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Abstract— In this paper we present a new approach for
dynamic motion planning for legged robots. We formulate a
trajectory optimization problem based on a compact form of the
robot dynamics. Such a form is obtained by projecting the rigid
body dynamics onto the null space of the Constraint Jacobian.
As consequence of the projection, contact forces are removed
from the model but their effects are still taken into account.
This approach allows to solve the optimal control problem of a
floating base constrained multibody system while avoiding the
use of an explicit contact model. We use direct transcription to
numerically solve the optimization. As the contact forces are not
part of the decision variables the size of the resultant discrete
mathematical program is reduced and therefore solutions can
be obtained in a tractable time. Using a predefined sequence
of contact configurations (phases), our approach solves motions
where contact switches occur. Transitions between phases are
automatically resolved without using a model for switching
dynamics. We present results on a hydraulic quadruped robot
(HyQ), including single phase (standing, crouching) as well as
multiple phase (rearing, diagonal leg balancing and stepping)
dynamic motions.

I. INTRODUCTION

Motor skills on state of the art legged robots are still far
from mature, as they clearly do not move as smoothly and
efficiently as animals yet. Regardless of specific and carefully
designed implementations, there is no general approach for
the online planning and execution of dynamic whole body
motions on legged robots. In such systems, using hand
designed or motion captured references tends to produce
inefficient and artificial results.

Other approaches [18] use the well known Zero Moment
Point (ZMP) [8] to maintain balance during motions. The
typical simplified model used to calculate the ZMP for a
legged robot is the cart-table model, which does not capture
the full rigid body dynamics of the physical robot and
can lead to instability. Additionally, the quasi-static stability
criterion requires to keep the ZMP inside the support polygon
created by the legs in contact. While this approach works
well in practice, it is based on several assumptions, hindering
dynamic and more natural looking motions which would be
feasible from a physics perspective.

On the other hand, whole body motion planning and
control based on optimization is demonstrating to be a very
promising approach [3], [12], [9], [10]. It is clear that contact
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forces play a decisive role in the resultant behavior of the
robot, and therefore they need to be taken into account
during the planning process. Trajectory optimization offers
a framework where contact forces can be consistently in-
cluded as decision variables. However, a continuous optimal
control problem for floating base robots subject to kinematic
constraints is so often too complex for analytical approaches
and therefore numerical methods must be used. The choice
of numerical technique has a significant influence on the
computational effort and feasibility of the solution.

Numerical methods for trajectory optimization can be
roughly classified as shooting or direct methods and both
approaches have been applied to create dynamic motions for
legged robots. In essence, all methods search for a set of
decision variables (e.g., joint torques and external forces)
such that a cost function is minimized while satisfying
a set of constraints (e.g., system dynamics and kinematic
constraints). The minimization is accomplished by iteratively
following a numerical approximation of a gradient.

Broadly speaking, shooting methods obtain the data re-
quired for the gradient approximation by forward simulat-
ing the system dynamics and computing the resulting cost
function. Importantly, these methods needs to include the
constraints as penalty terms in the cost function, i.e. adding
the requisite of dynamic feasibility as a soft constraint.
As a consequence, these methods may provide suboptimal
solutions or even violate system dynamics. Most of the
results have been verified in animation [10], i.e., playing
back the state trajectories instead of forward integrating the
equations of motion or applying the planned torques on a
robot. To the best of our knowledge, there are no reports of
experiments on torque control legged robots using shooting
methods.

On the other hand, direct methods discretize the state,
control and force trajectories over time and an optimization
problem is stated over the values of the variables at the
discretization points or nodes [12], [3]. The resulting problem
can then be solved by a nonlinear programming (NLP)
solver. One of the main advantages of direct methods is that
constraints are enforced by the solver. This feature facilitates
applying solutions to real robots, for instance adding bounds
on the state and control variables.

