
ar
X

iv
:1

50
7.

05
59

7v
2

 [
cs

.L
O

]
 2

8
O

ct
 2

01
5

Marimba: A Tool for Verifying Properties of

Hidden Markov Models⋆

Noé Hernández1, Kerstin Eder3,4, Evgeni Magid3,4, Jesús Savage2, and
David A. Rosenblueth1

1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas
2 Facultad de Ingenieŕıa

Universidad Nacional Autónoma de México, D.F., México
no hernan@ciencias.unam.mx, drosenbl@unam.mx, savage@servidor.unam.mx
3 Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK

4 Bristol Robotics Laboratory, Bristol, BS16 1QY, UK
Kerstin.Eder@bristol.ac.uk, Evgeni.Magid@bristol.ac.uk

Abstract. The formal verification of properties of Hidden Markov Mod-
els (HMMs) is highly desirable for gaining confidence in the correctness
of the model and the corresponding system. A significant step towards
HMM verification was the development by Zhang et al. of a family of
logics for verifying HMMs, called POCTL*, and its model checking algo-
rithm. As far as we know, the verification tool we present here is the first
one based on Zhang et al.’s approach. As an example of its effective appli-
cation, we verify properties of a handover task in the context of human-
robot interaction. Our tool was implemented in Haskell, and the ex-
perimental evaluation was performed using the humanoid robot Bert2.

1 Introduction

A Hidden Markov Model (HMM) is an extension of a Discrete Time Markov
Chain (DTMC) where the states of the model are hidden but the observations
are visible. Typically, an HMM is studied with respect to the three basic problems
examined by Rabiner in [9]. However, to the best of our knowledge, no practical
model checker exists for HMMs despite their broad range of applications, e.g.,
speech recognition, DNA sequence analysis, text recognition and robot control.
We describe in this paper a tool for verifying HMM properties written in the
Probabilistic Observation Computational Tree Logic* (POCTL* [11]), and use
this tool for verifying properties of a robot-to-human handover interaction.

POCTL* is a specification language for HMM properties. It is a probabilistic
version of CTL* where a set of observations is attached to the next operator.
Zhang et al. [11] sketched two model checking algorithms for POCTL*, an “au-
tomaton based” approach, and a “direct” approach. We opted for the direct

⋆ The final version of this paper was accepted in the 13th Interna-
tional Symposium on Automated Technology for Verification and Anal-
ysis (ATVA 2015). The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-24953-7_14

http://arxiv.org/abs/1507.05597v2
http://dx.doi.org/10.1007/978-3-319-24953-7_14

2 N. Hernández, K. Eder, E. Magid, J. Savage, and D. A. Rosenblueth

approach for its lower time complexity. Noticeably, this approach produces a
DTMC D and a Linear Temporal Logic (LTL) formula φ, so the PRISM [6]
model checker could be used to verify this property. Such a model checker fol-
lows the automata based approach whose complexity is doubly exponential in
|φ| and polynomial in |D|, whereas we implemented the direct method by Cour-
coubetis et al. [1] whose complexity is singly exponential in |φ| and polynomial
in |D|, which is also the final complexity of our tool. This direct method repeat-
edly constructs a DTMC and rewrites an LTL formula, such that one temporal
operator is removed each time while preserving the probability of satisfaction.

We have named our model checker Marimba. A marimba is a xylophone-like
musical instrument that is popular in south-east Mexico and Central America.
Marimba [5] was implemented in Haskell and compiled with GHCi. Our tool
is available for download from https://github.com/nohernan/Marimba.

2 Tool architecture and implementation

Haskell was chosen to code this first version of Marimba since it allows us
to work in a high-level abstract layer, by providing useful mechanisms like lazy
evaluation and a pure functional paradigm. Furthermore, Haskell manages
recursion efficiently; this is a valuable aspect because recursive calls are made
continuously throughout the execution. As a future work, we consider coding
Marimba in a language like Java and make it a symbolic model checker.

Marimba features a command-line interface. Furthermore, instead of work-
ing with a command window, a more user friendly and preferable execution is
accomplished through the Emacs text editor extended with the Haskell-mode.

