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Abstract. Herein we suggest a mobile robot-training algorithm that is based on the preference 

approximation of the decision taker who controls the robot, which in its turn is managed by the Markov 

chain. Set-up of the model parameters is made on the basis of the data referring to the situations and 

decisions involving the decision taker.  The model that adapts to the decision taker's preferences can be 

set up either a priori, during the process of the robot's normal operation, or during specially planned 

testing sessions. Basing on the simulation modelling data of the robot's operation process and on the 

decision taker's robot control we have set up the model parameters thus illustrating both working 

capacity of all algorithm components and adaptation effectiveness.  
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Introduction 

There are many ways to increase the 

effectiveness of the robotic system (RS). Thus, we 

either can provide a high effectiveness of the sensor 

systems (SS) and/or maximum possible 

independence of the RS. 

Within the framework of the first method, it is 

possible to increase the informativeness and a 

number of data collection channels. However, it 

may also require increasing the productivity of the 

on-board computer. SS effectiveness can also be 

increased by using effective algorithms for data 

processing that are received from them (for 

example, we can do it by applying different 

filtration models: Kalman filtration, Bayesian 

filtration, POMDP etc., as well as using an effective 

solution of SLAM problem etc.). Within the first 

approach, the task of one of the problems is to 

discover the structure and composition of the SS 

that would possess a minimum sufficiency for the 

performance of RS's tasks.   

The second approach is closely related to the 

necessity of providing a special behavior of the RS 

that would correspond to the objectives and 

preferences of the decision taker that controls the 

RS. This direction is closely related to the research 

undergone in the field of training RS to behave 

adequately and to interconnect more effectively 

with the decision taker [1, 2, 3]. Here we make a 

good use of the Bayesian education tools and 

Markov processes including POMDP. 

The solutions that were obtained when 

implementing these approaches quite often can 

complement and/or compensate each other's 

disadvantages.  

The purpose of this work is to solve the 

problem of selecting the minimum composition of 

SS that would be sufficient for RS to execute tasks 

independently. However, due to the limited size of 

the article, the work concentrates only on teaching 

independent mobile robots (IMR) preferences of the 

decision taker and estimating effectiveness of the 

task performance within the selected configuration 

of the SS. As an RS we take an IMR possessing two 

contact (or other functionally similar) sensors and a 

pair of driving wheels. The task of the robotic 

system lies in scanning some area (room, territory 

etc.). Typical example of such IMR is a robotic 

vacuum cleaner (RVC) or a robotic lawn mower.  

RS can perform this task by scanning the room 

using one of the stored programs that is chosen by 

the decision taker. At that, the effectiveness of the 

task performance shall vary according to the 

program selection. It depends on both the program 

and the room's shape. The logic of the RS is the 

following: by using different behavior modes 

applied for similar situations (activation of specific 

sensors), it makes different decisions. For example, 

when the left sensor is activated, the RS shall decide 

to move back taking a right turn etc. In order to 

simplify the presentation of this work’s materials 

we shall consider the simplest variant of IMR 

containing two sensors (states) and two decisions 

(variant actions). In particular, the sensor area is 

presented by two front (left and right) 

crash/proximity transducers with the two 

actions/decisions being the crash reactions (states). 

The decisions take form of moving back by turning 

left and moving back by turning right. The increase 

of the multitude of states and decisions will boost 

up the variety and effectiveness of IMR behavior 

not influencing in any way the content of the 

suggested algorithm. All main mathematical 

constructions shall be performed for the case with 

two states and two decisions.      

This class of problems is often solved with 

discrete Markov Decisions Processes (MDP).  The 

suggested algorithm of adapting RS to the objective 



preferences of the decision taker is founded on the 

reverse problem for the Markov payoff chain 

(RPMDP). The problem to be studied here observes 

effective actions of the decision taker thus 

computing the estimate of the payoff/objective 

function of MDP. Therefore, when solving a direct 

problem for MDP (DPMDP), the optimal controls 

shall be adapted to the objective preferences of the 

decision taker. 

