arXiv:1508.00059v1 [cs.RO] 1 Aug 2015

Mixed Logical and Probabilistic Reasoning for Planning
and Explanation Generation in Robotics

Zenon Colaco and Mohan Sridharan

Department of Electrical and Computer Engineering, The University of Auckland, NZ
zncolaco@gmail.com; m.sridharan@auckland.ac.nz

Abstract. Robots assisting humans in complex domains have to represent knowl-
edge and reason at both the sensorimotor level and the social level. The architec-
ture described in this paper couples the non-monotonic logical reasoning capabil-
ities of a declarative language with probabilistic belief revision, enabling robots
to represent and reason with qualitative and quantitative descriptions of knowl-
edge and degrees of belief. Specifically, incomplete domain knowledge, including
information that holds in all but a few exceptional situations, is represented as a
Answer Set Prolog (ASP) program. The answer set obtained by solving this pro-
gram is used for inference, planning, and for jointly explaining (a) unexpected
action outcomes due to exogenous actions and (b) partial scene descriptions ex-
tracted from sensor input. For any given task, each action in the plan contained
in the answer set is executed probabilistically. The subset of the domain relevant
to the action is identified automatically, and observations extracted from sensor
inputs perform incremental Bayesian updates to a belief distribution defined over
this domain subset, with highly probable beliefs being committed to the ASP pro-
gram. The architecture’s capabilities are illustrated in simulation and on a mobile
robot in the context of a robot waiter operating in the dining room of a restaurant.

1 Introduction

Robots collaborating with humans in complex domains receive far more raw sensor
data than can be processed in real-time. The information extracted from the sensor
inputs can be represented probabilistically to quantitatively model the associated un-
certainty (“90% certain I saw the book on the shelf”’). Robots also receive useful com-
monsense knowledge that is difficult to represent quantitatively (“books are usually in
the library”), and human participants may not have the time and expertise to provide
elaborate and accurate feedback. To collaborate with humans, these robots thus need
to represent knowledge and reason at both the cognitive level and the sensorimotor
level. This objective maps to fundamental research challenges in knowledge represen-
tation and reasoning. The architecture described in this paper exploits the complemen-
tary strengths of non-monotonic logical reasoning and probabilistic belief revision as
a significant step towards addressing these challenges. Specifically, the commonsense
logical reasoning capabilities of Answer Set Prolog (ASP), a declarative language, is
coupled with probabilistic belief updates, to support the following key features:
e An ASP program represents incomplete domain knowledge, including information
that holds in all but a few exceptional situations. The answer set obtained by solv-
ing the ASP program is used for planning and jointly (a) explaining unexpected



action outcomes by reasoning about exogenous actions; and (b) identifying object
occurrences that best explain partial scene descriptions obtained from sensor inputs.
e For any given task, each action in the plan created by inference in the ASP program
is executed probabilistically. The relevant subset of the domain (for this action) is
identified automatically, and the sensor observations perform incremental Bayesian
updates to a belief distribution defined over this subset of the domain, committing
highly probability beliefs as statements to the ASP program.
The architecture thus enables robots to represent and reason with qualitative and quan-
titative descriptions of knowledge and degrees of belief. In this paper, the architecture’s
capabilities are demonstrated in simulation and on a mobile robot, in the context of a
robot waiter operating in the dining room of a restaurant.

2 Related Work

Knowledge representation, planning and explanation generation are well-researched ar-
eas in robotics and artificial intelligence. Logic-based representations and probabilistic
graphical models have been used to plan sensing, navigation and interaction for robots
and agents. Formulations based on probabilistic representations (by themselves) make
it difficult to perform commonsense reasoning, while classical planning algorithms and
logic programming tend to require considerable prior knowledge of the domain and the
agent’s capabilities, and make it difficult to merge new, unreliable information with an
existing knowledge base. For instance, the non-monotonic logical reasoning capabilities
of ASP [3]] have been used for tasks such as reasoning by simulated robot housekeep-
ers [2] and coordination of robot teams [11]. However, ASP does not support proba-
bilistic analysis of uncertainty, whereas a lot of information extracted from sensors and
actuators on robots is represented probabilistically.