2.1 Marimba’s input and modules

The first input is a .poctl file with the six elements of an HMM H, namely
a finite set of states S, a state transition probability matrix A, a finite set of
observations Θ, an observation probability matrix B, a function L that maps
states to sets of atomic propositions from a set APH, and an initial probability
distribution π over S. The second input is a POCTL* state formula Φ typed in
the command window according to the syntactic rules:

Φ ::= true | false | a | (¬Φ) | (Φ ∨ Φ) | (Φ ∧ Φ) | (P⊲⊳ p(φ)),

φ ::= Φ | (¬φ) | (φ ∨ φ) | (φ ∧ φ) | (Xoφ) | (φU≤nφ) | (φUφ),

where a ∈ APH, o ∈ Θ, n ∈ N, p ∈ [0, 1], and ⊲⊳∈ {≤, <,≥, >}. In addition, we
define XΩφ as a shorthand for

∨

o∈Ω Xoφ provided Ω ⊆ Θ. We examine below
the six Haskell modules that constitute Marimba.

ModelChecker.hs performs the initial computations of the model checker for
POCTL*. It recursively finds a most nested state subformula of Φ, not being
a propositional variable, and the states of H that satisfy it. On the one hand,
finding the states satisfying a propositional subformula is straightforward. On

https://github.com/nohernan/Marimba

Marimba: A Tool for Verifying Properties of Hidden Markov Models 3

the other hand, we invoke the module DirectApproach.hs to obtain the states
satisfying a probabilistic state subformula. Next, this module extends the labels
of such states with a new atomic proposition a. In Φ, the state subformula being
addressed is replaced by a. The base case occurs when we reach a propositional
variable, so we return the states that have it in their label.

DirectApproach.hs transforms the HMM H into a DTMC D, and removes
from the specification the observation set attached to the next operator X by
generating a conjunction of the observation-free X with a new propositional
variable. Thus, we obtain an LTL formula that is passed, together with D, to
the module Courcoubetis.hs. The new propositional variables are drawn from
the power set of observations. Remarkably, it is not necessary to compute such
a power set since the label of a state in D is easily calculated.

Courcoubetis.hs implements a modified version of the method by Courcou-
betis et al. to find the probability that an LTL formula is satisfied in a DTMC.
In this module, when dealing with the U and U≤n operators, we apply ideas
from [10] for computing a partition of states of D. Moreover, to handle the U
operator we have to solve a linear equation system. To that end, we use the
linearEqSolver library [3], which in turn executes the Z3 theorem prover [2].

Lexer.hs and Parser.hs are in charge of the syntactic analysis of the input.
Finally,Main.hs is loaded to startMarimba. This module manages the interaction
with the user, and starts the computation by passing control toModelChecker.hs.

In a typical execution, Marimba prompts the user to enter a .poctl file path.
Next, our tool asks whether or not the user wants to take into account the
initial distribution in the computation of the probability of satisfaction. This
choice corresponds to opposite ideas presented in [1] and [11], i.e., the method
by Courcoubetis et al. uses the initial distribution to define their probability
measure, contrary to that defined by Zhang et al. Afterwards, a POCTL* formula
has to be entered. Marimba returns the list of states satisfying this formula, and
asks the user whether there are more formulas to be verified on the same model.

The .poctl file is simply a text file where the elements of an HMM are de-
fined, e.g., the set of states is defined by the reserved word States, and if the
model consists of five states, we write States=5. Likewise, POCTL* formulas
have a natural writing, for example, P<0.1(X{o1}a) is typed as P[<0.1](X_{1}a).

3 Verification of a human-robot interaction

We applied Marimba to a real-world example, namely the verification of the
robot-to-human handover task [4] using the robot Bert2 [7] at the Bristol
Robotics Laboratory (BRL). The robot’s decision to release the object during
the handover task is determined by an HMM [4]. Figure 1 presents the state
diagram of the HMM corresponding to the basic handover interaction, where
the label L(s) is defined for each state.

Next, we initialise A, B and π of the HMM as follows. The process starts at
state Robot not hold, so its initial distribution value π1 is almost one, while the

4 N. Hernández, K. Eder, E. Magid, J. Savage, and D. A. Rosenblueth

other states have initial distribution values close to zero. The initial matrix A
must encourage the transitions shown in Figure 1. To initialise B, we consider

Robot
not hold

State 1

L(1)={rnh}

Robot
pick up

State 2

L(2)={rpu}

User
grab

State 4

L(4)={ug}

Robot
hold

State 3

L(3)={rh}

Fig. 1. The labelled states in-
volved in the basic handover
process.

as observations the ordered pairs whose first and
second components are the index and middle fin-
ger metacarpophalangeal joint motor current val-
ues, respectively. By the Cartesian product of these
values, we obtain 56,404 observations. Since these
observations are merged with the states to generate
the DTMC passed to Courcoubetis.hs, and the size
of a formula could grow considerably by associating
the next operator with up to 56,404 observations,
Marimba’s execution is not practical under these
circumstances. Vector quantisation [8] was used to
reduce the number of observations to just 13, which
were taken to initialise matrix B. Thus, the initial
ordered pairs are grouped into 13 regions of the
plane representing the observations.

