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Abstract

Probabilistic completeness is an important property in motion planning. Although
it has been established with clear assumptions for geometric planners, the panorama
of completeness results for kinodynamic planners is still incomplete, as most exist-
ing proofs rely on strong assumptions that are difficult, if not impossible, to verify
on practical systems. In this paper, we focus on an important class of kinodynamic
planners, namely those that interpolate trajectories in the state space. We provide
a proof of probabilistic completeness for these planners under assumptions that
can be readily verified from the system’s equations of motion and the user-defined
interpolation function. Our proof relies crucially on a property of interpolated tra-
jectories, termed second-order continuity (SOC), which we show is tightly related
to the ability of a planner to benefit from denser sampling. We analyze the impact
of this property in simulations on a low-torque pendulum. Our results show that a
simple RRT using a second-order continuous interpolation swiftly finds solution,
while it is impossible for the same planner using standard Bezier curves (which are
not SOC) to find any solution.1

Keywords: kinodynamic planning, probabilistic completeness

1. Introduction

A deterministic motion planner is said to be complete if it returns a solution
whenever one exists [2]. A randomized planner is said to be probabilistically com-
plete if the probability of returning a solution, when there is one, tends to one as
execution time goes to infinity [3]. Theoretical as they may seem, these two notions

1 This paper is a revised and expanded version of [1], which was presented at the International
Conference on Robotics and Automation, 2014.
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are of notable practical interest, as proving completeness requires one to formalize
the problem by hypotheses on the robot, the environment, etc. While experiments
can show that a planner works for a given robot, in a given environment, for a given
query, etc., a proof of completeness is a certificate that the planner works for a pre-
cise set of problems. The size of this set depends on how strong the assumptions
required to make the proof are: the weaker the assumptions, the larger the set of
solvable problems.

Probabilistic completeness has been established for systems with geometric
constraints [4, 3] such as e.g. obstacle avoidance [5]. However, proofs for systems
with kinodynamic constraints [6, 7, 8] have yet to reach the same level of generality.
Proofs available in the literature often rely on strong assumptions that are difficult
to verify on practical systems (as a matter of fact, none of the previously mentioned
works verified their hypotheses on non-trivial systems). In this paper, we establish
probabilistic completeness (Section 3) for a large class of kinodynamic planners,
namely those that interpolate trajectories in the state space. Unlike previous works,
our assumptions can be readily verified from the system’s equations of motion and
the user-defined interpolation function.

The most important of these properties is second-order continuity (SOC), which
states that the interpolation function varies smoothly and locally between states
that are close. We evaluate the impact of this property in simulations (Section 4)
on a low-torque pendulum. Experiments validate our completeness theorem, and
suggest that SOC is an important design guideline for kinodynamic planners that
interpolate in the state space.

2. Background

2.1. Kinodynamic Constraints

Motion planning was first concerned only with geometric constraints such as
obstacle avoidance or those imposed by the kinematic structures of manipula-
tors [9, 4, 8, 6]. More recently, kinodynamic constraints, which stem from differ-
ential equations of dynamic systems, have also been taken into account [10, 6, 5].

Kinodynamic constraints are more difficult to deal with than geometric con-
straints because they cannot in general be expressed using only configuration-space
variables – such as the joint angles of a manipulator, the position and the orienta-
tion of a mobile robot, etc. Rather, they involve higher-order derivatives such as
velocities and accelerations. There are two types of kinodynamic constraints:

Non-holonomic constraints: non-integrable equality constraints on higher-order
derivatives, such as found in wheeled vehicles [11], under-actuated manipu-
lators [12] or space robots.
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Hard bounds: inequality constraints on higher-order derivatives such as torque
bounds for manipulators [13], support areas [14] or wrench cones for hu-
manoid stability [15], etc.

Some authors have considered systems that are subject to both types of constraints,
such as under-actuated manipulators with torque bounds [12].

2.2. Randomized Planners

Randomized planners such as such as Probabilistic Roadmaps (PRM) [4] or
Rapidly-exploring Random Trees (RRT) [6] build a roadmap on the state space.
Both rely on repeated random sampling of the free state space, i.e. states with non-
colliding configurations and velocities within the system bounds. New states are
connected to the roadmap using a steering function, which is a method used to
drive the system from an initial to a goal configuration. The steering method may
be imperfect, e.g. it may not reach the goal exactly, not take environment collisions
into account, only apply to states that are sufficiently close, etc. The objective of the
motion planner is to overcome these limitations, turning a local steering function
into a global planning method.

PRM builds a roadmap that is later used to generate motions between many
initial and final states (many-to-many queries). When new samples are drawn, they
are connected to all neighboring states in the roadmap using the steering function,
resulting in a connected graph. Meanwhile, RRT focuses on driving the system
from one initial state xinit towards a goal area (one-to-one queries). It grows a tree
by connecting new samples to one neighboring state, usually their closest neighbor.

