain the measure-

ments [y0� · · · yτ ], later we provide a brief description of

each application domain and present our results.

5.1. Feature Extraction

Our formulation is general and can be adopted with sev-

eral kinds of facial features. In this paper, to demonstrate

the whole framework, we consider shape features provided

by an active appearance model [19], [20]. Therefore, face

expressions are represented as trajectories of 2D facial land-

marks as shown in Fig. 1. To build the Hankel matrices, we

use the following frame-based feature representations:

• concatenated 2D facial landmark coordinates (L);

• pairwise landmark distances (D);

• concatenation of pairwise landmark distances and

landmark coordinates (L+D).

For each of these representations, principal component

analysis (PCA) has been applied for noise and dimension-

ality reduction. We have selected a number of projections

covering 99� of the total variance. The retained PCA coef-

ficients are then used to build the dynamics-based represen-

tation as explained in Section 3.

3We used the HMM toolbox available at

http://www.cs.ubc.ca/�murphyk/Software/HMM/hmm.html. We modi-

fied the code in such a way that the observation model is an exponential

distribution and each state is a LTI system represented by an exemplar

Hankel matrix.

The adopted features are meant to represent the behavior

of different parts of the face. The distance-based expression

representation captures also the reciprocal relations among

face parts (for example the joint movement of eyebrows and

lips), and it is independent on the head movements on the

image plane. The concatenation of distances and landmark

coordinates permits to represent reciprocal relations of face

parts given the face shape.

5.2. Emotion Recognition

Emotion recognition deals with the problem of inferring

the emotion (such as fear, anger, surprise, etc.) given a se-

quence of face images. The main difficulty in this domain

arises from the strong inter-subject variations, especially in

some kind of emotions (such as sadness). Other challenges

are connected with the difficulty to extract reliable feature

representations due to illumination changes, biometric dif-

ferences, head pose changes. Moreover, the lack of depth

information makes emotion recognition more difficult due

to ambiguities in the facial shape representation. To demon-

strate the idea behind this paper, we restrict the attention to

segmented emotion recognition in frontal view as done also

in previous works such as [18], [1], [22], [33].

5.2.1 Data and Validation Protocols

We have performed experiments for emotion recognition

on the widely adopted Extended Cohn-Kanade dataset

(CK+) [19]. This dataset provides facial expressions of 210

adults. Participants were instructed to perform several facial

display representing either single or combinations of action

units. Based on the coded action units and by means of a

validation procedure of the assigned label, the segmented

recording of the participants’ emotions were classified into

7 categories: angry, contempt, disgust, fear, happy, sadness,

surprise. In total there are 327 sequences of the 7 anno-

tated emotions, performed by 118 different individuals. The

number of frames of these sequences ranges in [6� 71] with
an average value of about 18 ± 8.6. The dataset provides

landmark tracking results obtained by an active appearance

model, which we use in our experiments. We adopted the

validation protocol suggested in [19], which is leave-one-

subject-out cross-validation.

5.2.2 Emotion Recognition – Results

We have performed an extensive validation of the dynamics-

based emotion representations whose results are reported in

Table 1. The table reports the per-class classification accu-

racy values for each emotion class and the average accuracy

value.

The table is divided in 4 parts. The first part compares

dynamics-based representations when the Hankel matrix is



Figure 1. Sequence of 2D landmarks of six facial expressions (corresponding to surprise) from the CK+ dataset.

