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Robust Satisfaction of Temporal Logic Specifications via Reinforcement
Learning

Austin Jones', Derya Aksaray”, Zhaodan Kong?, Mac Schwager®, and Calin Belta>”

Abstract— We consider the problem of steering a system with
unknown, stochastic dynamics to satisfy a rich, temporally-
layered task given as a signal temporal logic formula. We
represent the system as a Markov decision process in which
the states are built from a partition of the statespace and
the transition probabilities are unknown. We present provably
convergent reinforcement learning algorithms to maximize the
probability of satisfying a given formula and to maximize the
average expected robustness, i.e., a measure of how strongly
the formula is satisfied. We demonstrate via a pair of robot
navigation simulation case studies that reinforcement learning
with robustness maximization performs better than probability
maximization in terms of both probability of satisfaction and
expected robustness.

I. INTRODUCTION

We consider the problem of controlling a system with
unknown, stochastic dynamics, i.e., a “black box”, to achieve
a complex, time-sensitive task. An example is controlling
a noisy aerial vehicle with partially known dynamics to
visit a pre-specified set of regions in some desired order
while avoiding hazardous areas. We consider tasks given
as temporal logic (TL) formulae [2], an extension of first
order Boolean logic that can be used to reason about how
the state of a system evolves over time. When a stochastic
dynamical model is known, there exist algorithms to find
control policies for maximizing the probability of achieving
a given TL specification [18], [17], [23], [13] by planning
over stochastic abstractions [12], [1], [17]. However, only a
handful of papers have considered the problem of enforcing
TL specifications to a system with unknown dynamics.
Passive [3] and active [21], [9] reinforcement learning has
been used to find a policy that maximizes the probability of
satisfying a given linear temporal logic formula.

In this paper, in contrast to the above works on reinforce-
ment learning which use propositional temporal logic, we
use signal temporal logic (STL), a rich predicate logic that
can be used to describe tasks involving bounds on physical
parameters and time intervals [7]. An example of such a
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property is “Within #; seconds, a region in which y is less
than m; is reached, and regions in which y is larger than
m, are avoided for f, seconds.” STL admits a continuous
measure called robustness degree that quantifies how strongly
a given sample path exhibits an STL property as a real
number rather than just providing a yes or no answer [8],
[7]. This measure enables the use of continuous optimization
methods to solve inference (e.g., [10], [11], [14]) or formal
synthesis problems (e.g., [20]) involving STL.

One of the difficulties in solving problems with TL for-
mulae is the history-dependence of their satisfaction. For
instance, if the specification requires visiting region A before
region B, whether or not the system should steer towards
region B depends on whether or not it has previously
visited region A. For linear temporal logic (LTL) formulae
with time-abstract semantics, this history-dependence can be
broken by translating the formula to a deterministic Rabin
automaton (DRA), a model that automatically takes care of
the history-dependent “book-keeping” [4], [21]. In the case
of STL, such a construction is difficult due to the time-
bounded semantics. We circumvent this problem by defining
a fragment of STL such that the progress towards satisfaction
is checked with some finite number 7 of state measurements.
We thus define an MDP, called the 7-MDP whose states
correspond to the T-step history of the system. The inputs to
the T-MDP are a finite collection of control actions.

We use a reinforcement learning strategy called Q-learning
[24], in which a policy is constructed by taking actions,
observing outcomes, and reinforcing actions that improve a
given reward. Our algorithms either maximize the probability
of satisfying a given STL formula, or maximize the expected
robustness with respect to the given STL formula. These
procedures provably converge to the optimal policy for each
case. Furthermore, we propose that maximizing expected
robustness is typically more effective than maximizing prob-
ability of satisfaction. We prove that in certain cases, the
policy that maximizes expected robustness also maximizes
the probability of satisfaction. However, if the given speci-
fication is not satisfiable, the probability maximization will
return an arbitrary policy, while the robustness maximization
will return a policy that gets as close to satisfying the policy
as possible. Finally, we demonstrate through simulation case
studies that the policy that maximizes expected robustness
in some cases gives better performance in terms of both
probability of satisfaction and expected robustness when
fewer training episodes are available.