Both PRM’s and RRT’s extension step are represented by Algorithm 1, which
relies on the following sub-routines (see Fig. 1 for an illustration):

• SAMPLE(S): randomly sample an element from a set S;

• PARENTS(x, V ): return a set of states in the roadmap V from which steer-
ing towards x will be attempted;

• STEER(x, x′): generate a system trajectory from x towards x′. If success-
ful, return a new node xsteer ready to be added to the roadmap. Depending on
the planner, the successfulness criterion may be “reach x′ exactly” or “reach
a vicinity of x′”.

The design of each sub-routine greatly impacts the quality and even the com-
pleteness of the resulting planner. In the literature, SAMPLE(S) is usually im-
plemented as uniform random sampling over S, but some authors have suggested
adaptive sampling as a way to improve planner performance [16]. In geometric
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Algorithm 1 Extension step of randomized planners (PRM or RRT)
Require: initial node xinit, number of iterations N

1: (V,E)← ({xinit}, ∅)
2: for N steps do
3: xrand ← SAMPLE(Xfree)
4: Xparents ← PARENTS(xrand, V )
5: for xparent in Xparents do
6: xsteer ← STEER(xparent, xrand)
7: if xsteer is a valid state then
8: V ← V ∪ {xsteer}
9: E ← E ∪ {(xparent, xsteer)}

10: end if
11: end for
12: end for
13: return (V,E)

planners, PARENTS(q, V ) is usually implemented from the Euclidean norm over
C as

PARENTS(q, V ) := arg min
q′∈V

‖q′ − q‖.

This choice results in the so-called Voronoi bias of RRTs [6]. Both experiments and
theoretical analysis support this choice for geometric planning, however it becomes
inefficient for kinodynamic planning, as was showed by Shkolnik et al. [17] on
systems as simple as the torque-limited pendulum.

2.3. Steering Methods

This paper focuses on steering functions. These can be classified into three
categories: analytical, state-based and control-based steering.

Analytical steering. This category corresponds to the ideal case when one can
compute analytical trajectories respecting the system’s differential constraints, which
are usually called (perfect) steering functions in the literature [6, 18]. Unfortu-
nately, it only applies to a handful of systems. Reeds and Shepp curves for cars are
a notorious example of this [11].

Control-based steering. Generate a control u : [0,∆t] → Uadm, where Uadm de-
notes the set of admissible controls, and compute the corresponding trajectory by
forward dynamics. This approach has been called incremental simulation [19],
control application [6] or control-space sampling [18] in the literature. It is widely
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Figure 1: Illustration of the extension routine of randomized planners. To grow the roadmap toward
the sample x′, the planner selects a number of parents PARENTS(x′) = {P1, P2, P3} from which
it applies the STEER(Pi, x

′) method.

applicable, as it only requires forward-dynamic calculations, but usually results in
weak steering functions as the user has no or limited control over the destination
state. In works such as [6, 5], random functions u are sampled from a family of
primitives (e.g. piecewise-constant functions), a number of them are tried and only
the one bringing the system closest to the target is retained. Linear-Quadratic Reg-
ulation (LQR) [20, 21] also qualifies as control-based steering: in this case, u is
computed as the optimal policy for a linear approximation of the system given a
quadratic cost function.

State-based steering. Interpolate a trajectory γint : [0,∆t] → C, for instance a
Bezier curve matching the initial and target configurations and velocities, and com-
pute a control that makes the system track that trajectory. For fully-actuated sys-
tem, this is typically done using inverse dynamics. An interpolated trajectory is
rejected if no suitable control can be found. Compared to control-based steering,
this approach applies to a more limited range of systems, but delivers more control
over the destination state. Algorithm 2 gives the prototype of state-based steering
functions.

2.4. Previous works
Randomized planners such as RRT and PRM are both simple to implement2 yet

efficient for geometric planning. The completeness of these planners has been es-
tablished for geometric planning in [6, 7, 8]. In their proof, Hsu et al. [8] quantified

2 For instance, the RRT used in the simulations of this paper was implemented in less than a
hunder lines of Python code.
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Algorithm 2 Prototype of state-based steering functions STEER(x, x′)

1: γint ← INTERPOLATE(x, x′)
2: uint := INVERSE DYNAMICS(γint(t), γ̇int(t), γ̈int(t))
3: if ∀t ∈ [0,∆t], uint(t) ⊂ Uadm then
4: return the last state of γint
5: end if
6: return failure

the problem of narrow passages in configuration space with the notion of (α, β)-
expansiveness. The two constants α and β express a geometric lower bound on the
rate of expansion of reachability areas.

There is, however, a gap between geometric and kinodynamic planning [10]
in terms of proving probabilistic completeness. When Hsu et al. extended their
solution to kinodynamic planning [5], they applied the same notion of expansive-
ness, but this time in the X ×T (state and time) space with control-based steering.
Their proof states that, when α > 0 and β > 0, their planner is probabilistically
complete. However, whether α > 0 or α = 0 in the non-geometric space X × T
remains an open question. As a matter of fact, the problem of evaluating (α, β)
has been deemed as difficult as the initial planning problem [8]. In a parallel line
of work, LaValle et al. [6] provided a completeness argument for kinodynamic
planning, based on the hypothesis of an attraction sequence, i.e. a covering of the
state space where two major problems of kinodynamic planning are already solved:
steering and antecedent selection. Unfortunately, the existence of such a sequence
was not established.

