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Dynamic analysis of simultaneous adaptation of force, impedance and
trajectory

Y. Li and E. Burdet

When carrying out tasks in contact with the environment,
humans are found to concurrently adapt force, impedance
and trajectory. Here we develop a robotic model of this
mechanism in humans and analyse the underlying dynamics.
We derive a general adaptive controller for the interaction
of a robot with an environment solely characterised by its
stiffness and damping, using Lyapunov theory.

I. SYSTEM DYNAMICS

The dynamics of an-degree-of-freedom (n-DOF) robot in
the operational space are given by

M(q) ẍ+ C(q, q̇) ẋ+G(q) = u+ f (1)

where x is the position of the robot andq the vector of
joints angle.M(q) denotes the inertia matrix,C(q, q̇)ẋ the
Coriolis and centrifugal forces, andG(q) the gravitational
force, which can be identified using e.g. nonlinear adaptive
control [1].u is the control input andf the interaction force.

In [2], we have described the control inputu in two parts:

u = v + w , (2)

with v to track thereference trajectory xr by compensating
for the robot’s dynamics, i.e.

v = M(q) ẍe + C(q, q̇) ẋe +G(q)− Γε (3)

where

ẋe = ẋr − αe , e ≡ x− xr , α > 0 , (4)

Γ a symmetric positive-definite matrix with minimal eigen-
valueλmin(Γ) > λΓ > 0 and

ε ≡ ė+ α e (5)

the tracking error. w is to adapt impedance and force in
order to compensate for the unknown interaction dynamics.

II. FORCE AND IMPEDANCE ADAPTATION

Suppose that the interaction force can be expanded as

f = F ∗

0
+K∗

S(x− x∗

0
) +K∗

Dẋ , (6)

where the forceF ∗

0 (t), stiffnessK∗

S
(t) and dampingK∗

D
(t)

are feedforward components of the interaction force,x∗

0
(t)

is the rest position of the environment visco-elasticity and
all of these functions are unknown but periodic withT :

F ∗

0 (t+ T ) ≡ F ∗

0 (t) , K∗

S(t+ T ) ≡ K∗

S(t) , (7)

K∗

D(t+ T ) = K∗

D(t) , x∗

0
(t+ T ) = x∗

0
(t) . (8)
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To simplify the analysis, we rewrite the interaction force as

f ≡ F ∗ +K∗

S x+K∗

D ẋ (9)

whereF ∗ ≡ F ∗

0
−K∗

S
x∗

0
is also periodic withT . w in Eq.(2)

is then defined as

w = −F −KSx−KDẋ (10)

where KS and KD are stiffness and damping matrices,
respectively, andF is the feedforward force.

By substituting the control inputu into Eq.(1), the closed-
loop system dynamics are described by

M(q) ε̇+ C(q, q̇) ε+ Γε = F̃ + K̃S x+ K̃D ẋ , (11)

F̃ ≡ F ∗ − F , K̃S ≡ K∗

S −KS , K̃D ≡ K∗

D −KD .

In this equation, we see that the feedforward forceF ,
stiffnessKS and dampingKD ensure contact stability by
compensating for the interaction dynamics. Therefore, the
objective of force and impedance adaptation is to minimise
these residual errors which can be carried out through
minimising the cost function

Jc(t) ≡
1

2

∫ t

t−T

F̃TQ−1

F
F̃ + vecT (K̃S)Q

−1

S
vec(K̃S)

+vecT (K̃D)Q−1

D
vec(K̃D) dτ , (12)

where QF , QS and QD are symmetric positive-definite
matrices, and vec(·) stands for the column vectorization
operation. This objective is achieved through the following
update laws:

δF (t) ≡ F (t)− F (t− T ) ≡ QF [ε(t)− β(t)F (t)] (13)

δKS(t) ≡ KS(t)−KS(t− T ) = QS[ε(t)x(t)
T
− β(t)KS(t)]

δKD(t) ≡ KD(t)−KD(t− T ) = QD[ε ẋ(t)T − β(t)KD(t)]

whereF , KS andKD are initialised as zero matrices/vectors
with proper dimensions fort ∈ [0, T ).