To make reliable estimates, we collected observations from 50 handover ex-
periments on Bert2. These observations were used to train the initial HMM
with the reestimation method found in the solution of Rabiner’s Problem 3 [9].

Liveness properties. A liveness property requires that a good thing happens
during the execution of a system. For example, we would like to know whether
the model generates the sequence of observations O = o1, o2, o3, o4 where o1, o2 ∈
{3, 4, 6} and o3, o4 ∈ {3, 4, 11}, with probability greater than 0.88, that is,
P>0.88(X{3,4,6}(X{3,4,6}(X{3,4,11}(X{3,4,11}true)))). Interestingly, this property
is a generalisation of Rabiner’s Problem 1 [9]. Marimba’s execution for this
property is found in Figure 2. The inputs are the trained HMM, defined in
ModelBert2.poctl, and the previous formula. The output returned by Marimba

is State 4. Hence, the model starting at state User grab is likely to generate O.

Main> main

Enter the file name where the HMM is located.

examples/ModelBert2.poctl

Would you like to consider each state as if it were the initial

state, i.e., as if it had initial distribution value equal to 1? y/n: y

Enter the POCTL* formula we are interested in.

P[>0.88] (X_{3,4,6}(X_{3,4,6}(X_{3,4,11}(X_{3,4,11}T))))
The states that satisfy it are:

(Probability of satisfaction of each state:[4.998198505964186e-10,

4.08659792160621e-6,7.508994137303159e-3,0.8915357419467848])

[4]

Do you want to continue checking more specifications? y/n: n

Fig. 2. Verifying a property with Marimba.

A second liveness property states that with probability at least 0.9, Bert2

releases the object when the user grabs it. The POCTL* formula for this property

Marimba: A Tool for Verifying Properties of Hidden Markov Models 5

is P≥0.9(rh ∧ (rh U (ug ∧ ug U rnh))). Marimba outputs State 3, i.e., the speci-
fication is satisfied when the starting state is Robot hold. So, we expect Bert2

to hold the object, and let it go when the user grabs it.

Safety properties. A safety property establishes that a bad thing does not
occur during the execution of a system. For instance, with probability less than
0.05, Bert2 abandons its serving position with the user not grabbing the object,
that is, P<0.05(rh ∧ XΘ(rnh ∨ rpu)), where Θ is the set of observations. Our
model checker returns {1, 2, 3, 4} as the set of states satisfying this property. We
conclude that it is unlikely that the model, being at state Robot hold, reaches a
state other than User grab, that is, Robot not hold or Robot pick up.

The satisfaction of the previous three specifications provides us with confi-
dence that Bert2 reliably performs the handover interaction specified above.

On an Intel R© CoreTM i3 1.70GHz computer with 4GB in memory, Marimba

takes 28.55s to compute the states satisfying the first liveness formula. The time
required for checking the other two properties studied here is around 0.06s.

Further examples are given in the examples folder and user’s manual that
come with Marimba’s source code.

4 Conclusions

Since the automatic verification of properties of HMMs seems to be an unat-
tended problem, we present here Marimba, a Haskell implementation of the
model checking algorithm for POCTL* [11]. This model checking algorithm was
slightly modified to carry out its computations in a real program. Marimba’s
calculation is basically broken out in three stages that are coded in the modules
ModelChecker.hs, DirectApproach.hs and Courcoubetis.hs, such that the involved
components, steps and transformations are well arranged throughout the im-
plementation. Finally, we have successfully applied Marimba to verify relevant
properties of a handover interaction from the robot Bert2 to a human.

Acknowledgements. We gratefully acknowledge support from grants PAPIIT
IN113013 and Conacyt 221341, and especially thank the BRL staff for their
assistance operating the robot Bert2. E. Magid and K. Eder have been sup-
ported, in full and in part, respectively, by the UK EPSRC grant EP/K006320/1
ROBOSAFE: “Trustworthy Robotic Assistants”.