II. SIGNAL TEMPORAL LOGIC(STL)

STL is defined with respect to continuously valued signals.
Let .7 (A,B) denote the set of mappings from A to B and
define a signal as a member of .% (N,R"). For a signal s, we
denote s as the value of s at time ¢ and s"1"2 as the sequence
of values 5151 1. .52, Moreover, we denote s[t] as the suffix
from time 7, i.e., s[f] = {s |t >1}.

In this paper, the desired mission specification is described
by an STL fragment with the following syntax :

¢ = Fonv|Gonv,

v = f(s) <d=o[o1 A 2| 91U ) 02,
where T is a finite time bound, ¢,y, and ¢ are STL
formulae, a and b are non-negative real-valued constants, and
f(s) <d is a predicate where s is a signal, f € Z(R" R) is
a function, and d € R is a constant. The Boolean operators
— and A are negation (“not”) and conjunction (“and”),
respectively. The other Boolean operators are defined as
usual. The temporal operators F, G, and U stand for “Finally
(eventually)” , “Globally (always)”, and “Until”, respectively.
Note that in this paper, we use a discrete-time version of STL
rather than the typical continuous-time formulation.

The semantics of STL is recursively defined as

(D

Sl (fls) <d) i f(s) <d
SUE G AG iff sl 61 and sl =
SIJE0Vey sl 6 or sl = b
Sl = Gupd  iff sl =0

Vi' € t+a,t+b)

3r' efr+a,r+b)

st. sl Eo

3r' eft+a,r+b)

s.t. s[t"] = ¢V € [t,1)
and s[t'] = ¢s.

In plain English, Fj, ;)¢ means “within ¢ and b time units in
the future, ¢ is true,” Gy, ;)¢ means “for all times between
a and b time units in the future ¢ is true,” and ¢1Uj, ;)2
means “There exists a time ¢ between a and b time units
in the future such that ¢; is true until ¢ and ¢, is true at
¢.” STL is equipped with a robustness degree [8], [7] (also
called “degree of satisfaction”) that quantifies how well a
given signal s satisfies a given formula ¢. The robustness is
calculated recursively according to the quantitative semantics

sl = Flupo it

st] = 01Uy @2 iff

r(s,(f(s) <d),t) =d—f(s)
( NN ) :min( ( NN )7r(s7¢27t))
( S, 01V o, t ) :max( ( 5,01, ),V( 7¢2>t))
7(5,Gap)0,t) = min  r(s,9,¢)
t'€[t+a,r+b)
r(s,Figp)9,t) = max r(s,¢,t'),
t'elt+a,t+b)
( ¢1Uuh ¢2) ) = Supt’G[H—a t+4b] (mln (r((]h,s,t’),

1nf,u €] (¢17St )))

We use r(s,¢) to denote r(s,¢,0). If r(s,¢) is large and
positive, then s would have to change by a large deviation
in order to violate ¢. Similarly, if r(s,¢) is large in absolute
value and negative, then s strongly violates ¢.

Similar to [6], let Arz(¢) denote the horizon length of an
STL formula ¢. The horizon length is the required number
of samples to resolve any (future or past) requirements of @.
The horizon length can be computed recursively as

hrz(p) =0,
/’ZI’Z( = hVZ(¢)),
hrZ(¢1 \ ¢2 = max{hrz(¢1)vhrz(¢2)}7

¢)
)
hrz(@1 A ¢2) = max{hrz(¢1), hrz(¢2)},
hrZ((Panh ) :max{hrz(q)1)+b—l,hrz((]b)—i—b},
2
where @, ¢, ¢, are STL formulae.

Example 1: Consider the robot navigation problem illus-
trated in Figure [I(a). The specification is “Visit Regions A or
B and visit Regions C or D every 4 time units along a mission
horizon of 100 units.” Let s(t) = [x(r) y(t)] " where x and
y are the x— and y— components of the signal s. This task

can be formulated in STL as

o= G0 V

v = (F[074> (x>2Ax<3Ay>2Ay<3)
\/(x>4/\x<5/\y>4/\y<5)) 3)
(x>2Ax<3Ay>4Ay<5)

NFlo.4)
Vx>4Ax< 5/\y>2/\y<3))).