In the two previous examples, completeness is established under assumptions
whose verification is at least as difficult as the motion planning problem itself. Ar-
guably, too much of the complexity of kinodynamic planning has been abstracted
into hypotheses, and these results are not strong enough to hold the claim that
their planners are probabilistically complete in general. This was exemplified re-
cently when Kunz and Stilman [22] showed that RRTs with control-based steering
were not probabilistically complete for a family of control inputs (namely, those
with fixed time step and best-input extension). At the same time, Papadopoulos et
al. [18] established probabilistic completeness for the same planner using a differ-
ent family of control inputs (randomly sampled piecewise-constant functions). The
picture of completeness for kinodynamic planners therefore seems to be a nuanced
one.

Karaman et al. [7] introduced the RRT* path planner an extended it to kinody-
namic planning with differential constraints in [23], providing a sketch of proof for
the completeness of their solution. However, they assumed that their planner had

6



access to the optimal cost metric and optimal local steering, which restricts their
analysis to systems for which these ideal solutions are known. The same authors
tackled the problem from a slightly different perspective in [24] where they sup-
posed that the PARENTS function had access to w-weighted boxes, an abstraction
of the system’s local controlability. However, they did not show how these boxes
can be computed in practice3 and did not prove their theorem, arguing that the
reasoning was similar to the one in [7] for kinematic systems.

To the best of our knowledge, the present paper is the first to provide a proof of
probabilistic completeness for kinodynamic planners using state-based steering.

2.5. Terminology

A function is smooth when all its derivatives exist and are continuous. Let ‖ · ‖
denote the Euclidean norm. A function f : A → B between metric spaces is
Lipschitz when there exists a constant Kf such that

∀(x, y) ∈ A, ‖f(x)− f(y)‖ ≤ Kf‖x− y‖.

The (smallest) constant Kf is called the Lipschitz constant of the function f .
Let C denote n-dimensional configuration space, where n is the number of

degrees of freedom of the robot. The state spaceX is the 2n-dimensional manifold
of configuration and velocity coordinates x = (q, q̇). A trajectory is a continuous
function γ : [0,∆t]→ C, and the distance of a state x ∈ X to a trajectory γ is

distγ(x) := min
t∈[0,∆t]

‖(γ, γ̇)(t)− x‖ .

A kinodynamic system can be written as a time-invariant differential system:

ẋ(t) = f(x(t), u(t)), (1)

where u ∈ U denotes the control input and x(t) ∈ X . Let Uadm ⊂ U denote
the subset of admissible controls. (For instance, Uadm = [τmin, τmax] ⊂ U = R
represents bounded torques for a single joint.) A control function u : [0,∆t]→ U
has δ-clearance when its image is in the δ-interior of Uadm, i.e. for any time t,
B(u(t), δ) ⊂ Uadm. A trajectory γ that is solution to the differential system (1) us-
ing only controls u(t) ∈ Uadm is called an admissible trajectory. The kinodynamic
motion planning problem is to find an admissible trajectory from qinit to qgoal.

3 The definition of w-weighted boxes is quite involved: it depends on the joint flow of vector
fields spanning the tangent space of the system’s manifold.
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3. Completeness Theorem

3.1. System assumptions
Our model for an X -state randomized planner is given by Algorithm 1 using

state-based steering. We first assume that:

Assumption 1. The system is fully actuated.

Full actuation allows us to write the equations of motion of the system in gen-
eralized coordinates as:

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (2)

where u ∈ Uadm and we assume that the set of admissible controls Uadm is com-
pact. Since torque constraints are our main concern, we will focus on

Uadm := {u ∈ U , |u| ≤ τmax} , (3)

which is indeed compact.4 (Vector comparisons are component-wise.) Finally, we
suppose that forward and inverse dynamics mappings have Lipschitz smoothness:

Assumption 2. The forward dynamics function f is Lipschitz continuous in both of
its arguments, and its inverse f−1 (the inverse dynamics function u = f−1(x, ẋ))
is Lipschitz in both of its arguments.

These two assumptions are satisfied when f is given by (2) as long as the
matrices M(q) and C(q, q̇) are bounded and the gravity term g(q) is Lipschitz.
Indeed, for a small displacement between x and x′,∥∥u′ − u∥∥ ≤ ‖M‖∥∥q̈′ − q̈∥∥+ ‖C(q, q̇)‖

∥∥q̇′ − q̇∥∥+Kg

∥∥q′ − q∥∥ (4)

Let us illustrate this on the double pendulum depicted in Figure 2. When both links
have mass m and length l, the gravity term

g(θ1, θ2) =
mgl

2
[sin θ1 + sin(θ1 + θ2) sin(θ1 + θ2)]

is Lipschitz with constant Kg = 2mgl, while the inertial term is bounded by
‖M‖ ≤ 3ml2. When joint angular velocities are bounded by ω, the norm of
the Coriolis tensor is bounded by 2ωml2. Using (4), one can therefore derive the
Lipschitz constant Kf−1 of the inverse dynamics function.