References

1. C. Courcoubetis and M. Yannakakis, The complexity of probabilistic verification,
J. ACM 42 (1995), no. 4, 857–907.

2. L. De Moura and N. Bjørner, Z3: An efficient SMT solver, Proceedings of the
Theory and Practice of Software (TACAS ’08), LNCS, Springer, 2008, pp. 337–
340.

3. L. Erkok, linearEqSolver: a library to solve systems of linear equations, using SMT

solvers., https://github.com/LeventErkok/linearEqSolver.

https://github.com/LeventErkok/linearEqSolver

6 N. Hernández, K. Eder, E. Magid, J. Savage, and D. A. Rosenblueth

4. E. C. Grigore, K. Eder, A. G. Pipe, C. Melhuish, and U. Leonards, Joint action

understanding improves robot-to-human object handover, IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2013, pp. 4622–4629.

5. N. Hernández, Model checking based on the hidden Markov model and

its application to human-robot interaction, Master’s thesis, Universi-
dad Nacional Autónoma de México, México, 2014, Available from
http://132.248.9.195/ptd2014/noviembre/303087692/Index.html.

6. M. Kwiatkowska, G. Norman, and D. Parker, PRISM 4.0: Verification of proba-

bilistic real-time systems, Proc. 23rd International Conference on Computer Aided
Verification (CAV ’11), LNCS, vol. 6806, Springer, 2011, pp. 585–591.

7. A. Lenz, S. Skachek, K. Hamann, J. Steinwender, A. G. Pipe, and C. Melhuish,
The BERT2 infrastructure: An integrated system for the study of human-robot in-

teraction, 10th IEEE-RAS International Conference on Humanoid Robots, IEEE,
2010, pp. 346–351.

8. Y. Linde, A. Buzo, and R. M. Gray, An algorithm for vector quantizer design,
IEEE Transactions on Communications 28 (1980), 84–95.

9. L. R. Rabiner, A tutorial on hidden Markov models and selected applications in

speech recognition, Proceedings of the IEEE 77 (1989), 257–286.
10. J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical techniques

for analyzing concurrent and probabilistic systems, CRMMonograph Series, vol. 23,
American Mathematical Society, 2004.

11. L. Zhang, H. Hermanns, and D. N. Jansen, Logic and model checking for hid-

den Markov models, Formal Techniques for Networked and Distributed Systems,
FORTE 2005, LNCS, vol. 3731, Springer, 2005, pp. 98–112.

http://132.248.9.195/ptd2014/noviembre/303087692/Index.html

Marimba: A Tool for Verifying Properties of Hidden Markov Models 7

5 Appendix

Technical details and formal definitions concerning HMMs and the POCTL*
formalism are presented next.

5.1 Hidden Markov Model

An HMM has two layers, one on top of the other. The stochastic process be-
tween states on the underlying layer is hidden, and can be seen only through
the stochastic process on the external layer that effectively produces a visible
sequence of observations.

Definition 1. A labelled Hidden Markov Model [9] consists of a tuple
H = (S,A,Θ,B, L, π), where:

– S = {S0, S1, . . . , Sn−1} is a finite set of states;
– A is a state transition probability matrix, such that:

A = {aij}, aij ≥ 0 0 ≤ i, j ≤ n−1,
∑n−1

j=0
aij = 1 0 ≤ i ≤ n−1;

– Θ = {v0, v1, . . . , vm−1} is a set of m observations;
– B is the observation probability matrix, B = {bj(k)} with

bj(k) = P [vk |Sj], 0 ≤ j ≤ n− 1, 0 ≤ k ≤ m− 1;

– L : S → 2APH maps states to sets of atomic propositions from a set APH;
– π is an initial probability distribution over S, such that:

πi = P [q0 = Si] ≥ 0 0 ≤ i ≤ n− 1,
∑n−1

i=0
πi = 1.

An execution of the system which is being modelled by an HMM is repre-
sented by a path.

Definition 2. A path [11] is a sequence (s0, o0), (s1, o1), . . ., where si ∈ S, oi ∈
Θ, asisi+1

> 0 and bsi(oi) > 0, ∀i ≥ 0. A path can be finite (ωfin) or infinite (ω).

We denote the (i+ 1)st state of ω by ωs(i), and the (i+ 1)st observation by
ωo(i). The suffix (si, oi), (si+1, oi+1), . . . of ω is denoted by ω[i]. We denote the
sets of all finite and infinite paths in H, starting with a pair whose state is s, by
Pathfin,Hs and PathHs , respectively.