As a consequence of discretizing both state and control,
the dynamics of the system have to be verified in between the
nodes, which increases the number of constraints. The large
size of the subsequent discrete optimization is an important
challenge, making direct methods computationally expensive
and preventing its use for online motion generation. This fact
is accentuated by including the contact forces as decision
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variables. In [3] the use of the simpler, yet completely valid,
centroidal dynamics of the robot was proposed to overcome
this difficulty. The length of the problem is then reduced with
respect to the one using the full model. Nevertheless, using
the centroidal dynamics prevents the use of constraints or
costs based on the joint torques, moreover additional kine-
matic constraints are required to obtain feasible solutions.

Another technique known as multiple shooting combines
the shooting and direct approaches. Multiple shooting has
been used for human-like whole body optimal control [15]
and to the analysis of specific motion problems on humanoids
[9]. Similar to direct methods, constraints can be explicitly
formulated. As in shooting methods, however, this approach
needs an explicit model for the contact dynamics to describe
the changes between contact configurations or phases.

In this paper we present a new approach for whole body
motion planning based on a direct method. Here we use a
reduced version of the full body dynamics obtained from the
projection of the equations of motion into the tangent space
with respect to the constrained manifold. As a consequence
of the projection, contact forces are removed from the
dynamics whereas its effects are still taken into account.
The main contribution of this paper is the integration of a
direct transcription method for trajectory optimization with
a model representing the direct dynamics of a legged robot
where contact forces are not explicit. The projection of the
equations of motion is obtained via an algebraic operator
that depends only on kinematic quatities and thus obtaining
solutions in a tractable time. Moreover, compared with
shooting methods, our approch does not required an explicit
contact model, reducing the complexity of the numerical
optimization process.

This paper is organized as follows. Section II presents the
optimal control problem of legged robots in a very general
form and describes our solution approach. Section III reviews
the main concepts of the projection of the equations of
motion into a constraint space. In Section IV we describe
the direct transcription method to generate motions in legged
robots based on the projected model. Results are described in
section V. Finally, conclusions and future work are discussed
in section VI.

II. GENERAL FRAMEWORK

In general, the system dynamics of a robot can be mod-
elled by a set of nonlinear differential equations,

ẋ(t) = f(x(t),u(t)), (1)

where x ∈ Rnx represents the system states and u ∈ Rnu

the vector of inputs. The transition function f(·) defines the
system evolution over time. Legged robots can be modeled as
underactuated, floating base systems, i.e., the state space is
given by x = [qT , q̇T ]T where the generalized coordinate
q = [q

T
b qT

r ]
T

includes base positions and orientations(
qb ∈ R6

)
as well as joint configurations (qr ∈ Rn), i.e.,

nx = 2 × (6 + n). Control inputs are usually joint torques
u = τ ∈ Rn.

In a very general formulation, a trajectory optimization
problem for whole body motion planning and control in
legged robots,

min
u(t),x(t)

J = Ψ(x(tf )) +

∫ tf

0

ψ(x(t),u(t), t) dt

s.t., ẋ = f(x,u)

g0,l ≤ g0(x(t0),u(t0), t0) ≤ g0,u

gf,l ≤ gf (x(tf ),u(tf ), tf ) ≤ gf,u

φl ≤ φ(x(t),u(t), t) ≤ φu
xmin ≤ x(t) ≤ xmax umin ≤ u(t) ≤ umax

(2)

consists in finding a finite-time state and input trajectory
x(t),u(t),∀t ∈ [0, tf ], such that a given criteria J is
minimized, subject to a set of constraints. Intermediate ψ(·)
and final Ψ(·) costs encode the objective of the task through
J . The optimization is subject to the dynamics of the system,
as well as to boundary conditions, g(·), path constraints φ(·),
and simple bounds on the state and control variables.

The complexity of this optimization problem stems from
the complexity of the dynamics of a legged robot. Besides the
underactuation, legged robots are constantly establishing and
breaking contacts with the environment adding constraints to
its motion and generating ground reaction forces.

In [1], a method to derive direct dynamics of constrained
mechanical systems based on the notion of a projector opera-
tor is presented. Constraint reaction forces are eliminated by
projecting the original dynamics equations into the tangent
space with respect to the constraint manifold. Moreover, the
equations of motions are derived in a form that explicitly
relates the generalized input force to the acceleration. The
following section revisits the derivation of the constraint-
consistent dynamics, describing those concepts relevant to
understand our approach for planning in such a subspace.