Approaches for generating explanations (e.g., through abductive inference or plan
diagnosis) use the systems description and observations of system behavior to explain
unexpected symptoms [319], or use weaker system descriptions and depend on heuris-
tic representation of intuition and past experience [6i8]. Probabilistic and first-order
logic-based representations have been combined for better abductive inference [12].
Researchers have also designed architectures for robots that combine deterministic and
probabilistic algorithms for task and motion planning [4], combine declarative program-
ming and continuous-time planners for path planning in robot teams [11]], or combine
a probabilistic extension of ASP with partially observable Markov decision processes
(POMDPs) for human-robot dialog [15]. Some principled algorithms that combine log-
ical and probabilistic reasoning include Markov logic network [[10], Bayesian logic [[7],
and probabilistic extensions to ASP [1l5]. However, algorithms based on first-order
logic do not provide the desired expressiveness for modeling uncertainty, e.g., it is not
always possible to express degrees of belief quantitatively. Algorithms based on logic
programming do not support one or more of the desired capabilities such as incremental
revision of (probabilistic) information; reasoning as in causal Bayesian networks; and
reasoning with large probabilistic components. Towards addressing these challenges,
our prior work developed architectures that couple declarative programming and proba-
bilistic graphical models for logical inference, deterministic and probabilistic planning
on robots [13/14]. This paper retains the coupling between logical and probabilistic
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Fig. 1. An overview of the architecture that combines the complementary strengths of declarative
programming and probabilistic graphical models for inference, planning, and diagnosis.

reasoning but significantly expands the capabilities of these architectures to support:
(1) explanation of unexpected action outcomes and the partial descriptions extracted
from sensor inputs; and (2) representation and reasoning at a higher resolution using
ASP, making the probabilistic reasoning more computationally efficient.

3 Proposed Architecture

Figure[Iis an overview of the mixed architecture. The symbolic representation is trans-
lated to an Answer Set Prolog (ASP) program used for non-monotonic logical inference
and planning a sequence of actions for any given task. For each action, the relevant sub-
set of the domain is defined automatically. Sensor observations perform incremental
Bayesian updates to a probability distribution over this domain subset, committing high
probability beliefs (action outcomes, observation of object attributes) as statements to
the ASP program. Observed unexpected action outcomes are explained by reasoning
about exogenous actions, and objects are identified to best explain the partial descrip-
tions extracted from visual cues. ASP-based representation and reasoning is performed
at a resolution that provides high reliability while also simplifying the (coupled) prob-
abilistic reasoning and tailoring it to specific actions.

The syntax, semantics and representation of the transition diagrams of the archi-
tecture’s domain representation are described in an action language AL [3]. AL has
a sorted signature containing three sorts: statics, fluents and actions. Statics are do-
main properties whose truth values cannot be changed by actions, fluents are properties
whose values are changed by actions, and actions are elementary actions that can be
executed in parallel. AL allows three types of statements:

a causes [, if po,...,pm (Causal law)
L if po,...,pm (State constraint)
impossible ay,...,a; if po,...,pm (Executability condition)

where a is an action, [ is a literal, [, is a basic fluent (also called inertial fluent) literal,
and po, ..., pm are domain literals (any domain property or its negation). A collection
of statements of AL forms a system description.



As an illustrative example used in this paper, consider a robot waiter that greets
and seats people at tables in a restaurant, and delivers orders. The sorts of the domain
are arranged hierarchically, e.g., location and thing are subsorts of entity; animate and
inanimate are subsorts of thing; person and robot are subsorts of animate; object is
a subsort of inanimate; and room, area, door, and floor are subsorts of location. We
include specific rooms, e.g., kitchen and dining, and consider objects of sorts such as
table, chair and plate, to be characterized by attributes size, color, shape, and location.
The sort step is included for temporal reasoning.

ASP Domain Representation: The ASP program is based on a domain representa-
tion that includes a system description Zy and a history with defaults 7. 2y has
a sorted signature Xy = (0,.%, <) that defines the names of objects, functions, and
predicates available for use, and axioms that describe a transition diagram 7. Fluents
are defined in terms of the sorts of their arguments, e.g., has_location(thing,location)
in_hand(robot ,object), is_open(door), and can_move(robot,location). The first three
are basic fluents that obey the laws of inertia and can be changed directly by actions; the
last one is a defined fluent that is not subject to inertia and cannot be changed directly by
an action. Statics such as connected(location,location) and belongs(location,location)
specify connections between locations, relation holds(fluent,step) implies a specific
fluent holds at a specific timestep, and occurs(action,step) (hypothesizes) that a spe-
cific action occurs at a specific timestep. We include actions, e.g., move(robot, location),
seat_person(robot, person,table), search_person(robot,area), pickup(robot,object),
putdown(robot ,ob ject), and define domain dynamics using causal laws such as:

move(R,L) causes has_location(R,L) €))
pickup(R,0) causes in_hand(R,O)

open(R,D) causes is_open(D)

seat_person(R,P,T) causes has_location(P,L) if has_location(T,L)

state constraints such as:
has_location(O,L) if has_location(R,L), in_hand(R,O) )