Emotions: Angry Contempt Disgust Fear Happy Sadness Surprise Average

Hankel(L)+NN 82.2 77.8 94.9 80 100 64.3 97.6 85.3

Hankel(D)+NN 88.9 83.3 96.6 84 100 67.9 98.8 88.5

Hankel(L+D)+NN 91.1 83.3 94.9 84 100 71.4 98.8 89.1

Hankel(L)+CSVM 86 75 92 85.6 98.3 74.3 95.9 86.7

Hankel(D)+CSVM 89.1 72.8 92.4 89.6 97 80.7 97.2 88.4

Hankel(L+D)+CSVM 89.8 73.9 90.8 89.2 97.4 81.8 97.7 88.7

Hankel(L)+DTW+NN 77.8 77.8 96.6 76 100 50 98.8 82.4

Hankel(D)+DTW+NN 82.2 83.3 98.3 72 100 60.7 98.8 85

Hankel(L+D)+DTW+NN 82.2 83.3 98.3 68 100 60.7 98.8 84.5

Hankel(L)+NN+V 86.7 77.8 91.5 84 100 75 98.8 87.7

Hankel(D)+NN+V 88.9 83.3 94.9 76 100 78.6 98.8 88.6

Hankel(L+D)+NN+V 91.1 83.3 94.9 76 100 78.6 98.8 89

Hankel(L)+HMM 84.4 72.2 89.8 88 95.6 64.3 95.2 84.2

Hankel(D)+HMM 82.2 66.7 93.2 80 97.1 53.6 97.6 81.5

Hankel(L+D)+HMM 84.4 66.7 93.2 80 95.6 57.1 97.6 82.1

L+DTW+NN 42.2 38.9 57.6 20 85.5 17.9 90.4 50.3

D+DTW+NN 57.8 44.4 57.6 20 91.3 28.6 95.2 56.4

(L+D)+DTW+NN 60 66.7 59.3 20 95.6 28.6 92.8 60.4

L+NN+V 33.3 44.4 42.4 36 82.6 14.3 83.1 48

D+NN+V 46.7 38.9 52.5 36 88.4 10.7 84.3 51.1

(L+D)+NN+V 42.2 50 54.2 28 88.4 25 89.2 53.9

L+HMM 20 33.3 45.8 32 66.7 14.3 85.5 42.5

D+HMM 44.4 38.9 57.6 48 82.6 39.3 84.3 56.5

(L+D)+HMM 48.9 50 44.1 40 81.2 21.4 84.4 52.8

CK+ [19] 35 25 68.4 21.7 98.4 4 100 50.4

CLM-based [1] 70.1 52.4 92.5 72.1 94.2 45.9 93.6 74.4

LRBM [22] 97.8 72.2 89.8 84 100 78.6 97.6 88.6

ITBN [33] 91.1 78.6 94 83.3 89.8 76 91.3 86.3
Table 1. Accuracy values (in �) for the Emotion Recognition task on the CK+ dataset. The last four rows report accuracy values of methods

at the state-of-the-art on equal terms of features in input (namely, all the methods are landmark-based approaches). The adopted validation

protocol is leave-one-subject-out cross-validation.

computed over the whole sequence. We compare the sin-

gle Hankel matrix representation with the nearest neighbor

classifier against the LTI system codebook-based represen-

tation and linear one-vs-all SVMs.

The second part of the table compares the sliding

window-based representation within three classification

frameworks: dynamic time warping and NN classifier, NN

classifier and majority vote, hidden Markov models.

The third part of Table 1 reports the results obtained

directly on the raw features (without computing any Han-

kel matrix) in order to highlight the advantage of using the

dynamics-based representation. As the sequences have dif-

ferent lengths, we cannot apply the NN classifier directly on

the raw features, but we are forced to align the sequences

via DTW. We are not presenting results on the raw data

via SVM because this experiment would be similar to the

baseline method reported in [19] (in the lower part of the

table). The fourth part of the table reports accuracy values

of works at the state-of-the-art on equal terms of input data,

which means that all the works we compare with use only



2D facial landmarks.

Due to the randomness in the codebook generation of the

CSVM method and in the state initialization procedure in

HMM, the experiments for CSVM and HMM have been re-

peated 10 times, and average accuracy values are reported.