Figure[T[a) shows two trajectories of the system beginning
at the initial location of R and ending in region C that each
satisfies the inner specification y given in (3). Note that
sy barely satisfies v, as it only slightly penetrates region A,
while s appears to satisfy it strongly, as it passes through the
center of region A and the center of region C. The robustness
degrees confirm this: r(sy,y) = 0.3 while r(s2, y) = 0.05.

The horizon length of the inner specification y of is

hrz(y) = max (4 +max(0,0),4 +max(0,0)) =4

III. MODELS FOR REINFORCEMENT LEARNING

For a system with unknown and stochastic dynamics, a
critical problem is how to synthesize control to achieve a
desired behavior. A typical approach is to discretize the state
and action spaces of the system and then use a reinforcement
learning strategy, i.e., by learning how to take actions
through trial and error interactions with an unknown environ-
ment [22]. In this section, we present models of systems that
are amenable for reinforcement learning to enforce temporal
logic specifications. We start with a discussion on the widely
used LTL before introducing the particular model that we
will use for reinforcement learning with STL.

A. Reinforcement Learning with LTL

One approach to the problem of enforcing LTL satisfaction
in a stochastic system is to partition the statespace and design
control primitives that can (nominally) drive the system
from one region to another. These controllers, the stochastic
dynamical model of the system, and the quotient obtained
from the partition are used to construct a Markob decision
process (MDP), called a bounded parameter MDP or BMDP,



whose transition probabilities are interval-valued [1]. These
BMDPs can then be composed with a DRA constructed from
a given LTL formula to form a product BMDP. Dynamic
programming (DP) can then be applied over this product
MDP to generate a policy that maximizes the probability
of satisfaction. Other approaches to this problem include
aggregating the states of a given quotient until an MDP can
be constructed such that the transition probability can be
considered constant (with bounded error) [16]. The optimal
policy can be computed over the resulting MDP using DP
[15] or approximate DP, e.g., actor-critic methods [5].

Thus, even when the stochastic dynamics of a system
are known and the logic that encodes constraints has time-
abstract semantics, the problem of constructing an abstrac-
tion of the system that is amenable to control policy synthesis
is difficult and computationally intensive. Reinforcement
learning methods for enforcing LTL constraints make the
assumption that the underlying model under control is an
MDP [3], [21], [9]. Implicitly, these procedures compute a
frequentist approximation of the transition probabilities that
asymptotically approaches the true (unknown) value as the
number of observed sample paths increases. Since this algo-
rithm doesn’t explicitly rely on any a priori knowledge of the
transition probability, it could be applied to an abstraction of
a continuous-space system that is built from a proposition-
preserving partition. In this case, the uncertainty on the
motion described by intervals in the BMDP that is reduced
via computation would instead be described by complete
ignorance that is reduced via learning. The resulting policy
would map regions of the statespace to discrete actions that
will optimally drive the real-valued state of the system to
satisfy the given LTL specification. Different partitions will
result in different policies. In the next section, we extend the
above observation to derive a discrete model that is amenable
for reinforcement learning for STL formulae.

B. Reinforcement learning with STL: T-MDP

In order to reduce the search space of the problem, we par-
tition the statespace of the system to form the quotient graph
4 = (X,E), where X is a set of discrete states corresponding
to the regions of the statespace and E corresponds to the set
of edges. An edge between two states ¢ and ¢’ exists in E
if and only if ¢ and ¢’ are neighbors (share a boundary)
in the partition. In our case, since STL has time-bounded
semantics, we cannot use an automaton with a time-abstract
acceptance condition (e.g., a DRA) to check its satisfaction.
In general, whether or not a given trajectory s*7 satisfies
an STL formula would be determined by directly using
the qualitative semantics. The STL fragment (I)) consists
of a sub-formula y with horizon length hrz(y) = 7 that is
modified by either a Fjo 7y or G ) temporal operator. This
means that in order to update at time ¢ whether or not the
given formula ¢ has been satisfied or violated, we can use the
7 previous state values s'~*+1 For this reason, we choose
to learn policies over an MDP with finite memory, called a
7-MDP, whose states correspond to sequences of length 7 of
regions in the defined partition.