4 The application of our proof of completeness to an arbitrary compact set presents no technical
difficulty: one can just replace |u| ≤ τmax with d(u, ∂Uadm), with ∂Uadm the boundary of Uadm.
Using Equation (3) avoids this level of verbosity.
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(A)

g

21

(B)

Figure 2: Single (A) and double (B) pendulums. Under torque bounds, these systems must swing
back and forth several times before they can reach for the upright position, as depicted in (B) (lighter
images represent earlier times).

3.2. Interpolation assumptions
We also require smoothness for the interpolated trajectories:

Assumption 3. Interpolated trajectories γint are smooth Lipschitz functions, and
their time-derivatives γ̇int (i.e. interpolated velocities) are also Lipschitz.

The following two assumptions ensure a continuous behaviour of the interpo-
lation procedure:

Assumption 4 (Local boundedness). Interpolated trajectories stay within a neigh-
borhood of their start and end states, i.e. there exists a constant η such that, for
any (x, x′) ∈ X 2, the interpolated trajectory γint : [0,∆t] → C resulting from
INTERPOLATE(x, x′) is included in a ball of center x and radius η ‖x′ − x‖.

Assumption 5 (Discrete-acceleration convergence). When start and end states be-
come close, accelerations of interpolated trajectories uniformly converge to the
discrete acceleration between them, i.e. there exists some ν > 0 such that, if
γint : [0,∆t]→ C results from INTERPOLATE(x, x′), then

∀τ ∈ [0,∆t],

∥∥∥∥γ̈int(τ)− ∆q̇

∆tdisc

∥∥∥∥ ≤ ν ‖∆x‖ ,

where ∆tdisc := ‖∆q‖/‖q̇‖.
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Note that the expression ∆q̇
∆tdisc

above represents the discrete acceleration between

x and x′. Its continuous analog would be ‖q̇‖ dq̇
‖dq‖ = ‖q̇‖dq̇

‖q̇‖dt = dq̇
dt .

These three assumptions ensure that the planner interpolates trajectories lo-
cally and “continuously” when x and x′ are close. We will call them altogether
second-order continuity, where “second-order” refers to the discrete acceleration
encoded in small variations (∆q,∆q̇). This continuous behavior plays a key role
in our proof of completeness, as it ensures that denser sampling will allow finding
arbitrarily narrow state-space passages.

Let us consider again the example the double pendulum, for the interpolation
function γ = INTERPOLATE(x, x′) given by

γ : [0,∆t] → C
t 7→ ∆q̇

2∆t t
2 +

(
∆q
∆t −

∆q̇
2

)
t+ q.

(5)

The duration ∆t is taken as ∆tdisc, so that γ(0) = q, γ(∆t) = q′ and γ̈ is the
discrete acceleration. This interpolation, like any polynomial function, is Lips-
chitz smooth; Assumption 5 is verified by construction, and Assumption 4 can be
checked as follows:

‖γ(t)− γ(0)‖ ≤ t

∥∥∥∥1

2

∆q̇

∆t
t+

∆q

∆t
− ∆q̇

2

∥∥∥∥
≤ ∆t

∥∥∥∥ ∆q̇

2∆t
t+

∆q

∆t
− ∆q̇

2

∥∥∥∥
≤ 3

2
‖∆q̇‖∆t+ ‖∆q‖

≤ ‖∆q‖
(

1 +
‖∆q̇‖
‖q̇‖

)
≤ ‖∆q‖

(
1 + o‖∆x‖(1)

)
.

3.3. Completeness theorem

In order to prove the theorem, we will use the following two lemmas, which
are proved in Appendix A.

Lemma 1. Let g : [0,∆t]→ Rk denote a smooth Lipschitz function. Then, for any
(t, t′) ∈ [0,∆t]2, ∥∥∥∥ġ(t)− g(t′)− g(t)

|t′ − t|

∥∥∥∥ ≤ Kg

2
|t′ − t|.
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Lemma 2. If there exists an admissible trajectory γ with δ-clearance in control
space, then there exists δ′ < δ and a neighboring admissible trajectory γ′ with δ′-
clearance in control space whose acceleration never vanishes, i.e. such that ‖γ̈′‖
is always greater than some constant m̈ > 0.

We can now state our main theorem:

Theorem 1. Consider a time-invariant differential system (1) with Lipschitz-continuous
f and full actuation over a compact set of admissible controls Uadm. Suppose
that the kinodynamic planning problem between two states xinit and xgoal admits
a smooth Lipschitz solution γ : [0, T ] → C with δ-clearance in control space. A
randomized motion planner (Algorithm 1) using a second-order continuous inter-
polation is probabilistically complete.