III. DIRECT DYNAMICS OF A LEGGED ROBOT

In general, the dynamics of a legged robot can be modeled
as a constrained multibody system, i.e.,

M(q)q̈ + h(q, q̇) = S
T
τ + Fc (3)

subject to m kinematic constraints,

Φ(q) = 0. (4)

where M ∈ R(n+6)×(n+6) represents the inertia matrix, h ∈
Rn+6 is a generalized force vector, gathering Gravitational,
friction, Coriolis and centrifugal effects. τ ∈ Rn is the
vector of joint torques and S ∈ Rn×(n+6) is the joint
selection matrix that reflects the underactuation. Fc ∈ Rn+6,
represents the generalized constraint force acting on the robot
DOF.

The set of constraints described in (4) models that there
are certain points, cj , of the robot which motion is instanta-
neously constrained, and their velocity is zero, i.e.,

Jcq̇ = 0 (5)



where Jc = ∂Φ/∂q ∈ Rm×(n+6) is the Jacobian of the
constraints with respect to the generalized coordinate. This
can be used to express the generalized constraint force,

Fc = JT
c λ (6)

where λ ∈ Rm are the so-called Lagrange multipliers of the
constraints. Notice that no assumption has been made on the
rank of (4), and it may contain redundancies. For instance, in
case of a point feet quadruped robot with all feet in contact
with the ground, λ ∈ R12 represents the ground reaction
forces on the feet, hence the constraints in (4) are redundant
and Φ(q) is not full rank.

As first suggested in [1], constraint forces can be elim-
inated from (3) by projecting the dynamics onto the null
space of Jc, i.e., onto the tangent space with respect to
the constrained manifold. Provided an orthogonal projection
operator P such that its range is equal to the null space
of the Jacobian, i.e., R(P) = N (Jc), it can be shown that
such operator is an annihilator for the generalized constraint
force1, i.e., PFc = 0. Applying the orthogonal operator
to (3), the projected inverse dynamics of a constrained
multibody system is then expressed in a descriptive form
by,

PMq̈ = P(S
T
τ − h) (7)

This equation could already be used as a constraint for the
optimization, as it does not include the contact forces and the
complexity of the original problem would be reduced. How-
ever, this expression does not consider the components of the
null space orthogonal to the acceleration, i.e., the component
of acceleration produced exclusively by the constraint and
not by dynamics. The velocity constraint in (5) implies that
the null space orthogonal component of the velocity must be
equal to zero.

q̇⊥ = (I−P)q̇ = 0. (8)

Differentiating (8) with respect to time, it can be seen that the
null space orthogonal component of the acceleration (q̈⊥) is
not necessarily equal to zero,

q̈⊥ = (I−P)q̈ = Cq̇ (9)

where C = dP/dt. Aghili proposed in [1] that combin-
ing (7) and (9), and assuming a square projector matrix
P ∈ R(n+6)×(n+6), a complete equation of motion of the
constrained mechanical system can be obtained,

q̈ = M−1
c

(
ST τ − h + Ccq̇

)
(10)

where Cc = MC, whereas Mc ∈ R(n+6)×(n+6), the so-
called constraint inertia matrix, is defined as,

Mc = M + M̃

M̃ = PM− (PM)T .
(11)

1As shown in [1], giving that Fc ∈ R(JT
c ) and by virtue of the

fundamental relationship between the range space and the null space
orthogonal associated with a linear operator and its transpose, it can be
shown that Fc ∈ N (Jc)⊥. Vectors can be expressed as the sum of
orthogonal components, q̇ = q̇‖ ⊕ q̇⊥. According to (5), q̇ ∈ N (Jc),
and as q̇‖ = Pq̇, i.e., q̇‖ ∈ N (Jc), therefore, q̇⊥ = 0.

The equation of motion in (10) is completely compatible
with the trajectory optimization problem in (2) and with the
direct transcription approach described in the next section.
It is worth mentioning that, as shown in [1], there is no
unique way of combining (7) and (9) to obtain (10). Although
all forms are equivalent, some might have computational
advantages over others. As demonstrated in [1], the constraint
inertia matrix in (11) is positive definite but not necessarily
symmetric.