—has_location(Th,Ly) if has_location(Th,Ly), Ly # L,
has_location(Th,Ly) if has_location(Th,Ly), belongs(L;,L)
can_move(R,Ly) if has_location(R,L;), connected(Ly,L;)

and executability conditions such as:
impossible move(R,L) if has_location(R,L) 3)
impossible pickup(R,0) if has_location(R,L,), has_location(0,L;),L; # L,
impossible open(R,D) if is_open(D)

Since robots frequently receive default domain knowledge that is true in all but a few
exceptional situations, the domain history ¢, in addition to hpd(action,step) and
obs(fluent ,boolean, step), the occurrence of specific actions and the observation of
specific fluents at specific time steps, contains prioritized defaults describing the values
of fluents in their initial states. For instance, it may be initially believed that dishes to be
delivered are typically on a table between the kitchen and the dining room—if they are



not there, they are still in the kitchen. Existing definitions of entailment and consistency
are used to reason with such histories, and any observed exceptions [[13]].

The domain representation is translated into a program IT(Zy, ) in CR-Prolog
that incorporates consistency restoring rules in ASP [3]. IT includes the causal laws
of Py, inertia axioms, closed world assumption for actions and defined fluents, reality
checks, and records of observations, actions and defaults from 7. Every default is
turned into an ASP rule and a consistency-restoring (CR) rule that allows us to assume
the default’s conclusion is false to restore I1’s consistency. ASP is based on stable model
semantics, introduces concepts such as default negation and epistemic disjunction, and
represents recursive definitions, defaults, causal relations, and language constructs that
are difficult to express in classical logic formalisms. The ground literals in an answer
set obtained by solving I represent beliefs of an agent associated with II—statements
that hold in all such answer sets are program consequences. Inference and planning
can be reduced to computing answer sets of program II by adding a goal, a constraint
stating that the goal must be achieved, and a rule generating possible future actions.

Our architecture supports reasoning about exogenous actions to explain the unex-
pected (observed) outcomes of actions. For instance, to reason about a door between
the kitchen and the dining room being locked by a human, and to reason about a person
moving away from a known location, we introduce exogenous actions locked(door)
and moved_from(person,location) respectively, and suitably add (or revise) axioms:

is.open(D) < open(R,D), —ab(D) 4
ab(D) <« locked(D)
—has_location(P,L) <+ moved_from(P,L), has_location(P,L)

where a door is considered abnormal if it has been locked, say by a human. We also
introduce an explanation generation rule and a new relation expl:

occurs(A,I) | = occurs(A,I) < exogenous_action(A), I < n )
expl(A,I) < action(exogenous,A), occurs(A,I), not hpd(A,I)

where expl holds if an exogenous action is hypothesized but there is no matching record
in the history. We also include awareness axioms and reality check axioms:

holds(F,0) or — holds(F,0) < fluent(basic,F) % awareness axiom (6)
occurs(A,I) < hpd(A,I)

«— obs(fluent,true,I), — holds(fluent,I) % reality check

« obs(fluent, false,I), holds(fluent,I) % reality check

The reality check axioms cause a contradiction when observations do not match ex-
pectations, and the explanation for such unexpected symptoms can be extracted from
the answer set of the corresponding program [3]]. The new knowledge is included and
used to generate the subsequent plans. This approach provides all explanations of an
unexpected symptom—using a CR rule instead of the explanation generation rule (in
Statement[5) provides the minimal explanation (see below).

A robot processing sensor inputs (e.g., camera images) is typically able to extract
partial descriptions of scene objects. The proposed architecture also identifies object



occurrences that best explain these partial descriptions. In our illustrative example, we
introduce static relations to establish object class membershi and introduce relations
to capture ideal (and default) definitions of object attributes, e.g., for a table:

has_color(O,white) < member(O,table) @)
has_size(O,medium) < member(O,table)
has_wheels(4) < member(O,table), — has_location(O,kitchen)

where tables usually have wheels except in the kitchen. Similarly, for a chair:
has_color(O,white) <+ member(O,chair) 8)
has_size(O,medium) < member(O, chair)

—has_wheels(O) < member(O,chair)

Other objects and object attributes are encoded similarly. As before, a reality check
axiom causes an inconsistency when an object does not have a class label due to incom-
plete information, and a CR rule restores consistency by assigning class labels:

< object(0), not class_known(O) % reality check ©)
is.a(0,C) & object(0) % CR rule

This assignment of a class label to an object is based on the smallest number of rules
that need to be relaxed to support the assignment. This information is also added to the
ASP program and be used for subsequent reasoning. However, both planning and object
recognition are based on processing sensor inputs and moving to specific locations—
these tasks are accomplished using probabilistic algorithms, as described below.