Example 1 (cont’d): Let the robot evolve according to the
discrete-time Dubins dynamics

X =¥ 48 cos O’

yt+1 :y’+v6’ sin 917 (4)

where x' and y’ are the x and y coordinates of the robot
at time ¢, v is its forward speed, &' is a time interval, and
the robot’s orientation is given by 6. The control primitives
in this case are given by Act = {up,down,left,right} which
correspond to the directions on the grid. Each (noisy) control
primitive induces a distribution with support 6.5 = A0,
where 6, is the orientation where the robot is facing the
desired cell. When a motion primitive is enacted, the robot
rotates to an angle 6’ drawn from the distribution and moves
along that direction for 6 time units. The partition of the
statespace and the induced quotient ¢ are shown in Figures
b) and c), respectively. A state oy;; in the quotient
(Figure [I[c)) represents the region in the partition of the
statespace (Figure [I(b)) with the point (i, j) in the lower left
hand corner. [ ]
Definition 1: Given a quotient of a system & = (X, E) and
a finite set of actions Act, a T-Markov Decision Process (1-
MDP) is a tuple A4, = (7, Act,Z), where
o S C(EUE)" is the set of finite states, where € is
the empty string. Each state or € . corresponds to
a T—horizon (or shorter) path in ¢. Shorter paths of
length n < 7 (representing the case in which the system
has not yet evolved for 7 time steps) have € prepended
T —n times.
o P X Act x. — [0,1] is a probabilistic transition
relation. #(0;,a,0,) can be positive only if the first
7 — 1 states of o are equal to the last T— 1 states of o;
and there exists an edge in ¢ between the final state of
o and the final state of o.

We denote the state of the 7-MDP at time ¢ as o..

Definition 2: Given a trajectory s'~**! of the original
system, we define its induced trace in the T-MDP .Z; as
Tr(s' ") = ¢!~"F1" = 5L That is, 6. corresponds to the
previous 7 regions of the statespace that the state has resided
in from time t — 7+ 1 to time ¢.

The construction of a T-MDP from a given quotient and set
of actions is straightforward. The details are omitted due to
length constraints. We make the following key assumptions
on the quotient and the resulting 7-MDP:

o The defined control actions Act will drive the system
either to a point in the current region or to a point in a
neighboring region of the partition, e.g.,no regions are
“skipped”.

« The transition relation &2 is Markovian.

For every T state of, there exists a continuous set of
sample paths {s'~**1} whose traces could be that state.
The dynamics of the underlying system produces an un-
known distribution p(s'~ "1 |Tr(s'~*+1) = o). Since the
robustness degree is a function of sample paths of length

7 and an STL formula y, we can define a distribution
p(r(stfrJrl:z’ V/)|Tr(slir+1:t) — G{.)
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Fig. 1: (a) Example of robot navigation problem. (b) Partitioned space. (c) Subsection of the quotient.

Example 1 (cont’d): Figure [2| shows a portion of the 7-
MDP constructed from Figure[I] The states in .#4 are labeled
with the corresponding sample paths of length 4 in ¢. The
green and blue o’s in the states in .#4 correspond to green
and blue regions from Figure [1]

IV. PROBLEM FORMULATION

In this paper, we address the following two problems.

Problem 1 (Maximizing Probability of Satisfaction): Let
AM: be a T-MDP as described in the previous section.
Given an STL formula ¢ with syntax (1), find a policy
Hmp € F (& x N, Act) such that

o argmax  Proz[s%T = ¢] 5)
peZ (S xNAct)

Problem 2 (Maximizing Average Robustness): Let .47 be
as defined in Problem|l} Given an STL formula ¢ with syntax
(1, find a policy u, € F#(,Act) such that

*
“mr -

Eor [r(s0:T7 ¢)}

arg max
neF (S xNAct)

(6)

0(2,1), 7(2.2),0(2,3), 0(1,3)

Fig. 2: Part of the 7-MDP constructed from the robot navigation
MDP shown in Figure [I]

Problems [I] and 2] are two alternate solutions to enforce
a given STL specification. The policy found by Problem
i.e. u,’;,p, maximizes the chance that ¢ will be satisfied, while
the policy found by Problem [2| i.e. ., drives the system
to satisfy ¢ as strongly as possible on average. Problems
similar to (3 have already been considered in the literature
(e.g., [9], [21]). However, Problem Q] is a novel formulation
that provides some advantages over Problem [I} As we show
in Section for some special systems, L. achieves the

same probability of satisfaction as p,,,. Furthermore, if ¢
is not satisfiable, any arbitrary policy could be a solution
to Problem [I] as all policies will result in a satisfaction
probability of 0. If ¢ is unsatisfiable, Problem [2] yields a
solution that attempts to get as close as possible to satisfying
the formula, as the optimal solution will have an average
robustness value that is least negative.