To quantify the probability that an HMM behaves in a certain way, we de-
fine the measure Prs over the set PathHs . The basic cylinder set induced by
the cylinder ωfin = (s0, o0), (s1, o1), . . . , (sk, ok) is defined as C(ωfin) = {ω ∈
PathHs | ∀i ∈ {0, . . . , k} (ωs(i) = si ∧ ωo(i) = oi)}. Let Σs be the small-
est σ-algebra on Path

H
s which contains all basic cylinder sets C(ωfin), where

ωfin = (s, o0), . . . , (sk, ok) ∈ Pathfin,Hs . We define Prs on Σs as,

Prs

(

C
(
(s, o0), . . . , (sk, ok)

))

= πsbs(o0)
∏k

i=1
asi−1sibsi(oi).

8 N. Hernández, K. Eder, E. Magid, J. Savage, and D. A. Rosenblueth

Let Σ be the smallest σ-algebra on PathH containing all basic cylinder sets,
such that PathH is the set of paths in H with no constraint on the state of the
initial pair. In [5], the probability measure PrH on Σ is defined in terms of Prs.

We quantify the probability that an HMM behaves in a certain way by iden-
tifying the set of paths that satisfy a formula, and then using PrH (or Prs).

5.2 POCTL*

The Probabilistic Observation Computational Tree Logic* (POCTL* [11]) has
a next operator equipped with an observation constraint.

Definition 3 (Syntax). Let H = (S,A,Θ,B, L, π) be an HMM defined over the
set of atomic propositions APH. The syntax of POCTL* is defined as follows:

Φ ::= true | false | a | (¬Φ) | (Φ ∨ Φ) | (Φ ∧ Φ) | (P⊲⊳ p(φ)),

φ ::= Φ | (¬φ) | (φ ∨ φ) | (φ ∧ φ) | (Xoφ) | (φU≤nφ) | (φUφ),

where a ∈ APH, o ∈ Θ, n ∈ N, p ∈ [0, 1], and ⊲⊳∈ {≤, <,≥, >}. We distinguish
between state formulas Φ and path formulas φ.

Definition 4 (Semantics). Let H = (S,A,Θ,B, L, π) be an HMM. For any
state s ∈ S, the satisfaction relation |= is inductively defined as

s |= true ∀s ∈ S,

s 6|= false ∀s ∈ S,

s |= a iff a ∈ L(s),

s |= ¬Φ iff s 6|= Φ,

s |= Φ1 ∨ Φ2 iff s |= Φ1 ∨ s |= Φ2,

s |= Φ1 ∧ Φ2 iff s |= Φ1 ∧ s |= Φ2,

s |= P⊲⊳ p(φ) iff Prs{ω ∈ PathHs |ω |= φ} ⊲⊳ p.

For any path ω, the satisfaction relation is defined as

ω |= Φ iff ωs(0) |= Φ, ω |= φ1 ∨ φ2 iff ω |= φ1 ∨ ω |= φ2,

ω |= ¬φ iff ω 6|= φ, ω |= φ1 ∧ φ2 iff ω |= φ1 ∧ ω |= φ2,

ω |= Xoφ iff ωo(0) = o ∧ ω[1] |= φ,

ω |= φ1 U
≤nφ2 iff ∃j ≤ n. (ω[j] |= φ2 ∧ ∀i < j. ω[i] |= φ1),

ω |= φ1 Uφ2 iff ∃j ≥ 0. (ω[j] |= φ2 ∧ ∀i < j. ω[i] |= φ1).

Let Ω ⊆ Θ, we write XΩφ as a shorthand for
∨

o∈Ω Xoφ. Therefore,
ω |= XΩφ iff ωo(0) ∈ Ω ∧ ω[1] |= φ.

6 Model checking algorithm

Let H = (S,A,Θ,B, L, π) be an HMM, s be a state in S, and Φ be a POCTL*
state formula. Next, we explain a method to know whether s |= Φ holds or not.

Marimba: A Tool for Verifying Properties of Hidden Markov Models 9

6.1 Stage One

According to [11], the model checking algorithm starts by taking a most deeply
nested state subformula Ψ of Φ, such that Ψ is not an atomic proposition. It is
straightforward to find the states in S that satisfy Ψ when it is propositional.
To obtain the states that satisfy Ψ when it is of the form P⊲⊳ p(φ), stage two of
the model checker is invoked. Once we determine the states satisfying Ψ , their
label is extended by a new atomic proposition aΨ . Next, Ψ is replaced by aΨ in
Φ. The algorithm proceeds recursively, unless Φ itself is replaced by aΦ; in such
case the algorithm returns states s, with aΦ ∈ L(s).