Now that we have dealt with the interaction dynamics,
stable trajectory control can be obtained by minimising the
cost function

Je(t) ≡
1

2
ε(t)TM(q) ε(t) . (14)

Consequently, we use a combined cost functionJce ≡ Jc +
Je that yields concurrent minimisation of tracking error and
control effort.
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III. T RAJECTORYADAPTATION

In a typical interaction task, the contact between the
robot and the environment is maintained through a desired
interaction forceFd. Assuming that there exists a desired
trajectoryxd yielding Fd, i.e. from Eq.(6)

Fd = F ∗

0
+K∗

S(xd − x∗

0
) +K∗

D ẋd (15)

= F ∗ +K∗

S xd +K∗

D ẋd , F ∗ = F ∗

0 −K∗

S x∗

0 ,

we propose to adapt the referencexr in order to trackxd.
However,xd is unknown as the parametersF ∗, K∗

S
andK∗

D

in the interaction force are unknown. Nevertheless, we know
that xd is periodic withT asF ∗, K∗

S
andK∗

D
are periodic

with T and we also setFd to be periodic withT .
In the following, we develop an update law to learn the

desired trajectoryxd. First, we define

ξd ≡ K∗

S xd +K∗

D ẋd , ξr ≡ KS xr +KD ẋr . (16)

Then, we develop the following update law

δξr(t) ≡ ξr − ξr(t− T ) ≡ L−TQr(Fd(t)− F (t)− ξr(t))
(17)

whereQr andL are positive-definite constant gain matrices.
This update law minimises the error betweenξd and ξr,
which is described by the following cost function

Jr ≡
1

2

∫ t

t−T

(ξr − ξd)
TQT

r (ξr − ξd) dτ . (18)

Because of the coupling of adaptation of force and
impedance and trajectory adaptation, we modify the adap-
tation of feedforward force Eq.(13) to

δF (t) ≡ QF [ε(t)− β(t)F (t) +QT

r δξr(t)] . (19)

As a result, update laws Eqs.(17) and (19) minimise the
overall costJ = Jc + Je + Jr as shown in Appendix A.

Then, we obtain the update law for trajectory adaptation

δxr ≡ xr(t)− xr(t− T ) (20)

by solving

δξr = KS δxr +KD δẋr = KS δxr +KD

d

dt
(δxr) (21)

usingδξr(t) from Eq.(17). According to the convergence of
δξr, KS andKD as shown in Appendix A,xr will converge,
as

δξr − ξd = KSδxr +KDδẋr , (22)

Upon convergence, the desired interaction forceFd is main-
tained between the robot and the environment according to
Eq.(17). At the same time, the properties with adaptation of
force and impedance are preserved which include trajectory
tracking and control effort minimisation. However, from the
analysis in Appendix A, we cannot draw the conclusion
that F , KS , KD andxr converge toF ∗, K∗

S
, K∗

D
andxd,

respectively, which will require the condition of persistent
excitation (PE), similar to classical adaptive control theory
[3].

IV. D ISCUSSION

A. No contact

In a special case when there isno force applied by the
environment andFd is also zero, the controller component
w will converge to zero. According to the update law Eq.(17),
the reference trajectory will not adapt, as expected.

B. No damping

If we neglect the damping component in the interaction
force f of Eq.(9), the trajectory adaptation described by
Eqs.(17) and (21) can be simplified to

δxr = L−TQr(Fd − F −KS xr) (23)

Correspondingly, the update laws for force and impedance
Eq.(13) needs to be modified as

δF ≡ QF (ε− βF +QT

r δxr) , (24)

δKS ≡ QS(ε x
T − βKS + xT

r Q
T

r δxr) .

The stability analysis is similar to the case with damping and
is briefly explained in Appendix B.

C. Force sensing

As in [2], force sensing is not required in the proposed
framework, in contrast to traditional methods for surface
following where the force feedback is used to regulate the
interaction force [4].