Probabilistic Domain Representation: Our previous work created the ASP-based rep-
resentation at a coarser resolution (e.g., rooms and places), and refined it by adding
suitable actions, fluents and sorts (e.g., cells in rooms) to define a transition diagram
and create its probabilistic version that was modeled as a POMDP [13]]. The proposed
architecture models the domain at a higher resolution using ASP. For any given task, the
ASP-based plan consists of primitive actions that can be executed by the robot. Each
such action is executed probabilistically, with the robot maintaining a probability (be-
lief) distribution over the relevant subset of the domain that is identified automatically
based on the set of related fluents, e.g., for moving between two tables, the robot only
needs to reason about its own location in a subset of areas. The belief distribution is
revised incrementally by sensor observations using Bayesian updates. For instance, to
update the belief about the location of a specific dish in the dining room:
p(Ei|0;) = p(Oi|E;) p(E;)
(p(OilEi)p(Ei) + p(Oil =Ei) p(—Ei))

where O; is the event the dish was observed in area i, E; is the event the dish exists in
area i, making p(O;|E;) and p(E;|O;) are the observation likelihood and the posterior

10)

I Relation member(ob ject, class) is applied recursively in a class hierarchy, is_a(object, class)
denotes an instance of a specific class, and class_known(ob ject) holds for any object whose
class label is known.



probability of existence of the dish in each area in the dining room. The initial knowl-
edge (i.e., prior: p(E;) is based on domain knowledge or statistics collected in an initial
training phase (see Section [d). A Bayesian state estimation approach is used by the
robot to estimate its own position (e.g., particle filters), navigate, and to process sensor
inputs to extract information about objects being observed.

In summary, for any given task, ASP planning provides a plan with deterministic ef-
fects. The first action in the plan and relevant information (from ASP inference) identify
the subset of the domain to be represented probabilistically, and set the initial (proba-
bilistic) belief distribution. The action is executed probabilistically, updating the belief
distribution until a high belief indicates action completion or a time limit is exceeded,
and adding relevant statements to the ASP program. Any unexpected action outcomes
and partial scene descriptions are explained by reasoning about exogenous actions and
possible objects. Once these explanations restore consistency, either the next action (in
the plan) is selected for execution or a new plan is created. In what follows, we refer
to the proposed architecture as the “mixed architecture”, and compare it with two algo-
rithms: (1) ASP-based reasoning for completing the assigned tasks; and (2) a (greedy)
probabilistic approach that maintains a probabilistic belief distribution and heuristically
selects actions (and makes decisions) based on the most likely state.

The mixed architecture raises some subtle issues. First, committing probabilistic
beliefs above a specific threshold (e.g., 0.85) as fully certain statements to the ASP pro-
gram may introduce errors, but the non-monotonic reasoning capability of ASP helps
the robot recover. Second, with previous work that reasoned at a coarser resolution with
ASP and used POMDPs for probabilistic planning (a) computing POMDP policies for
each ASP action is computationally expensive; and (b) there may be improper reuse
of information if the probabilistic belief distribution is not reset between trials [14].
Third, the mixed architecture presents an interesting trade-off between the resolution
of symbolic representation and probabilistic representation. Moving most of the rea-
soning to a symbolic representation can reduce accuracy and also be computationally
expensive—the mixed architecture is a good trade-off of accuracy and efficiency.

4 Experimental Setup and Results

Experiments were conducted in simulation and on a mobile robot in scenarios that
mimic a robot waiter in a restaurant. The robot’s tasks include finding, greeting and
seating people at tables, and delivering orders appropriately.

4.1 Experimental Setup and Hypotheses

The experimental trials used existing implementations of relevant control and sensor
input processing algorithms. In an initial training phase, the robot collected statistics of
executing these algorithms to compute the motion error models and observation likeli-
hood models. These models were also used to make the simulation trials more realistic.

The experimental trials considered three hypotheses, evaluating that the mixed ar-
chitecture: (H1) generates plans for different tasks, and explains unexpected outcomes
and partial descriptions extracted from sensor inputs; (H2) significantly improves the
task completion accuracy and provides similar task completion time in comparison with



just ASP-based reasoning; and (H3) significantly improves task completion time and
provides similar accuracy in comparison with the purely probabilistic approach. We
provide both qualitative and quantitative results in simulation and on a mobile robot.

4.2 Experimental Results

The following execution traces demonstrate the planning and diagnosis capabilities.