Overall, the experimental results show that the

dynamics-based emotion representation achieves state-of-

the-art performance almost within all the tested classifi-

cation frameworks. The highest accuracy values are ob-

tained when the whole sequence is used. Among the slid-

ing window-based approaches, only when adopting NN and

majority vote the performance are comparable or higher

than the one reported in [22]. These experiments suggest

that probably emotions can be represented as the output of

just one LTI system and there may be no dynamics switch-

ing as instead may happen in human actions [16]. The re-

sults also show how, in general, pairwise distances are more

informative than 2D landmark trajectories. The concate-

nation of distances and landmarks (L+D) provides only a

small improvement of the performance, with a general in-

crease of the dimensionality of the representation. Finally,

we note that the adoption of Hankel matrices permits to

achieve an increase of more than 63� (on average) of the

accuracy value obtained classifying directly the raw facial

features.

5.3. Pain Detection

With respect to the former segmented emotion recogni-

tion task, pain detection is even more challenging due to the

need of locating the pain event within the frame sequence.

Pain may be a sporadic episode of varying duration, and

painful facial expressions may vary greatly from subject-to-

subject or be confused with other emotions.

In this paper we treat pain detection as a binary classifi-

cation problem. We adopt a sliding window approach and

classify each temporal window in order to detect the pain

event. We empirically set the length of the temporal win-

dow to 10 frames.

5.3.1 Data and Validation Protocols

To test our dynamics-based FID representation for pain de-

tection, we use the Painful dataset [20]. This dataset con-

tains videos of patients’ faces while they were moving their

painful shoulder. The goal is that of recognizing between

pain and no-pain events. The videos were annotated on a

frame-per-frame basis with the Prkachin and Solomon pain

intensity (PSPI) score [20], which ranges in [0, 15] where

0 means no pain, while a value greater than 0 indicates a

certain intensity of pain. However, our method works on

temporal windows and the validation requires a temporal

window-based annotation. To account for this, we consider

the integral score IS, obtained by summing the PSPI score

in a sliding window. We set the label of the temporal win-

dow to 0 if IS < ψ, and to 1 if IS ≥ ψ. Here ψ indicates

a threshold value on the integral score. A low value of IS

means that some frames in the temporal window have PSPI

higher than 1; however, most of the frames in the window

may score PSPI 0. To test the ability of our descriptor to

represent pain events, we test our approach with different

values of ψ in leave-one-subject-out cross validation.

Finally, we note that this dataset is challenging also be-

cause faces are not always in frontal view, and the landmark

points are affected by strong head movements. Therefore,

on this dataset it is of particular interest the comparison be-

tween landmark-based and pairwise distance-based dynam-

ics representation.

5.3.2 Pain Detection – Results

Table 2 reports the accuracy values of our sliding window-

based Hankel matrix representation. We test such represen-

tation on landmarks (L) and on pairwise distance (D) mea-

surements within two frameworks: NN and CSVM.

When adopting NN, the training set has been reduced by

selecting only K medoids for each class, with K set to 300.

When adopting CSVM, a codebook of 50 Hankel matrices

is learned on the training set by K-medoids.

We report in columns the values of the confusion matri-

ces for our binary classification experiment given the cor-

responding threshold value ψ. Positive indicates the pain

event, while Negative indicates the no-pain event. There-

fore TPR (true positive rate) and TNR (true negative rate)

are the diagonal values of the confusion matrix. FNR (false

negative rate) and FPR (false positive rate) are the extra-

diagonal values. We also present the average classification

accuracy (the average of the diagonal values).

Table 2 is divided into 4 parts. The first part reports val-

ues of the NN classifier when the Hankel matrix is com-

puted directly on the landmark trajectories. The second part

of the table reports values of the NN classifier when the

Hankel matrix is computed on the pairwise landmark dis-

tances across time. By comparing the results, it is possi-

ble to observe that the pairwise distance-based representa-

tion achieves higher TPR for all the threshold values. The

increase of the average accuracy for ψ = 1 is of around

18�, which is much higher than what observed on the CK+

dataset. We believe that, on these data, head motion might

affect the landmark-based representation. On the contrary,

pairwise distances are more invariant to head motion.