6.2 Stage Two

To identify the states that satisfy P⊲⊳p(φ), we follow the direct approach that
transforms the original H into a DTMC D = (SD, AD, LD, πD), where

– SD = S ×Θ,
– AD((s, o), (s′, o′)) = ass′ · bs′(o

′),
– LD(s, o) = L(s)∪{Ω ⊆ Θ | o ∈ Ω},
– πD

(s,o) = πs · bs(o),

that is defined over the set of atomic propositions APD = APH ∪ {Ω |Ω ⊆ Θ}.
The argument of P , i.e., φ, is modified to obtain φ′ in a way that every occurrence
ofXΩϕ is replaced by Ω∧Xϕ. Notice that Ω is a new atomic proposition defined
in APD.

6.3 Stage Three

As stated in [1,5], stage three recursively constructs a new DTMC D′ by applying
the transformations CX, CU and CU≤n , which are performed for each occurrence
of X, U and U≤n, respectively. To show how the transformations work, we focus
here on CX. It takes Xϕ as an innermost subexpression of φ′. Then, it partitions
the states of D into three disjoint subsets, SD = SYES ∪ SNO ∪ S?, where:

– SYES consists of the states whose transitions are only into states satisfying ϕ.
– SNO consists of the states whose transitions are only into states satisfying ¬ϕ.
– S? consists of the states with transitions to both states satisfying ϕ and
states satisfying ¬ϕ.

Let qu denote the probability that Xϕ is satisfied starting from state u ∈ SD.
We know that qu = 1 if u ∈ SYES, and qu = 0 if u ∈ SNO. Otherwise, qu =
∑

v A
D(u, v), where the sum ranges over all successor states v of u satisfying

formula ϕ. Let qu = 1− qu. Moreover, the new DTMC D′ is defined over the set
APD′ = APD ∪ {ξ}, where ξ is a new atomic proposition representing Xϕ.

States of D′. For each u ∈ SYES there is a new state (u, ξ) in D′. For each u ∈
SNO there is a new state (u,¬ξ). And for each u ∈ S?, there are two new states
(u, ξ) and (u,¬ξ). We define LD′

(u, ξ) = LD(u) ∪ {ξ} and LD′

(u,¬ξ) = LD(u).

10 N. Hernández, K. Eder, E. Magid, J. Savage, and D. A. Rosenblueth

Transitions of D
′. The transition probability of (u, ξ1) → (v, ξ2), with ξi ∈

{ξ,¬ξ} and i ∈ {1, 2}, is defined as being equal to the probability that D, being
at state u, transitions next to state v, and starting from state v onward satisfies
property ξ2, conditioned on the event that in state u it satisfies property ξ1.

Initial distribution of D
′. If u ∈ SYES ∪ SNO, then πD′

(u,ξ1)
= πD

u . If u ∈ S?,

then there are two states in D′ for u, namely (u, ξ) and (u,¬ξ), with initial
probabilities πD

u · qu and πD
u · qu, respectively. Furthermore, ψ is obtained by

replacing Xϕ by ξ in φ′.
If φ′ originally has k temporal operators, the algorithm applies k times the

appropriate transformations CX, CU and CU≤n , to finally get the DTMC Dk

and the propositional formula ψk. It is proved in [5] that s |= P⊲⊳p(φ) iff

∑

o∈Θ

(
∑

ξi1
∈{ξ1,¬ξ1}

...
ξi

k
∈{ξk,¬ξk}

Pr((...((s,o),ξi1),...),ξik)
︸ ︷︷ ︸

σ0

{σ ∈ PathD
k

σ0
|σ |= ψk}

)

⊲⊳ p.

Since ψk is a propositional formula, Prσ0
{σ ∈ PathD

k

σ0
|σ |= ψk} is πDk

σ0
.

	Marimba: A Tool for Verifying Properties of Hidden Markov Models
	1 Introduction
	2 Tool architecture and implementation
	2.1 Marimba's input and modules

	3 Verification of a human-robot interaction
	4 Conclusions
	5 Appendix
	5.1 Hidden Markov Model
	5.2 POCTL*

	6 Model checking algorithm
	6.1 Stage One
	6.2 Stage Two
	6.3 Stage Three