Proof. Let γ : [0,∆t] → C, t 7→ γ(t) denote a smooth Lipschitz admissible tra-
jectory from xinit to xgoal, and u : [0,∆t]→ Uadm its associated control trajectory
with δ-clearance in control space. Consider two states x = (q, q̇) and x′ = (q′, q̇′),
as well as their corresponding time instants on the trajectory

t := arg min
t
‖(γ(t), γ̇(t))− x‖ ,

t′ := arg min
t

∥∥(γ(t), γ̇(t))− x′
∥∥ .

Supposing without loss of generality that t′ > t, we denote by ∆t = t′ − t and
∆tdisc = ‖q̇‖ / ‖∆q‖. Given a sufficiently dense sampling of the state space, we
suppose that distγ(x) ≤ ρ and distγ(x′) ≤ ρ for a radius ρ such that ρ/∆t =
O(∆t) and ρ/∆tdisc = O(∆t); i.e. the radius ρ is quadratic in the time difference.

Let γint : [0,∆t] → C denote the result of the interpolation between x and
x′. For τ ∈ [0,∆t], the torque required to follow the trajectory γint is uint(τ) :=
f(γint(τ), γ̇int(τ), γ̈int(τ)). Since u has δ-clearance in control space,

|uint(τ)| ≤ |uint(τ)− u(t)|+ |u(t)|
≤ |f(γint(τ), γ̇int(τ), γ̈int(τ))− f(γ(t), γ̇(t), γ̈(t))|+ (1− δ) τmax,

(As previously, vector inequalities are component-wise.) Let us denote by |ũint|
the first term of this inequality. We will now show that |ũint| = O(∆t) → 0 when
∆t → 0, and therefore that |uint(τ)| ≤ τmax for a small enough ∆t (i.e. when
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sampling density is high enough). Let us first rewrite it as follows:

|ũint| = |f(γint(τ), γ̇int(τ), γ̈int(τ))− f(γ(t), γ̇(t), γ̈(t))|
≤ ‖f(γint(τ), γ̇int(τ), γ̈int(τ))− f(γ(t), γ̇(t), γ̈(t))‖∞
≤ Kf ‖(γint(τ), γ̇int(τ))− (γ(t), γ̇(t))‖+Kf ‖γ̈int(τ)− γ̈(t)‖

≤ Kf [(η + ν) ‖∆x‖+ distγ(x)]︸ ︷︷ ︸
position-velocity term (PV)

+Kf

∥∥∥∥ ‖q̇‖‖∆q‖∆q̇ − γ̈(t)

∥∥∥∥︸ ︷︷ ︸
acceleration term (A)

.

The replacement of the norm ‖·‖ by ‖·‖∞ is possible because all norms of Rn are
equivalent (a change in norm will be reflected by a different constant Kf ). The
transition from the second to the third row uses Lipschitz smoothness of f , as well
as the triangular inequality to separate position-velocity and acceleration coordi-
nates. The transition from the third to the fourth row relies on the two interpolation
assumptions: local boundedness (yields the η factor in the distance term) and con-
vergence to the discrete-acceleration (yields the ν factor in the distance term, as
well as the acceleration term).

The position-velocity term (PV) satisfies:

(D) ≤ (2ρ+ ‖∆γ‖)(η + ν) + ρ ≤ 1

2
Kγ(η + ν)∆t+ (1 + 2(η + ν))ρ.

Since ρ = O(∆t), we have (PV) = O(∆t) and thus |ũ| ≤ (A) + O(∆t). Next,
the difference (A) can be bounded as:

(A) ≤
∥∥∥∥∆q̇

‖q̇‖
‖∆q‖

−∆γ̇
‖γ̇(t)‖
‖∆γ‖

∥∥∥∥︸ ︷︷ ︸
(∆)

+
‖∆γ̇‖
‖∆γ‖

∣∣∣∣‖γ̇(t)‖ − ‖∆γ‖
∆t

∣∣∣∣︸ ︷︷ ︸
(A’)

+

∥∥∥∥∆γ̇

∆t
− γ̈(t)

∥∥∥∥ .︸ ︷︷ ︸
(A”)

From Lemma 1, the two terms (A’) and (A”) satisfy:

(A’) ≤ Kγ̇

2

‖∆γ̇‖
‖∆γ‖

∆t = O(∆t),

(A”) ≤ Kγ̇

2
∆t = O(∆t),

where the first upper bound O(∆t) comes from the fact that ‖∆γ̇‖‖∆γ‖ ∼
∆t→0

∆t. We

now have |ũ| ≤ (∆) +O(∆t). The term (∆) can be seen as the deviation between
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the discrete accelerations of γint and γ. Let us decompose it in terms of norm and
angular deviations:

(∆) ≤
∥∥∥∥( ∆γ̇

‖∆γ̇‖
− ∆q̇

‖∆q̇‖

)
‖γ̇‖ ‖∆γ̇‖
‖∆γ‖

+
∆q̇

‖∆q̇‖

(
‖∆γ̇‖ ‖γ̇‖
‖∆γ‖

− ‖∆q̇‖ ‖q̇‖
‖∆q‖

)∥∥∥∥
≤ 2

‖γ̇‖ ‖∆γ̇‖
‖∆γ‖

(
1− cos ̂(∆q̇,∆γ̇)

)
︸ ︷︷ ︸

angular deviation term (θ)

+

∣∣∣∣‖γ̇‖ ‖∆γ̇‖‖∆γ‖
− ‖∆q̇‖ ‖q̇‖
‖∆q‖

∣∣∣∣︸ ︷︷ ︸
norm deviation term (N)

The factor 2‖γ̇‖‖∆γ̇‖
‖∆γ‖ before (θ) is O(1) when ∆t→ 0, while simple vector geom-

etry then shows that

sin ̂(∆q̇,∆γ̇) ≤ distγ(x) + distγ(x′)

‖∆γ̇‖
≤ ρ

m̈∆t
,

where m̈ := mint ‖γ̈(t)‖. From Lemma 2, we can assume this minimum acceler-
ation to be strictly positive. Then, it follows from ρ = O(∆t2) that the sine above
is O(∆t). Recalling the fact that 1 − cos θ < sin θ for any θ ∈ [0, π/2], we have
(θ) = O(∆t).

Finally,

(N) ≤ ‖∆γ̇‖
‖∆γ‖

|‖γ̇‖ − ‖q̇‖|+ ‖q̇‖
∣∣∣∣‖∆γ̇‖‖∆γ‖

− ‖∆q̇‖
‖∆q‖

∣∣∣∣
≤ O(∆t · ρ) + ‖q̇‖ (‖∆q‖+ ‖∆q̇‖)O(ρ)

‖∆q‖ (‖∆q‖+O(ρ))

≤ O(∆t · ρ) +
‖q̇‖ ρ

‖∆q‖+O(ρ)
+
‖q̇‖ ‖∆q̇‖
‖∆q‖

O(ρ)

‖∆q‖+O(ρ)

Where we used the fact that ‖∆γ‖ ≤ distγ(x)+‖∆q‖+distγ(x′) = ‖∆q‖+O(ρ),
and similarly for ‖∆γ̇‖. Because ‖∆q‖ = ‖q̇‖∆tdisc + O(∆t2disc) and ρ/∆tdisc =
O(∆t), the last two fractions are O(∆t), so our last term (N) = O(∆t).

Overall, we have derived an upper bound |u(τ)| ≤ (1 − δ)τmax + O(∆t).
As a consequence, there exists a constant δt > 0 such that, whenever ∆t ≤ δt,
interpolated torques satisfy |u| ≤ τmax and the interpolated trajectory γint =
INTERPOLATE(x, x′) is admissible. Note that the constant δt is uniform, in
the sense that it does not depend on the index t on the trajectory.

Conclusion of the Proof. We have effectively constructed the attraction sequence
conjectured in [6]. We can now conclude the proof similarly to the strategy sketched
in that paper. Let us denote by Bt := B((γ, γ̇)(t), δρ), the ball of radius δρ cen-
tered on (γ, γ̇)(t) ∈ X , where δρ = O(δt2) as before. Suppose that the roadmap
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contains a state x ∈ Bt, and let t′ := t+ δt. If the planner samples a state x′ ∈ Bt′ ,
the interpolation between x and x′ will be successful and x′ will be added to the
roadmap. Since the volume of Bt′ is non-zero, the event {SAMPLE(Xfree) ∈ Bt′}
will happen with probability one as the number of extensions goes to infinity. At
the initialization of the planner, the roadmap is reduced to xinit = (γ(0), γ̇(0)).
Therefore, using the property above, by induction on the number of time steps δt,
the last state xgoal = (γ(T ), γ̇(T )) will be eventually added to the roadmap with
probability one, and the planner will find an admissible trajectory connecting xinit

to xgoal. �

4. Completeness and state-based steering in practice

Shkolnik et al. [17] showed how RRTs could not be directly applied to kinody-
namic planning due to their poor expansion rate at the boundaries of the roadmap.
They illustrated this phenomenon on the planning problem of swinging up a (sin-
gle) pendulum vertically against gravity. Let us consider the same system, i.e. the
1-DOF single pendulum depicted in Figure 2 (A), with length l = 20 cm and mass
m = 8 kg. It satisfies the system assumptions of Theorem 1 a fortiori, as we saw
that they apply to the double pendulum.