Markov Models Applied in RS 

Management 
Markov payoff chains or Markov profit chains, 

which are also called controlled Markov chains are the 

developments of Markov chains, whose description is 

complemented with the control element, i.e. the 

decision of the decision taker made when locating 

Markov chain in one of its states.  The decision is 

presented as a multitude of alternatives and their 

corresponding multitude of transition probability 

matrices.  

A large group is comprised by the Partially 

Observable Markov Decisions Processes 

(POMDP). In comparison with MDP its additional 

element is the multitude of dimensions. These 

models contain all components that are inherent to 

the traditional models of dynamic controlled 

systems [12], which, in their turn, contain equations 

of process/system, control and dimensions.  This 

presentation allows us to solve three main groups of 

management problems: filtration, identification and 

optimal control.     

When using MDP in RS management 

problems [5, 6, 7, 8, 9], we consider payoff 

functions (PF) be known and a priori set up when 

the system or controlling algorithms were 

developed.  Structure and parameters of PF 

influence the specific value of the optimal decision.  

If PF does not correspond to the value hierarchy and 

preference system of the decision taker that controls 

the RS, the computed solution shall be optimal for 

the specific PF at the same time being non-optimal 

for the objective preferences of the decision taker.  

Therefore, the optimal controlled influence that is 

obtained by any method is optimal to the PF.  
MDP is considered to be set up if we know its 

such elements as multitude of states 𝑖 = 1, 𝑚̅̅ ̅̅ ̅̅ , start 

state probability vector 𝑝̅0 = ‖𝑝𝑖‖𝑚, multitude of 

solutions 𝑘 = 1, 𝐾̅̅ ̅̅ ̅,, one-step process transition 

conditional probability matrix 𝑃𝑘 = ‖𝑝𝑖𝑗
𝑘 ‖

𝑚𝑚

𝐾
, one-

step conditional payoff matrix 𝑅𝑘 = ‖𝑟𝑖𝑗
𝑘‖

𝑚𝑚

𝐾
. The 

solution of MDP is the optimal strategy 𝑓∗ being 

one out of many 𝑆-strategies. The random strategy 

that possesses 𝑠 = 1, 𝑆̅̅̅̅̅ index can be presented as the 

following column vector: 𝑓𝑠 =
[𝑘1

𝑠 𝑘2
𝑠 ⋯ 𝑘𝑚

𝑠 ]𝑇. Here 𝑇 is the conjugation 

symbol. Hereinafter we shall record column vector 

as a conjugated row vector for the purposes of 

compactedness.   Optimal strategy provides a 

maximum of one-step accumulated or mean 

profits/payoffs.  Within the strategy structure, 𝑘𝑖
𝑠 is 

the decision that should be made according to 𝑠-

strategy should the process at the current stage 𝑛 is 

in state 𝑖.. The structure of the specific strategy that 

is applied for usage (decision making) within the 

current presentation leads to the fact that instead of 

the multitude of 𝑃𝑘 and 𝑅𝑘 matrices we shall see 

the generation of single working matrices, 

correspondingly 𝑃𝑠 and 𝑅𝑠.  

Solution of Direct Problem MDP (DPMDP) 

When solving MDP we usually apply [10, 11] 

a recurrent algorithm based on the principle of 

Richard  Bellman or iteration algorithm of Ronald  

Howard [11] that allows to improve the solution 

stepwise. Should the spaces of states and solutions 

be not large, the optimal solution of the problem 

may be found with the brute-force search for 

strategies. We used brute-force search method for 

the model calculations below.  