Finally, it is important to remark that the derivation of (10)
assumes a square projector. That is the case of the orthogonal
projector proposed in [1], and used throughout this paper,

P = I− J+
c Jc (12)

where J+
c denotes the pseudoinverse of Jc. Other forms

of projector operators have been proposed in the context
of inverse dynamics contol of floating base robots [13].
Nevertheless, these are not square and therefore cannot be
used to compute a direct dynamics expression compatible
with the direct transcription approach used in this work.

IV. DIRECT TRANSCRIPTION

We use direct transcription [2], [7] to find a feasible mo-
tion plan. This method translates the continuous formulation
in (2) into a mathematical optimization problem with a finite
number of variables that can be solved using an Nonlinear
Programming Solver (NLP).

The decision variables y ∈ Rp of the transcription problem
are the discrete values of the robot state and control trajec-
tories sampled at certain points or nodes. The time between
nodes ∆T is not necessarily constant and has been included
in the set of decision variables, i.e., y = {xk,uk,∆Tk} for
k = 1, ..., N , where N represents the total number of nodes.

The resulting NLP is then formulated as follows,

min
y

f0(y)

s.t., ζ(y) = 0
bmin ≤ b(y) ≤ bmax

ymin ≤ y ≤ ymax,

(13)

which contains a scalar and derivable objective function
f0(y), a set of boundary and path constraints b(·) and
bounds [ymin,ymax] on the state and control variables.

A. Dynamic constraints

The original set of differential equations representing the
dynamics of the robot in (1) is replaced with a vector of
dynamic constraints or defects ζ(·) ∈ R(N−1)×nx . Although
there are different alternatives to formulate the dynamic
constraints [11], [2], we use a trapezoidal approximation for
the dynamics,

ζ
.
= xk+1 − xk −

∆T

2
[f(tk) + f(tk+1)] = 0 (14)

where the notation f(ti) = f(xi,ui) has been adopted for
simplicity. Notice that the inverse dynamics in (7) cannot
be used to compute this form of defect as f(·) cannot be
computed through matrix inversion. On the other hand, the
defects can be easily computed using (10).
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Fig. 1. Maximum torque of HyQ knee is function of the joint configuration
due to a varying leverarm. This function is then used as path constraint to
avoid limiting the capacities of the robot.

B. Torque bounds as path constraints

As in the case of hydraulically actuated robots, torque lim-
its may depend on the configuration of the robot, i.e., τmax =
ϕ(q). For instance, Fig. 1 shows the maximum torque that
can be applied at the knee joint of the hydraulically-actuated
quadruped (HyQ) [16]. We have added path constraints
allowing the robot to use the actual maximal torque available,
and thus exploiting its dynamic capacities. The constraint
can be transcribed for the value of the torque at each node
as follows,

0 ≤ ϕi(q)− τi ≤ ∞ (15)

C. Contact Points and Kinematic constraints

It is important to add kinematic constraints to satisfy the
assumption that points cj are in contact, and therefore the
projection is valid. In general, if Sj groups the valid contact
regions (floor, wall, etc), the contact point used to generate
the projection (i.e., Jc) should satisfy, cj ∈ Sj .

For instance, in the case of the quadruped robot used in
this paper, contact points are in the feet and the valid contact
region is the ground, therefore the contact point constraint
can be expressed as,

f
cj
kin(q) = 0. (16)

where f
cj
kin ∈ R is the kinematic function providing the

perpendicular distance from the foot to the ground.
In order to facilitate the numerical optimization, other

kinematic constraints that enforce the assumptions made to
derive the projected dynamics may be added. For instance,
when the dynamic constraints are satisfied, those kinematic
constraints in (5) and its derivative, i.e.,

Jq̈− J̇q̇ = 0, (17)

are necessarily being satisfied. Adding this constraints is
straightforward and we observed that this helps the solver
in finding feasible solutions.

Fig. 2. The phases of the optimization are defined by the contact configu-
ration of the robot. Transition between phases is handled automatically by
the method, as dynamic constraints are verified in between the nodes. Last
point of a phase also satisfy the dynamic constraint of the next phase.