The forms of the objective functions differ for the two
different types of formula, ¢ = Fjo r)y and ¢ = Gjo ) Y.
Case 1: Consider an STL formula ¢ = Fjp 7). In this case,
the objective function in (3)) can be rewritten as

Pror[3t=1,....,T—tst s "=y, (7)
and the objective function in (6) can be rewritten as
Eor[ max r(s " y)). (8)
t=1,..,T—7

Case 2: Now, consider an STL formula ¢ = Gjor)y. The
objective function in (3) can be rewritten as

ProrVt=r1,...,T —1, s E v, )]
and the objective function in (6) can be rewritten as
Eor[ min r(s " y)]. (10)
= -7

V. MAXIMIZING EXPECTED ROBUSTNESS VS.
MAXIMIZING PROBABILITY OF SATISFACTION

Here, we demonstrate that the solution to (6) subsumes
the solution to (3) for a certain class of systems. Due to
space limitations, we only consider formulae of the type ¢ =
Foyv. Let M= (7, Pr,Act) be a T-MDP. For simplicity,
we make the following assumption on /7.

Assumption 1: For every state o; € ., either every
trajectory s't*~17 whose trace is o, satisfies y, denoted
O; = v, or every trajectory that passes through the sequence
of regions associated with o7 does not satisfy y, denoted
o £ V.

Assumption [T]can be enforced in practice during partitioning.
We define the set

A={o0; € S|o: E v} (11)

Definition 3: The signed graph distance of a T—state % €
S toaset X C.¥is

min /(o%, ) oL ¢ X
. J
d(ol,x)={ o S 12
(07, X) — min [(of,0)) oleX (12)
ole s \X



where [(o%,07) is the length of the shortest path from o to
ci.
We also make the following two assumptions.
Assumption 2: For any signal s~ *t17 gsuch that
Tr(s= "ty € , let r(s "' y) be bounded from
below by R, and from above by R;4x.
Assumption 3: Let Dg,(6) =
8|Tr(s""*%) = o). For any two states,

Prr(s"™*7 w) >

d(o1,A) < d(0f,A) = D4;(8) > D_;(8) ¥8 € [Ryin, Rimas]
' (13)

Now we define the policies (1, and W, over .#; as

‘u;lp = argmax PrGO:T |:3t S [O, T] S.t. O',i. |: ll/:| (14)
pEF (S xNAct)
Uy, = argmax E_or { 0’ax’Tr(G;, y/)] (15)

peF(FxNAc) = H=00

Proposition 1: If Assumptions and [3| hold, then the
policy u,,. maximizes the expected probability of satisfac-
tion.

Proof: Given any policy u, its associated reachability
probability can be defined as

Pry (o) = Pry lcrr = argmin d(GT,A)l . (16)
o?,..6l "

Let /(.) be the indicator function such that I(B) is 1 if B is
true and O if B is false. By definition, the expected probability
of satisfaction for a given policy u is

EPS(n) =E[I(30<k<T-7st ot =y)]
= Y Pry(or)l(o; €A)
0 €Y%

= Y Pry(oy).

Or€A

a7

Also, the expected robustness of policy u becomes
ER(n) = ok w)]
— Rinax k
= [y Pr [k gna);_rr(cr, V) > x]dx+