Example 1 [Explain unexpected action outcome]
The task is to return dish ds; to the kitchen from the dining room, e.g., from tablel to
area a3 in Figure@ Unknown to the robot, the door d; has been locked.

e The robot is in the dining room with the dish in hand:
holds(has_location(robot,dining),0), hold(has_location(robot,areal),0),
holds(in_hand(robot ,ds),0)

The initial plan obtained by computing the answer set is:
occurs(move(robot,ay), 1), occurs(move(robot,d,),2),

occurs(open(robot,d),3), occurs(move(robot,as),4),

occurs(putdown(robot,dsy),5).

e Each step in this plan, starting with the first one, is executed probabilistically.

e Unfortunately, the robot’s attempt to open door d, does not produce the expected
observation—instead, obs(is_open(d,), false,3) is added to the history.

e Diagnosis provides the explanation expl(locked(d»), 3), which invokes Statement[4]
to restore consistency.

e The robot seeks human help to unlock the door, before creating a new plan to
successfully return the dish to the kitchen.

Example 2 [Explain partial scene description]
The robot delivering a dish sees a medium-sized white object from a distance, but is
unable to assign a class label in the absence of any further information.
e Then initial knowledge consists of:
has _size(oby,medium), has_color(ob;,white)
e Two possible interpretations are generated by Statements as an explanation:
is_a(ob,table) or is_a(oby,chair).
e As the robot gets closer, it observes: has_wheel(oby,4), has_location(ob;,dining),
i.e., the object has wheels and is in the dining room. Statements [/|l§| provide the in-
terpretation: is_a(oby,table).

Simulation Experiments: The robot in the simulator had to find and move (seat) dishes
(people) to specific locations. Table[T|summarizes the results—each entry is the average
of 500 trials. The task, initial position of the robot, and position of objects, were differ-
ent between the trials, and paired trials were used to establish statistical significance. In
each paired trial, for each approach being compared, the initial location of the robot and
the location of domain objects are the same. The statistically significant results show
that the mixed architecture (a) significantly improves the accuracy and provides similar
task completion time in comparison with ASP-based reasoning; and (b) significantly
improves task completion time and provides similar accuracy in comparison with the



Table 1. Task completion accuracy and time using only ASP, and using a probabilistic approach,
expressed as a factor of the values provided by the mixed architecture. The proposed mixed
architecture significantly reduces the task completion time while improving the accuracy.

Algorithms Evaluation metrics
Accuracy Time
ASP only 0.82 1.06+0.6
Probabilistic 0.99 3.32+3.0
Mixed approach 1 1
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Fig.2. (a) Example map of illustrative domain used for experimental evaluation, with rooms,
doors, and tables (people and robot not shown); and (b) the Turtlebot mobile robot platform.

probabilistic approach. Furthermore, the planning and execution time are significantly
reduced in comparison with approaches that combined ASP with probabilistic graphi-
cal models [13]], while providing comparable accuracy—analysis in other domains may
help automate the choice of resolution for symbolic and probabilistic representations
for a given task and domain.

Robot Experiments: Trials were conducted on a Turtlebot (Figure 2(b)) equipped with
a Kinect (RGB-D) sensor, range sensors, and an on-board processor running Ubuntu
Linux. Our architecture and algorithms were implemented using the Robot Operating
System (ROS). Trials included instances of the domain introduced in Section [3] each
with one or more tables, people and other objects, e.g., Figure 2(a)] The robot was
equipped with probabilistic algorithms to determine the attribute values of objects (e.g.,
color and shape) from camera images, revise the map of the domain, and determine its
location in the map. The robot was able to use the mixed architecture to successfully
complete the assigned tasks in all such scenarios, with results of paired trials being sim-
ilar to those obtained in simulation. A video of an experimental trial showing planning
and diagnosis can be viewed online: https://vimeo.com/130279856

5 Conclusions

This paper described an architecture that mixes the complementary strengths of declara-
tive programming and probabilistic belief updates. Plans created using ASP-based non-
monotonic logical reasoning are implemented probabilistically, with high probability
observations and action outcomes adding statements to the ASP program. The architec-
ture enables a robot to explain unexpected action outcomes by reasoning about exoge-
nous actions, and to identify objects that best explain partial scene descriptions. These
capabilities have been demonstrated through experimental trials in simulation and on
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a mobile robot in scenarios that mimic a robot waiter in a restaurant’s dining room.
Future work will further investigate the tight coupling and transfer of control between
the logical and probabilistic representations, with the long-term objective of enabling
robots to collaborate with humans in complex application domains.
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