D. Friction cone constraint

In order to generate feasible solutions, ground reaction
forces at contact points λj ∈ R3 should be unilateral (i.e.,
the robot only can push to the ground) and its tangential
component λx,yj should avoid sliding and mantain the con-
tact, i.e., respecting the friction cone. This constraint can be
written as,

−∞ ≤ ||λx,yj || − µ · λ
z
j ≤ 0 (18)

where µ represents the friction coeficient between the contact
point and the surface. This constraint already imposes the
unilateral condition.

Even though contact forces are not part of the decision
variables, it can be uniquely defined as a function of the
state and control by an algebraic expression resulting from
decoupling the dynamics, as derived in [13].

λi = R−1QT
c (M · f(ti) + h− ST τi) (19)

where Qc and R derive from the QR decomposition of the
constraint Jacobian JT

c = Q[RT 0]T , and, Q = [Qc Qu].

E. Switching contact configuration

Given that the dynamics are different for each contact
configuration, the sequence of contacts defines different op-
timization phases [2]. The sequence of contact configuration
has to be defined beforehand, while the duration of the phases
is optimized over. Transitions between phases are handled
automatically by the method, as constraints are veryfied in
between nodes. At the transition nodes the trajectory satisfy
the dynamics of both phases (see Fig. 2).

V. RESULTS

We have applied the framework described above to the
generation of motions on the quadruped robot HyQ. This
section describes the robot and shows the results obtained.



Fig. 3. Unified Robot Description Format (URDF) model of the
Hydraulically-actuated Quadruped (HyQ). Dimensions at nominal configu-
ration : 80cmx40cmx60cm. Each leg has 3DOF (hip abduction, hip flexion
and Knee)

A. HyQ Robot and Conventions

Fig. 3 shows the HyQ robot. This robot is approximately
80cm long and 50cm wide, and it weights around 80Kg.
Each leg has three DOF (HAA: Hip abduction/adduction,
HFE: Hip flexion/extension and KFE: Knee flexion/extension
- KFE) and it is fully torque controllable. Generating agile
and dynamic motions in this type of robots is challenging
due to its rigid body dynamics. At the same time the high
bandwith of hydraulic actuation offers an opportunity to
exploit dynamic capabilities.

The equations of motion of the robot are based on the
rigid body dynamics model provided by [5], on top of this
we implemented the floating base dynamics using Plucker
coordinates as suggested in [4], i.e., linear and angular
velocities of the base are expressed in base coordinate frame,
whereas position and orientation (XYZ Euler angles) are
represented with respect to an inertial frame.

B. Feedback Stabilization

In order to effectively apply the solutions of the opti-
mization to the robot, it is necessary to use a stabilizing
feedback controller. We use a Time Variant Linear Quadratic
Regulator (TVLQR) [17] around the optimized state and
control trajectories x∗(t),u∗(t). This controller provides
optimal full state feedback gains K(t) ∈ Rnu×nx . The total
control applied to the robot, uT , amounts to

uT (t) = u∗(t) + K(t)(x(t)− x∗(t)).

Fig. 4 shows the trajectory of the 36 gains influencing the
feedback control of a single torque command (e.g., Left
Hind Knee) during a crouching motion. We use the projected
dynamics for the linearization and subsequent solution of the
differential Riccati equation.

C. Forward Integration and Simulation Environment

Optimized trajectories were initialy tested performing the
forward integration of (10). Nevertheless, this is a limited
test as it does not include contact reaction forces and it
assumes perfect sensor information of the pose of the robot
body. Therefore, results were also validated in a simulation
environment [14] with an independent contact and noise
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Fig. 4. Gains Trajectories obtained using TVLQR. Whole body feedback is
implemented and therefore all the state errors affects the final torque applied
to the joints. This plot shows the gains corresponding to the feedback torque
of Joint 9 (Left Hind Knee) during crouching motion.

model. Finally, and in order to perform the validation under
the most realistic conditions, the feedback of the state of the
base was obtained using a state estimator.