f,?mm 1—Pr [k:()maﬁrr(cﬁ, V) > x|dx
"
— maXP
o r[k 0

0
P
mein r[k:() )
= Jy" L Pru(00)Do,(x)dx—

oS

flgm,-n Y Pru(oc)Ds, (x)dx — Ryin
0r€Sr

= Y Pry(oy) f(f’”‘” Dg, (x)dx—
A

o<

Y Pru(o:) J§ Do, (x)dx — Ryin-
orZA

r(ok, w) > x]dx—
-1

71"(6{'(7 II/) > x} dx*Rmin

(18)
Since Ry, is constant, maximizing (I8) is equivalent to

max( Y Pra(ce) [Fm Do, (x)dx
Or€EA

m
(19)
— % Pru(o:) [o Do, (x)dx)
or¢A

Let p be the satisfaction probability such that p =

Y. Pry(or). Then, we can rewrite the objective in (I9) as
or€A

J(u) = p ¥ Pry[o.= argmin d(o;,A)|o; € A]
O7€A 6;?.,...,6{71’
* Jo" Do, (x)dx
(1= p)Pru[o; = argmin d(0v,4)[o, # 4]
ol ..ol
< Jg. Do, (x)dx.
(20)
Now,
afa(,’f) = Y Pry[o;= argmin d(0,A)|o; € A]

orcA o?,.. ol "

X f(f " Do (x)dx

+Pry[0; = argmin d(o¢,A)|o; ¢ A

a?,. .ol "

X |, 1?, . Do, (x)dx

> 0
2D

Thus, any policy u increasing J(it) also leads to an increase
in p. Since increasing J(u) is equivalent to increasing
ER(u), then we can conclude that the policy that maximizes
the robustness also achieves the maximum satisfaction prob-
ability. [ ]

VI. CONTROL SYNTHESIS TO MAXIMIZE ROBUSTNESS
A. Policy Generation through Q-Learning

Since we do not know the dynamics of the system under
control, we cannot a priori predict how a given control action
will affect the evolution of the system and hence its progress
towards satisfying/dissatisfying a given specification. Thus,
we use the well-known paradigm of reinforcement learning
to learn policies to solve Problems [T]and 2] In reinforcement
learning, the system takes actions and records the rewards
associated with the state-action pair. These rewards are then
used to update a feedback policy that maximizes the expected
gathered reward. In our cases, the rewards that we collect
over ./ are related to whether or not y is satisfied (Problem
or how robustly y is satisfied/violated (Problem [2).

Our solutions to these problems rely on a Q-learning
formulation [24]. Let R(0%,a) be the reward collected when
action a € Act was taken in state o, € .#. Define the function
Q:.Y xAct xN as

Q(Gg_t»a’t) = R(O{_tva)"'

max  E[X] , \R(olu(ol)]
{weyi_r
R(cI",a)+ max Q(c!l "1 d t—1).
a' €Act
(22)
For an optimization problem with a cumulative objective
function of the form

Y. R(ozd), (23)
I=7:T
the optimal policy u* € .% (¥, Act) can be found by
w (oL, T —t) = argmaxQ(oL,a,T —1t). (24)

acAct



Applying the update rule

Qt+1(6{-,at7T_t): (l—Ott)Q,(O' a T_t)+

o [R(0% ') + ymax 0, (o4 )]
(25

where 0 < y < 1 will cause Q; converges to Q w.p. 1 as ¢

goes to infinity [24].

B. Batch Q-learning

We cannot reformulate Problems|[I]and 2]into the form
(see Section [[V). Thus, we propose an alternate Q—learning
formulation, called batch Q-learning , to solve these prob-
lems. Instead of updating the Q-function after each action
is taken, we wait until an entire episode s(7) is completed
before updating the Q-function. The batch Q-learning pro-
cedure is summarized in Algorithm

Algorithm 1 The Batch Q learning algorithm.

function BatchQLearn(Sys,probType,Nep,9)

QO < RandomlInitialization

U < InitializePolicy(Q)

for n=1to N, do
sl07) «Simulate(Sys, u1)
Q <+ UpdateQFunction(Q,u,s*T,¢.,probType)
U < UpdatePolicy(u, Q)

return Q.u

Algorithm 2 Function used to update Q function used in
Algorithm

function UpdateQFunction(Q,u,s"T,¢,y,probType)
forn=T—-7—1to 7 do
if probType is MaximumProbability then
thp( rvlJ'( n T I’l)) «
max( ( n—T+1: n ): ¢)
’J/thp( 7.u(cn+l T— 1))
else
Qunp (02,1 (02,T — 1))
max(r( n—’H—l'n’ ¢))
Ythp( ”+17”( ot T n— l))
Qnew( raﬂ( r T_n)
(1= @) Qump( rv/“l(c T —n)
+(XQ( T,,LL(G?,T*I’I)
return Q..