In particular, in a first phase force and impedance adap-
tation is used to compensate for the interaction force from
the environment. During this process, the unknown actual
interaction force is estimated when the tracking errorε goes
to zero as can be seen from Eq.(11): whenε = 0, we have

w = −f. (25)

Using this estimated interaction force, then a desired force
in Eq.(15) can be rendered by adaptation of the reference
trajectoryxr.

In this sense, it is important to note thattrajectory adap-
tation should be conducted only when force and impedance
adaptation takes effect, which guarantees compensation of
the interaction force and tracking of the current reference
trajectory. Nevertheless, as shown in above stability analysis,
adaptation of force, impedance and trajectory can be realised
simultaneously.

This also suggests that a force sensor should be used if
available, as force and impedance adaptation could then be
replaced by force feedback. In this way, trajectory adaptation
would not depend on the force estimation process and can in
principle happen faster than force and impedance adaptation
is needed. However, the potential advantages of a force
sensor depends on the quality of the signal it could provide,
its cost and the complexity of its installation and use.



V. A PPENDIX

A. Proof for minimisation of overall cost J

Considering the definition ofJr in Eq. (18), we have

δJr(t) ≡ Jr(t)− Jr(t− T )

=
1

2

∫
t

t−T

[ξr(τ )− ξd(τ )]
T
Q

T

r [ξr(τ )− ξd(τ )]dτ

−

1

2

∫
t

t−T

[ξr(τ )− ξd(τ )]
T
Q

T

r [ξr(τ − T )− ξd(τ − T )] dτ

+
1

2

∫
t

t−T

[ξr(τ )− ξd(τ )]
T
Q

T

r [ξr(τ − T )− ξd(τ − T )] dτ

−

1

2

∫
t

t−T

[ξr(τ − T )− ξd(τ − T )]TQT

r ×

[ξr(τ − T )− ξd(τ − T )] dτ

=
1

2

∫
t

t−T

[ξr(τ )− ξd(τ )]
T
Q

T

r δξr(τ ) dτ

+
1

2

∫
t

t−T

[ξr(τ − T )− ξd(τ − T )]TQT

r δξr(τ ) dτ

=

∫
t

t−T

[ξr − ξd −

1

2
δξr]

T
Q

T

r δξr dτ (asξd(t) = ξd(t− T ))

6

∫
t

t−T

[Qr(ξr(τ )− ξd(τ ))]
T
δξr(τ ) dτ . (26)

According to Eqs.(15) to (17), we rewrite this inequality as

δJr 6

∫ t

t−T

[Qr(ξr − Fd + F + F̃ )]T δξr dτ

=

∫ t

t−T

(−LT δξr +QrF̃ )T δξr dτ. (27)

Consider the difference betweenJc of two consecutive
periods

δJc ≡ Jc − Jc(t− T ) (28)

=
1

2

∫ t

t−T

[(F̃TQ−1

F
F̃ − F̃T (τ − T )Q−1

F
F̃ (τ − T ))

+tr(K̃T

SQ
−1

S
K̃S − K̃T

S (τ − T )Q−1

S
K̃S(τ − T )

+(K̃T

DQ−1

D
K̃D − K̃T

D(τ − T )Q−1

D
K̃D(τ − T ))] dτ

where tr(·) stands for the trace of a matrix. We consider that

F̃T (τ)Q−1

F
F̃ (τ)− F̃T (τ − T )Q−1

F
F̃ (τ − T )

= [F̃T (τ)Q−1

F
F̃ (τ) − F̃T (τ)Q−1

F
F̃ (τ − T )]

+[F̃T (τ)Q−1

F
F̃ (τ − T )− F̃T (τ − T )Q−1

F
F̃ (τ − T )]

= −F̃T (τ)Q−1

F
δF (τ) − F̃T (τ − T )Q−1

F
δF (τ)

= −(2F̃T (τ) + δF (τ))Q−1

F
δF (τ)

6 −2F̃T (τ)Q−1

F
δF (τ)

= −2F̃T (τ)[ε(τ) − β(τ)F (τ) +QT

r δξr(τ)] (29)