D. Single Phase Motions
Motions with single contact configuration were generated

in order to validate all the elements involved in the system.
A quadratic cost function was used to obtain a standing
behavior

Jstanding = x̄TQsx̄ + ūTRsū (20)

where, x̄ = x − xnom and ū = u − unom are the
difference of the state and control with respect to their
nominal values. Nominal joint configuration for the standing
behavior is shown in Fig. 3. The base coordinate system and
the inertia coordinate system are aligned at the begininig
of the mottion, therefore the initial robot pose is given by
qb = [01×3 01×3]T . Fig. 5 shows the control signals found
for the optimization problem using N = 6 discretization
points for a T = 2s trajectory. The contact constraint in
(17) is verified by the signals in Fig. 6. Results of the
simulation are shown in Fig. 7. These results confirm that
control trajectories obtained using the projected dynamics are
consistent with the dynamics of the robot since the complete
system follows the plan even though the simulation includes
contact forces and noise.

Modifying the nominal posture and cost corresponding to
the z component of the position of the base, the system
finds trajectories and controls to crouch down to the desired
position. Fig. 8 shows the signals obtained during simulation.

E. Multiphase Motions
In order to generate more elaborated and dynamic motions,

different sequences of contact configurations were used.
Fig 12 shows the final configuration corresponding to the
intermediate phase of different motions (rearing, diagonal
legs balancing and stepping). All motions start with the same
initial nominal posture and contact configuration.

The simulatuions described in this section are shown
in the video attached to this paper: https://youtu.be/
_fy-E40evjE

https://youtu.be/_fy-E40evjE
https://youtu.be/_fy-E40evjE
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Fig. 9. Balancing Fig. 10. Stepping

Fig. 11. Rearing

Fig. 12. Images captured in SL Simulation environment [14]. Final
configuration corresponding to different multiphase motions (Stepping,
Rearing , diagonal legs balancing).

F. Comparison with centroidal dynamics

All motions presented were obtained by the proposed optimiza-
tion in few minutes of processing in a common laptop. However,
this is not a valid meassure of performance as too many elements
of the implementation are accountable to be optimized. In order to
understand the impact of our contribution, here we present a rough
analyisis of the size of the problem compared with the state of
the art on whole body motion planning using direct transcription
methods [3].

Table I shows the total number of decision variables and con-
straints (per node) required in order to solve a single phase motion
on the HyQ robot (four feet on the ground)2. It can be seen that the
complexity of the problem is reduced using the projected dynamics
and thus it can be hypothetized that the computational time required
to solve the problem under same implementation is less.

2As described in Section II-D of [3]



TABLE I
NUMBER OF DECISION VARIABLES AND CONSTRAINTS (PER NODE) FOR

A SINGLE PHASE MOTION ON HYQ (ALL FEET IN CONTACT)

Method Decision Variables Constraints
Centroidal Dynamics 76 63

Projection 49 48

G. Software Implementation
Our system is developed in C++, based on the Eigen library for

vector manipulation and linear algebra. Given an implementation of
the equation of motion of the legged robot and a sequence of contact
configurations, our systems automatically projects the dynamics and
generates the corresponding numerical optimization problem. The
system provides an interface to well known SNOPT [6] solver, used
to obtain the results presented in this paper.

VI. CONCLUSIONS AND FUTURE WORK

The projection of the dynamics onto the null space of the
Jacobians of its contraints allows to reduce the complexity of
the model, facilitating the use of direct methods for trajectory
optimization. The motions generated for the hydraulically-actuated
robot satisfiy the kinematic constraints in (5) and (17) even if they
are not explicitly added to the optimization problem, demonstrating
the consistency of the formulation. Motions including switching
contacts (2 phases), have been shown to demonstrate the feasibility
of the method.

Single phase motions were straightforward to implement in the
real robot, however, we have observed that results tend to be at the
limit of dynamic stability, and therefore they are very sensitive to
modelling errors and noise. It seems that optimality of the solutions
stress their feasiability (in the real robot). Development of robust
feedback controllers is required to achieve the actual exploitation
of the dynamics proposed by optimization approaches as the one
presented in this paper.
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