The Q function is initialized to random values and U is
computed from the initial Q values. Then, for N,, episodes,
the system is simulated using . Randomization is used to
encourage exploration of the policy space. The observed
trajectory is then used to update the Q function according
to Algorithm [2] The new value of the Q function is used
to update the policy u. For compactness, Algorithm 2] as
written only covers the case ¢ = Fjo 7). The case in which
¢ = Gjo,r)¥ can be addressed similarly.

C. Convergence of Batch Q-learning

Given a formula of the form ¢ = Fjp 7y and an objective
of maximizing the expected robustness (Problem [2), we will
show that applying Algorithm [I] converges to the optimal
solution. The other three cases discussed in Section [V] can
be proven similarly. The following analysis is based on [19].
The optimal Q function derived from is

O (of,a,T—k)= Y, 111 (07,0 ;o' Yy max(r(ot, y),

max}/Q*(cr’+1 b,T—t—1)).

beAct
(26)
This gives the following convergence result.
Proposition 2: The Q-learning rule given by
Okt1(0g,d, T—t)= (1—ow)Qx(0p.a', T —1t)
+oymax(r(oL,y),
maxyQr (ot b, T —1—1)),
beAct
27)

converges to the optimal Q function if the sequence
{au}o is such that Y, o = o0 and Yy (%)% < oo.
Proof:  (Sketch) The proof of Proposition [2| relies
primarily on Proposition |3} Once this is established, the rest
of the proof varies only slightly from the presentation in [19].
|
Note that in this case, k ranges over the number of episodes
and ¢ ranges over the time coordinate of the signal.
Proposition 3: The optimal Q-function given by (26) is
a fixed point of the contraction mapping H where

)= Ly P(0},a,0")max(r(of, ),

ot b T—1—1
Vlgrel%q( ))-

(Hq)(oL,a,T —

(28)
Proof: By (26), if H is a contraction mapping, then Q*
is a fixed point of H. Consider

1Hq1 —Hepll = max}, &(0r,a,6¢)(max(r(0r, ),
Ty 61/:
ymaxgq; (0},b,T —1—1))
beAct
—max(r(or, lll)v Y qZ(G'/r?va_t_ 1))
beAct (29)
Define
qj(t) = maxyq (oz,b.1). (30)
WOLOG let gj(T —t—1) > ¢5(T —t —1). Define
R(G‘é) = (max(r(GDW)vqT(T_t_l) (31)
—max(r(oz, ), q5(T —t —1))
There exist 3 possibilities for the value of R(o%).
r(on,y) > qi(T—1—1)>g;(T —1—1)
= R(0})=0 ’ (32a)
( *1*1) r(oe,y) > g5 (T —1—1)
(32b)
= R(07) =lgi(T —t = 1) = 1|l < Vllg1 — q2||»
QT(T 1)>QZ(T7I71)>r(0-T7W) 32
c
& ko2 < Tk gl (320
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Thus, this means that R(o}) < ¥||g1 — ¢2||~ Vo}. Hence,

/!

lHg1 —Hg||leo = maxg, Yo, & (01,a,07)R(07)
< maXGT,aZO'é gz(o-‘haa G‘i‘)?’”‘]l - q2||°°

<7Yllg1 — q2]e- 33)

Therefore, H is a contraction mapping. [ ]

VII. CASE STUDY

We implemented the batch-Q learning algorithm (Algo-
rithm [I) and applied it to two case studies that adapt the
robot navigation model from Example[I] For each case study,
we solved Problems [] and [2] and compared the performance
of the resulting policies. All simulations were implemented
in Matlab and performed on a PC with a 2.6 GHz processor
and 7.8 GB RAM.