  Brute-Force Search for Strategies suggests 

comparing the competing strategies using the value 

of one-step mean payoff that is existing within the 

steady-state conditions. The search is performed 

within the class of stationary strategies. Let us 

define mean payoff value calculated for one step of 

𝑉𝑠 for the random 𝑠-strategy within the steady-state 

conditions.  Let us construct 𝑃𝑠 and 𝑅𝑠 work 

matrices for the 𝑠-strategy. They are formed from 

the original transition matrices where we use a 

specific strategy configuration 𝑓𝑠 =
[𝑘1

𝑠 𝑘2
𝑠 ⋯ 𝑘𝑚

𝑠 ]𝑇 as the key. Thus, the first row 

of 𝑃𝑠 is moved from the first row of 𝑃𝑘1
𝑠
 matrix, the 

second row is moved from the second row of 𝑃𝑘2
𝑠
 

matrix and so on. 𝑅𝑠 matrix is constructed in the 

same manner. Thus, for the purposes of 𝑠-strategy 

referring to the multitude of 𝑃𝑘 and 𝑅𝑘 matrices, we 

can build a single one-step transition matrix 𝑃𝑠 and 

a single one-step payoff matrix 𝑅𝑠.  Therefore, on 

condition that the process was in i-state, the one-

step mean payoff shall be defined as:  

𝑟𝑖
𝑠 = ∑ 𝑝𝑖𝑗

𝑠 𝑟𝑖𝑗
𝑠

𝑚

𝑗=1

 

In order to calculate the undoubted mean 

payoff we shall define the state probability vector 

within 𝑓̅𝑁 = [𝑝1
𝑁 𝑝2

𝑁 ⋯ 𝑝𝑚
𝑁 ]𝑇 steady-state 

conditions, where 𝑁 stands for the fact that 

probabilities correspond to the large step numbers 

accounting for the steady-state process character. In 

this case, the mean payoff of 𝑉𝑠-step shall be 

defined as the following value for the 𝑠-stationary 

strategy: 

𝑉𝑠 = ∑ 𝑝𝑖
𝑁

𝑚

𝑖=1

𝑟𝑖
𝑠 = ∑ 𝑝𝑖

𝑁

𝑚

𝑖=1

∑ 𝑝𝑖𝑗
𝑠

𝑚

𝑗=1

𝑟𝑖𝑗
𝑠  



Should the payoff have a meaning of profit, the 

optimal strategy selection criterion is: 

𝑠∗ = 𝑎𝑟𝑔 max
𝑠∈{1,𝑆̅̅ ̅̅ }

𝑉𝑠 

Limited probability vector of states referring 

to Markov 𝑝̅𝑁-process complies with the following 

matrix equation: 

(𝑃𝑠)𝑇𝑝̅𝑁 = 𝑝̅𝑁 
At that, the condition of normalization should be 

performed for the probabilities of states: 

∑ 𝑝𝑖
𝑁

𝑚

𝑖=1

= 1 

The solution of the system comprised of two 

last equations allows obtaining coordinate values of 

𝑝̅𝑁 vector. 

Solution of Reverse Problem MDP 

(RPMDP) 

Let us consider what data is included into the 

observations and what should be found as a result 

of RPMDP solution. A multitude of presentations is 

available to the observations. At each 𝑛-step we can 

see 𝑖𝑛 chain conditions and 𝑘𝑛 decisions that are 

available for observations and which were made by 

the decision taker, where 𝑖𝑛 , 𝑘𝑛  ∈ {1; 2}. After the 

end of presentation, the v value of the received 

payoff shall be computed. Within the context of the 

example under consideration (IMR scanning robot), 

the condition is the actuation of the left or right 

sensor while the decision shall be its moving back 

making a left or right turn. A useful (without 

consideration of wastes) duration of the path that 

was made by the robot during the certain period of 

time (which is proportional to the scanned area) can 

serve as each presentation's payoff. Thus, the 

component of the observation that is considered 

within the reverse problem solution algorithm is one 

presentation, i.e. the totality of the alternating 

conditions, made decisions and presentation's total 

payoffs.  

The result of RPMDP solution is the elements 

that are necessary for the direct problem (DPMDP) 

solving, i.e. probability and payoff matrices.  