Then, similarly, we have

tr[K̃T

S (τ)Q
−1

S
K̃S(τ) − K̃T

S (τ)(τ − T )Q−1

S
K̃S(τ − T )]

6 −2tr{K̃T

S (τ)[ε(τ)x
T (τ) − β(τ)KS(τ)]}

tr[K̃T

D(τ)Q−1

d
K̃D(τ) − K̃T

D(τ − T )Q−1

D
K̃D(τ − T )]

6 −2tr[K̃T

D(τ)(ε(τ)ẋT (τ)− β(τ)KD(τ))] (30)

Substituting Ineqs. (29) and (30) into Eq.(28) and considering
Ineq. (27) yields

δJr + δJc 6

∫ t

t−T

−δξTr Lδξr − F̃T (ε− βF ) (31)

− tr[K̃T

S (εx
T − βKS)]− tr[K̃T

D(εẋT − βKD)] dτ .

The rest is to deal with the residual in the above inequality,
which is similar to that in [2]. For completeness, we show
the outline in the following. In particular, we consider the
time derivative ofJe

J̇e = εTM(q, q̇)ε̇+
1

2
εT Ṁ(q, q̇)ε

= εTM(q, q̇)ε̇+
1

2
εTC(q)ε (32)

as [5]
zT Ṁz ≡ zTCz ∀z . (33)

Considering the closed-loop dynamics Eq.(11), above equa-
tion can be written as

J̇e(t) ≡ εT (F̃T + K̃T

S x+ K̃T

D ẋ− Γε) . (34)

IntegratingJ̇e from t − T to t and considering Ineq. (31),
we obtain

δJ = δJc + δJr + δJe

6

∫ t

t−T

−εTΓε− δξTr Lδξr

+β[F̃TF + tr(K̃T

SKS + K̃T

DKD)] dτ

=

∫ t

t−T

−εTΓε− δξTr Lδξr

−β[F̃T F̃ + tr(K̃T

S K̃S + K̃T

DK̃D)]

+β[F̃TF ∗ + tr(K̃T

SK
∗

S + K̃T

DK∗

D)] dτ . (35)

A sufficient condition forδJ 6 0 is

λΓ‖ε‖
2 + λL‖δξr‖

2 + β(‖F̃‖2 + ‖K̃S‖
2 + ‖K̃D‖

2)

−β(‖F̃‖‖F ∗‖+ ‖K̃S‖‖K
∗

S‖+ ‖K̃D‖‖K
∗

D‖) ≥ 0 .(36)

whereλΓ andλL are the minimal eigenvalues ofΓ andL,
respectively. Therefore,‖ε‖, ‖δξr‖, ‖F̃‖, ‖K̃S‖ and‖K̃D‖
are bounded. In particular, they satisfy

λΓ‖ε‖
2 + λL‖δξr‖

2 +
β

2
(‖F̃‖2 + ‖K̃S‖

2 + ‖K̃D‖
2)

≤
β

2
(‖F ∗‖2 + ‖K∗

S‖
2 + ‖K∗

D‖
2) . (37)

By choosing largeλΓ andλL, ‖ε‖ and‖δξr‖ can be made
small.

B. Proof for minimisation of overall cost when neglecting
damping

Consider the cost function

J ′

r ≡
1

2

∫ t

t−T

(xr − xd)
TK∗T

S QT

r (xr − xd) dτ . (38)



Following similar procedures to Ineqs. (26), (27), we obtain

δJ ′

r 6

∫ t

t−T

[−LT δxr +Qr(F̃ + K̃Sxr)]
T δxr dτ (39)

Considering further the cost function

J ′

c ≡
1

2

∫ t

t−T

F̃TQ−1

F
F̃ + vecT (K̃S)Q

−1

S
vec(K̃S) dτ . (40)

and following similar procedures from Ineqs.(28) to (31), we
obtain

δJ
′

r + δJ
′

c (41)

6

∫
t

t−T

−δx
T

r Lδxr − F̃
T (ε− βF )− tr[K̃T

S (ε xT
− βKS)] dτ .

The rest is similar to the case with damping and thus
omitted.
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