We assume that the single actuator of the pendulum, corresponding to the joint
angle θ in Figure 2, has limited actuation power: |τ | ≤ τmax. The static equilibrium
of the system requiring the most torque is given at θ = ±π/2 with τ = 1

2 lmg ≈
7.84 Nm. Therefore, when τmax < 7.84 Nm, it is impossible for the system to
raise upright directly, and the pendulum rather needs to swing back and forth to
accumulate kinetic energy before it can swing up. For any τmax > 0, the pendulum
can achieve the swingup in a finite number of swings N , with N →∞ as τmax →
0.

4.1. Bezier interpolation
A common solution [25, 26, 27] to connect two states (q, q̇) and (q′, q̇′) is the

cubic Bezier curve (also called “Hermit curve”) which is the quadratic function
B(t) such that B(0) = q, Ḃ(0) = q̇, B(T ) = q′ and Ḃ(T ) = q′, where T is the
fixed duration of the interpolated trajectory. Its expression is given by:

B(t) =
−2∆q + T (q̇ + q̇′)

T 3
t3 +

3∆q − 2q̇ − q̇′

T 2
t2 + q̇t+ q

This interpolation is straightforward to implement, however it does not verify our
Assumption 5, as for instance

B̈(0) =
6∆q − 4q̇ − 2q̇′

T 2

∆x→0−−−−→ −6q̇

T 2
6= 0. (6)
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Our proof of completeness does not apply to such interpolators: even though a
feasible trajectory is sampled as closely as possible (∆x → 0), the interpolated
acceleration will not approximate the smooth acceleration underlying the feasible
trajectory.

Proposition 1. A randomized motion planner interpolating pendulum trajectories
by Bezier curves with a fixed duration T cannot find non-quasi static solutions by
increasing sampling density.

Proof. When actuation power decreases, the pendulum needs to store kinetic en-
ergy in order to swing up, which implies that all swingup trajectories go through
velocities |θ̇| > θ̇swingup(τmax). The function θ̇swingup increases to a positive limit
θ̇lim

swingup as τmax → 0, where θ̇lim
swingup >

√
8g/l from energetic considerations.5

Yet, feasible accelerations are also bound by |θ̈| ≤ Kτmax for some constant
K > 0. Combining both observations in (6) yields:

Kτmax ≥ 6
|θ̇|
T 2

> 6
θ̇swingup(τmax)

T 2
⇒ θ̇swingup(τmax) ≤ KT 2

6
τmax.

Since the planner uses a constant T and θ̇swingup increases to θ̇lim
swingup >

√
8g/l

when τmax decreases to 0, this inequality cannot be satisfied for arbitrary small ac-
tuation power τmax. Hence, even with an arbitrarily high sampling density around
a feasible trajectory γ(t), the planner will not be able to reconstruct a feasible ap-
proximation γint(t).

4.2. Second-order continuous interpolation
Let q̇avg := 1

2(q̇ + q̇′) denote the average velocity between (q, q̇) and (q′, q̇′).
Since the system has only one degree of freedom, one can interpolate trajectories
that comply with our Assumption 5 using constant accelerations with a suitable
trajectory duration:

C : [0,∆tC ] → ]− π, π]

t 7→ C(t) = q + tq̇ + t2

2 (∆q̇/∆tC).

One can check that choosing ∆tC = (∆q/q̇avg) results in Ċ(0) = q̇, Ċ(∆tC) =
q̇′, C(0) = q and C(∆tC) = q′. This duration is similar to the term ∆tdisc in

5 The expression θ̇ =
√

8g/l corresponds to the kinetic energy 1
4
mlθ̇2 = mgl, the latter being

the (potential) energy of the system at rest in the upward equilibrium. During a successful last swing,
the kinetic energy at θ = 0 is 1

4
mlθ̇2swingup +Wg +Wτ = mgl, withWg < 0 the work of gravity

and Wτ the work of actuation forces between θ = 0 and θ = π. The work Wτ vanishes when
τmax → 0.
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Assumption 5, with both expressions converging to the same value as ∆x → 0.
We call C(t) the second-order continuous 1-DOF (SOC1) interpolation.

Note that this interpolation function only applies to single-DOF systems. For
multi-DOF systems, the correct duration ∆tC used to transfer from one state to
another is different for each DOF, hence constant accelerations cannot be used. One
can then apply optimization techniques [20, 28] or use a richer family of curves
such as piecewise linear-quadratic segments [29].

4.3. Comparison in simulations

According to Theorem 1 and our previous discussion, a randomized planner
based on Bezier interpolation is not expected to be probabilistically complete as
τmax → 0, while the same planner using the SOC1 interpolation will be complete at
any rate. We asserted this statement in simulations of the pendulum with RRT [30].

Our implementation of RRT is that described in Algorithm 1, with the addi-
tion of the steer-to-goal heuristic: every m = 100 steps, the planner tries to steer
to xgoal rather than xrand. This extra step speeds up convergence when the sys-
tem reaches the vicinity of the goal area. We use uniform random sampling for
SAMPLE(S), while for PARENTS(x′, V ) returns the k = 10 nearest neighbors
of x′ in the roadmap V . All the source code used in these experiments can be
accessed at [31].