RPMDP solution scheme can be presented 

with 3 stages.  

1st Stage.  Each presentation contains the 𝑓𝑠 ∈
{𝑓1, 𝑓2, 𝑓3, 𝑓4} strategy, which was chosen by the 

decision taker. The complete set of strategies is the 

following: 𝑓1 = [1 1]𝑇; 𝑓2 = [1 2]𝑇; 𝑓3 =
[2 1]𝑇; 𝑓4 = [2 2]𝑇. Referring to each 

presentation, we estimate the frequencies of some 

decisions made within some condition. Afterwards, 

on the basis of these frequencies, we define the 

closest strategy, which later corresponds to the 

given presentation. 

2nd Stage. The whole multitude of transition 

probability matrices is estimated in relation to each 

presentation: 𝑃1, 𝑃2, 𝑃3, 𝑃4. Each of these matrices 

is a conditional one (i.e. it is applied when we select 

the solution that corresponds to the upper index of 

the matrix). Similar to the 1st stage, we separately 

compute the frequencies of transitioning from one 

state to another per each presentation (using the 

pairs of steps of Markov chain) taking into account 

the made decision (conditions of the transition). The 

frequencies that are obtained in this manner are the 

estimates of one-step MDP conditional transition 

probabilities. Afterwards these probabilities are put 

into the corresponding places of the transition 

probability matrices. 

3rd Stage. The purpose of constructing the 

payoff estimates is the following: to calculate the 

estimates of the payoff vector 𝑟𝑖
𝑠 on the basis of the 

observed parameters (estimates) of the transition 

probability matrices and according to the payoffs in 

each observation (presentation). For this we shall 

use the least square method, whose recurrent form 

[11] that connects the previous (𝑞) estimates of the 

observations with the current ones, (q+1) is the 

following: 

𝑟̂𝑞+1 = 𝑟̂𝑞 + 𝑄𝑞𝑃𝑞[𝑃𝑞
𝑇𝑄𝑞𝑃𝑞 + 1]

−1
[𝑣𝑞+1 − 𝑃𝑞

𝑇𝑟̂𝑞], 

𝑄𝑞+1 = 𝑄𝑞 − 𝑄𝑞𝑃𝑞[𝑃𝑞
𝑇𝑄𝑞𝑃𝑞 + 1]

−1
𝑃𝑞

𝑇𝑄𝑞, 

where: 

𝑄𝑞 = (𝑃𝑞
𝑇𝑃𝑞)

−1
; 𝑣𝑞+1 is the payoff within the 

(q+1)-numbered observation; 𝑃𝑞 is the transition 

matrices that are obtained on the 2nd stage within 

𝑞-numbered observation.  

Within the recurrent estimation equations, the 

MDP presentation is the observation step while the 

MDP step is actually one step of Markov chain 

made within the framework of the specific 

presentation.   

With the appearance of each new 𝑞-numbered 

presentation of the payoff vector, its estimates are 

refined recurrently. This is the formal 

characterization of the decision taker's positive 

experience made with the help of MDP. Here we 

can also say that current preferences of the decision 

taker are approximated by the Markov chain of 

decision making.  

The recurrent estimation algorithm not only 

removes the prior doubt, but also allows adapting to 

the drift of payoffs, objectives and preferences of 

the decision taker by correcting the strategies on the 

basis of the payoff vectors, which are adjusted 

according to the current observations of the decision 

taker's actions.  

Model Example 

In order to check the working capacity and 

effectiveness of the suggested scheme of the reverse 

problem solution (which is the nucleus of the 

mobile robot adaptive control procedure) we have 

conducted the simulation experiment. The given 

data was formed randomly. One of the parameter 



variants of the modelled MDP is provided in the 

table below. 