A. Case Study 1: Reachability

First, we consider a simple reachability problem. The
given STL specification is

Pes1 = F[O,ZO) (F[O,l)(Pblue A G[1,4)_'(Phlue)7 (34)

where @y, is the STL subformula corresponding to being in
a blue region. In plain English, (34) can be stated as “Within
20 time units, reach a blue region and then don’t revisit a blue
region for 4 time units.” The results from applying Algorithm
are summarized in Figure 3] We used the parameters y =
1,00 =0.95, N, = 300 and €' = 0.995', where €' is the
probability at iteration ¢ of selecting an action at random ﬂ
Constructing the T-MDP took 17.2s. Algorithm [I] took 161s
to solve Problem [1] and 184s to solve Problem 2

The two approaches perform very similarly. In the first
row, we show a histogram of the robustness of 500 trials

! Although the conditions ¥ < 1 and Y5, Otkz < oo are technically required
to prove convergence, in practice these conditions can be relaxed without
having adverse effects on learning performance
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have the same meaning as in Figure

generated from the system simulated using each of the
trained policies after learning has completed, i.e. without
the randomization that is used during the learning phase.
Note that both trained policies satisfied the specification with
probability 1. The performance of the two algorithms are
very similar, as the mean robustness is 0.2287 with standard
deviation 0.1020 for probability maximization and 0.2617
and 0.1004,resp., for robustness maximization. In the second
row, we see trajectories simulated by each of the trained
policies.

The similarity of the solutions in this case study is not
surprising. If the state of the system is deep within A or B,
then the probability that it will remain inside that region in
the next 3 time steps (satisfy ¢) is higher than if it is at
the edge of the region. Trajectories that remain deeper in
the interior of region A or B also have a high robustness
value. Thus, for this particular problem, there is an inherent
coupling between the policies that satisfy the formula with
high probability and those that satisfy the formula as robustly
as possible on average.

B. Case Study 2: Repeated Satisfaction

In this second case study, we look at a problem involving
repeatedly satisfying a condition finitely many times. The
specification of interest is

Oes2 = G[O,IZ) (F[0,4) ((Pblue) A F[0,4) ((Pgreen))7 (35)

In plain English, is “Ensure that every 4 time units
over a 12 unit interval, a green region and a blue region is
entered.” Results from this case study are shown in Figure
[l We used the same parameters as listed in Section
except N,p = 1200, = 0.4, and €' = 0.9". Constructing the
7-MDP took 16.5s. Applying Algorithm [I] took 257.7s for
Problem [T] and 258.3s for Problem 2

In the first row, we see that the solution to Problem [I]
satisfies the formula with probability 0 while the solution
to Problem [2] satisfies the formula with probability 1. At



first, this seems counterintuitive, as Proposition E] indicates
that a policy that maximizes probability would achieve a
probability of satisfaction at least as high as the policy that
maximizes the expected robustness. However, this is only
guaranteed with an infinite number of learning trials. The
performance in terms of robustness is obviously better for the
robustness maximization (mean 0.1052, standard deviation
0.0742) than for the probability maximization (mean -0.6432,
standard deviation 0.2081). In the second row, we see that
the maximum robustness policy enforces convergence to a
cycle between two regions, while the maximum probability
policy deviates from this cycle.

The discrepancy between the two solutions can be ex-
plained by what happens when trajectories that almost satisfy
(B3) occur. If a trajectory that almost oscillates between a
blue and green region every four seconds is encountered
when solving Problem (1] it collects O reward. On the other
hand, when solving Problem [2] the policy that produces
the almost oscillatory trajectory will be reinforced much
more strongly, as the resulting robustness is less negative.
However, since the robustness degree gives “partial credit”
for trajectories that are close to satisfying the policy, the
reinforcement learning algorithm performs a directed search
to find policies that satisfy the formula. Since probability
maximization gives no partial credit, the reinforcement learn-
ing algorithm is essentially performing a random search until
it encounters a trajectory that satisfies the given formula.
Therefore, if the family of policies that satisfy the formula
with positive probability is small, it will on average take
the Q-learning algorithm solving Problem [T] a longer time to
converge to a solution that enforces formula satisfaction.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new reinforcement learning
paradigm to enforce temporal logic specifications when the
dynamics of the system are a priori unknown. In contrast to
existing works on this topic, we use a logic (signal temporal
logic) whose formulation is directly related to a system’s
statespace. We present a novel, convergent Q-learning algo-
rithm that uses the robustness degree, a continuous measure
of how well a trajectory satisfies a formula, to enforce the
given specification. In certain cases, robustness maximization
subsumes the established paradigm of probability maximiza-
tion and, in certain cases, robustness maximization performs
better in terms of both probability and robustness under
partial training. Future research includes formally connecting
our approach to abstractions of linear stochastic systems.
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