We compared the performance of RRT with the Bezier and SOC1 interpola-
tions, all other parameters being the same, on a single pendulum with τmax =
5 Nm. The RRT-SOC1 combo found a four-swing solution after 26,300 RRT ex-
tensions, building a roadmap with 6434 nodes (Figure 3).

Meanwhile, even after one day of computations and more than 200,000 RRT
extensions, the RRT-Bezier combo could not find any solution. Figure 4 shows the
roadmap at 100,000 extensions (26,663 nodes). Interestingly, we can distinguish
two zones in this roadmap. The first one is a dense, diamond-shape area near the
downward equilibrium θ = 0. It corresponds to states that are straightforward to
connect by Bezier interpolation, and as expected from Proposition 1, velocities θ̇
in this area decrease sharply with θ. The second one consists of two cones directed
torwards the goal. Both areas exhibit a higher density near the axis θ̇ = 0, which
is also consistent with Proposition 1.

The comparison of the two roadmaps is clear: with a second-order continu-
ous interpolation, the RRT-SOC1 planner leverages additional sampling into ex-
ploration of the state space. Conversely, RRT-Bezier lacks this property (Propo-
sition 1), and its roadmap stays confined to a subset of the pendulum’s reachable
space.
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Figure 3: Phase-space portrait of the roadmap constructed by RRT using the second-order contin-
uous (SOC1) interpolation. The planner found a successful trajectory (red line) after 26,300 exten-
sions. This planner is probabilistically complete (Theorem 1) thanks to the fact that SOC1 curves
satisfy Assumption 5.

Figure 4: Roadmap constructed by RRT after 100,000 extensions using the Bezier interpolation.
Reachable states are distributed in two major areas: a central, diamond shape corresponding to the
states that the planner can connect at any rate, and two cones directed towards the goal (θ = π or
θ = −π). Even after several days of computations, this planner could not find a successful motion
plan. Our completeness theorem does not apply to this planner because Bezier curves do not satisfy
Assumption 5.
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5. Conclusion

In this paper, we provided the first “operational” proof of probabilistic com-
pleteness for a large class of randomized kinodynamic planners, namely those that
interpolate state-space trajectories. We observed that an important ingredient for
completeness is the “continuity” of the interpolation procedure, which we char-
acterized by the second-order continuity (SOC) property. In particular, we found
in simulation experiments that this property is critical to planner performances: a
standard RRT with second-order continuous interpolation has no difficulty finding
swingup trajectories for a low-torque pendulum, while the same RRT with Bezier
interpolation (which are not SOC) could not find any solution. This experimentally
confirms our completeness theorem and suggests that second-order continuity is an
important design guideline for kinodynamic planners with state-based steering.
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Appendix A. Proofs of the lemmas

Lemma 1. Let g : [0,∆t]→ Rk denote a smooth Lipschitz function. Then, for any
(t, t′) ∈ [0,∆t]2, ∥∥∥∥ġ(t)− g(t′)− g(t)

|t′ − t|

∥∥∥∥ ≤ Kg

2
|t′ − t|.

Proof. For t′ > t,∥∥∥∥ġ(t)− g(t′)− g(t)

t′ − t

∥∥∥∥ ≤ 1

t′ − t

∥∥∥∥∥
∫ t′

t
(ġ(t)− ġ(w)) dw

∥∥∥∥∥
≤ 1

t′ − t

∫ t′

t
‖ġ(t)− ġ(w)‖ dw

≤ Kg

t′ − t

∫ t′

t
|t− w|dw

≤ Kg

2
(t′ − t).

Lemma 2. If there exists an admissible trajectory γ with δ-clearance in control
space, then there exists δ′ < δ and a neighboring admissible trajectory γ′ with
δ′-clearance in control space which is always accelerating, i.e. such that ‖γ̈′‖ is
always greater than some constant m̈ > 0.

Proof. If there is a time interval [t, t′] on which γ̈ ≡ 0, suffices to add a wavelet
function δγ̈i of arbitrary small amplitude δq̈i and zero integral over [t, t′] to gen-
erate a new trajectory γ̈ + δγ̈ where the acceleration cancels on at most a discrete
number of time instants. Adding accelerations δγ̈i directly is possible thanks to
full actuation, while δ′-clearance can be achieved for δ′ ≤ δ by taking sufficiently
small amplitudes δq̈i.

Suppose now that the roots of γ̈ form a discrete set {t0, t1, . . . , tm}. Let t0 be
one of these roots, and let [t, t′] denote a neighbordhood of t0. Repeat the process
of adding wavelet functions δγ̈i and δγ̈j of zero integral over [t, t′] and arbitrary
small amplitude to two coordinates i and j, but this time enforcing that the sum of
the two wavelets satisfies |δγ̈i + δγ̈j | ≥ εij > 0. This method ensures that the root
t0 is eliminated (either γ̈i(t0) 6= 0 or γ̈j(t0) 6= 0) without introducing new roots.
We conclude by iterating the process on the finite set of roots.
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