Solving direct problem by the brute-force 

strategy search showed that the 2nd strategy is the 

optimal one: 𝑓2 = [1 2]𝑇. According to its logic, 

we should choose the first solution for the first 

process state with the second being chosen for the 

second one. In this case, the one-step mean payoff 

shall constitute 71 units within the steady-state 

mode. Using the Games Theory terminology, this 

solution corresponds to the decision taker's pure 

strategy. As a rule, when the operator (decision 

taker) controls the robot in reality, he/she takes into 

account a multitude of performance targets (and not 

only a single one). At that he/she does not "feel" the 

strategy, whose optimality is based on many 

criteria, therefore the decision taker may often use 

his/her own subjective and mixed control strategy.   

 

Table 1. Parameters of Modelled MDP 

Solutions 

k 

Conditions 

i 

One-Step 

Transition 

Probabilities 

pij 

One-Step Payoffs 

rij 

j=1 j=2 j=1 j=2 

1 
1 0.05 0.95 45 79 

2 0.19 0.81 44 31 

2 
1 0.27 0.73 25 23 

2 0.48 0.52 93 45 

Pic. 1. Mean Payoffs 

 

In order to solve the reverse problem we have 

simulated 100 presentations, with each of them 

containing 30 points. It means that the modelled 

decision taker made 30 decisions in relation to the 

appearing values of the current states per each 

presentation. One out of four pure strategies was 

applied during each presentation. This data was 

processed in accordance with three stages of the 

reverse problem solution algorithm that are 

provided above.       

According to the statistics of made decisions, 

we have definitely identified the pure strategies that 

were applied by the decision taker at the first stage. 

This is caused by the fact that each research 

considered a fully observable MDP. 

At the second state we have computed 

subsequently refined estimations of one-step 

transition matrices. At that, within the iteration 

process of the estimate refinement, each of 100 

presentations was used as another observation. On 

Picture 2 you can see step-by-step changes of the 

estimates referring to 4 probabilities (the total 

number of matrix probabilities is 8, but 4 of them 

are independent while the rest 4 are computed as 

one's complement).  

 

 
Pic. 2. Convergence of MDP's Probability Estimates                   Pic. 3. Convergence of MDP's Payoff  

                                                                                                                  Estimates 

 

Modelled probability values (provided in 

Table 1) are marked separately on Picture 2. 

𝑟𝑖
𝑘 estimates of the elements that are folded 

into the vectors of payoff matrices are computed at 

the third stage with the help of the observations that 

are calculated on each step (i.e. that refer to each 

new presentation) and the payoff that corresponds 

to the performed presentation according to the 

recurrent correlations. Their sufficient number for 

the purposes of the considered dimensionalities is 

four (similar to the probability estimates). The 
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estimate convergence of these values is shown 

graphically on Pic. 3, while Pic. 4 contains solutions 

of the direct problem MDP made on the basis of the 

step-by-step estimates. It is clearly shown on Pic. 4 

that the adaptation process is converging quickly.     

 

Pic. 4. Convergence of MDP Solutions According to its Parameter Estimates 

 

Conclusions 

The research that was made for other 

dimensionalities of state space (capacity of the 

sensor field) referring to the solution space showed 

that the solution convergence in relation to the 

considered class of models stays high. Moreover, 

the experiment optimal planning tools that are used 

during the RS education process allow shortening 

the time that is usually used to adjust the decision 

taker's preferences.  

The preference model that is adjusted and pre-

built within the RS is highly adequate to the 

preferences and objectives of the decision taker, 

while the quality of decisions that are made by the 

RS are not inferior to the quality of the decisions 

made by the "teacher" of MDP-model. Should the 

signs of the environment non-stationarity appear or 

should the decision taker's preferences change, the 

model can be re-adjusted and reloaded into the RS. 

The process of setting up/educating the model can 

be made using a separate model or a special testing 

device, while the MDP-model that was adjusted for 

new conditions can be loaded as a "hot" update 

without interrupting normal operation of the RS. 

Further development of the suggested 

approach can unfold in several directions. In 

particular, we can extend the considered spectrum 

of the robotic system’s sensor field variants and/or 

use POMDP-models.  
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