The third and fourth parts of the table reports accu-

racy values respectively for the landmark-based and pair-

wise distance-based measurements when adopting the LTI

Codebook-based SVM approach. Again, the distance-based

representation proves to be more discriminative than the

landmark-based one. However, overall the accuracy values



ψ: ≥1 ≥11 ≥21 ≥31 ≥41

TPR (Hank(L)+NN) 67.5 61 62.9 65 67.3

FNR (Hank(L)+NN) 32.5 39 37.1 35 32.7

FPR (Hank(L)+NN) 42.5 32 23.5 15.2 10

TNR (Hank(L)+NN) 57.5 68 76.5 84.8 90
TPR�TNR

2
62.5 64.5 69.7 74.9 78.6

TPR (Hank(D)+NN) 75.8 76.9 78.7 80.7 80

FNR (Hank(D)+NN) 24.2 23.1 21.3 19.3 20

FPR (Hank(D)+NN) 27.6 22.2 16.8 11.4 7.8

TNR (Hank(D)+NN) 72.4 77.8 83.2 88.6 92.2
TPR�TNR

2
74.1 77.3 80.9 84.6 86.1

TPR (Hank(L)+SVM) 57.2 54.3 49.4 45.3 54.4

FNR (Hank(L)+SVM) 42.8 45.7 50.6 54.3 45.6

FPR (Hank(L)+SVM) 44.9 43.7 33.2 29.2 28.7

TNR (Hank(L)+SVM) 55.1 56.3 66.8 70.8 71.3
TPR�TNR

2
56.8 55.3 58.1 58.1 62.9

TPR (Hank(D)+SVM) 63.4 62.9 69 65.1 67.5

FNR (Hank(D)+SVM) 36.6 37.1 31 34.9 32.5

FPR (Hank(D)+SVM) 33 29.2 24.2 20.6 20.8

TNR (Hank(D)+SVM) 67 70.8 75.3 79.4 79.2
TPR�TNR

2
65.2 66.9 72.4 72.2 73.4

Table 2. Accuracy of the pain detector at varying threshold val-

ues of the integral pain intensity score. TPR=True Positive Rate,

FNR=False Negative Rate, FPR=False Positive Rate, True Nega-

tive Rate.

obtained with the adopted simple implementation of SVM

are lower than the ones obtained via NN.

6. Conclusions and Future Work

In this paper we have proposed to adopt Hankel matrices

to represent the dynamics of FIDs and recognize among dif-

ferent emotions. Whilst Hankel matrices have already been

used in action recognition, at the best of our knowledge

this paper is the first to adopt such kind of representation

for face expression analysis. To study the performance of

our dynamics-based emotion representations, we have per-

formed extensive test within different standard classifica-

tion frameworks on a widely used publicly available bench-

mark (CK+). Our experiments show that, on equal terms

of classification framework, by using our dynamics-based

emotion representations it is possible to achieve an increase

of about 63� of the average accuracy values with respect

of using directly the observed measurements. Overall, our

approach achieves state-of-the-art performance by adopting

standard classification frameworks.

We have also performed experiment on the Painful

dataset to test if our representation can be used to detect pain

events. The experiments show that the pairwise landmark

distance-based dynamics representation is more invariant to

head motion and, when using NN, it permits to obtain an

increase of the average accuracy of about 18� with respect

to the landmark-based representation.

The main limitation of our current approach is the need

for reliable landmarks to represent face expressions. De-

spite the huge progress in this field, still facial landmark

tracking is an open problem. On the other hand, our

formulation is general and its not limited to 2D feature

tracks. We therefore aim at extending our work consid-

ering appearance-based feature representation. Moreover,

we have used a sliding window approach where windows

have all the same temporal duration. We will explore the

use of varying duration windows within a structure learning

framework to automatically segment the emotion in a long

sequence of face images.
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