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Dynamic analysis of ssmultaneous adaptation of force, impedance and
trajectory

Y. Li and E. Burdet

When carrying out tasks in contact with the environment, To simplify the analysis, we rewrite the interaction force a
humans are found to concurrently adapt force, impedance

and trajectory. Here we develop a robotic model of this [=F"+Kix+Kpa )
mechanism in humans and analyse the underlying dynamics. ) S _

We derive a general adaptive controller for the interaction ~Wherer™ = kg — Kgaf is also periodic withl’. w in Eq.(2)

of a robot with an environment solely characterised by its i then defined as

stiffness and damping, using Lyapunov theory.
p g g yp y ’LU:—F—KSw—KDi (10)
|. SYSTEM DYNAMICS

The dynamics of a-degree-of-freedomtDOF) robotin Where Ks and Kp are stiffness and damping matrices,

the operational space are given by respectively, and” is the feedforward force.
. . By substituting the control input into Eq.[1), the closed-
M(q)i+C(q, )+ G(q) =u+f (1) loop system dynamics are described by

where x is the position of the robot ang the vector of
joints angle.M (q) denotes the inertia matrix('(q, )4 the
Coriolis and centrifugal forces, an@(q) the gravitational — _ ~ _
force, which can be identified using e.g. nonlinear adaptive’ = F* — F', Ks=Ki—Ks, Kp=Kp—Kp.
control [1].  is the control input and the interaction force.

In [2], we have described the control inpuin two parts: [N this equation, we see that the feedforward forEe
stiffness Ks and dampingKp ensure contact stability by

M(Q)é+C(q,§)e+Te=F+Ksa+Kpi, (11)

u=v+w, (2) compensating for the interaction dynamics. Therefore, the
with v to track thereference trajectory =, by compensating objective (_)f force and impgdance adaptatioln is to minimise
for the robot's dynamics, i.e. thgs_e_rg&dual errors W_hlch can be carried out through
minimising the cost function
v=M(q)ic +Clg.4)d +Glg) ~Te () t
where Jo(t) = %/ FTQ#'F +ved (Ks)Qg'ved Ks)
t=T

fe=dr—ae, e=r-ay, a>0, (@) +vec' (Kp)Qp'ved Kp) dr (12)
I" a symmetric positive-definite matrix with minimal e|gen-Where Qr, Qs and Qp are symmetric positive-definite

value Amin(I') > Ar > 0 and matrices, and vee) stands for the column vectorization
c=é+ae (5) operation. Th|s objective is achieved through the follayvin
update laws:
the tracking error. w is to adapt impedance and force in
order to compensate for the unknown interaction dynamics.of'(t) = F() = F(t =T) = Qrle(t) — B() F ()] (13)
§Ks(t) = Ks(t)— Ks(t—T) = Qsle(t)z(t)” — B(t)Ks(t)]
Il. FORCE AND IMPEDANCE ADAPTATION SKp(t) = Kplt)— Kn(t—T) = Qole ()" — B Kp(#)]
Suppose that the interaction force can be expanded as
« « « . . whereF', K5 andK p are initialised as zero matrices/vectors
f=Fy+ Ks(w =) + Kpi, ©  with proper dimensions fot € [0, 7).
where the forcef (¢), stiffnessK(t) and dampingi;, (t) Now that we have dealt with the interaction dynamics,
are feedforward components of the interaction forgg{)  stable trajectory control can be obtained by minimising the
is the rest position of the environment visco-elasticityl ancost function
all of these functions are unknown but periodic with

F(t+T) = Fj(t), Kst+T)=K51), (7) Je(t) =

1
35 M(g)e(t). (14)
* _ * * % i
Kp(t+T) = Kp(t), x(t+T)=u5(t). (8) Consequently, we use a combined cost functiph= J. +
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I1l. TRAJECTORYADAPTATION IV. DISCUSSION

In a typical interaction task, the contact between thg\ No contact
robot and the environment is maintained through a desired
interaction forceFy. Assuming that there exists a desired In a special case when thereris force applied by the

trajectoryz, yielding Fy, i.e. from Eql(6) environment and F;; is also zero, the controller component
. . . . . w will converge to zero. According to the update law Eql.(17),
Fo = Fy+ Kg(za—ap) + Kpida (15)  the reference trajectory will not adapt, as expected.

= F*4+Kiwg+Kpiq, F*=F —K5z),

we propose to adapt the referencein order to trackz,. B+ NO damping

However,z, is unknown as the parametefs, K and K, If we neglect the damping component in the interaction
in the interaction force are unknown. Nevertheless, we knoggrce f of Eq.[3), the trajectory adaptation described by
thatz, is periodic withT" as F™*, K and K, are periodic  Eqs [17) and[(21) can be simplified to
with 7" and we also sef; to be periodic withT".

In the following, we develop an update law to learn the b, =L TQ.(Fy— F — Kgx,) (23)
desired trajectory,. First, we define
€= Khzat+ Kbia, & =Ksz,+Kpin. (16) (ég.rgf(r)]re]gggltyg :)f;en:ggizteedlg\évs for force and impedance

Then, we develop the following update law T
. 0F = Qr(e—BF+Q, dz,), (24)
0 (t) =& &t -T)=L" QT(Fd(t)iF(t)iET((t») 0Ks = Qgslea” — Ks+ 2T QY ox,).

17 rere
whereQ,. and L are positive-definite constant gain matriceshe stability analysis is similar to the case with damping an
This update law minimises the error betwegnand &, g briefly explained in Appendix B.
which is described by the following cost function

1

t
h=g [ e -wrele . a8

C. Force sensing

As in [2], force sensing is not required in the proposed
Because of the coupling of adaptation of force andramework, in contrast to traditional methods for surface
impedance and trajectory adaptation, we modify the adafsllowing where the force feedback is used to regulate the

tation of feedforward force E.(113) to interaction force [4].
In particular, in a first phase force and impedance adap-
— T
OF(t) = Qrle(t) — BRE() + Qr 06, (1)] - (19) tation is used to compensate for the interaction force from
As a result, update laws Eds17) aid](19) minimise th&€ environment. During this process, the unknown actual
overall costJ = J. + J. + J, as shown in Appendix A. interaction force is estimated when the tracking eergoes
Then, we obtain the update law for trajectory adaptatiorf® 2ero as can be seen from EQi(11): whes 0, we have
Sz, =x,.(t) —z.(t =1T) (20) w=—f. (25)
by solving Using this estimated interaction force, then a desiredeforc
. d in Eq.(I5) can be rendered by adaptation of the reference
8¢ = Kséxp + Kp o, = Kg oz, + Kp a(ém,.) (21) trajectory.z,.

using ¢, (t) from Eq.[1T). According to the convergence of I_n this sense, it is important to note thaajec_tory adap-
5¢,, Ks and K, as shown in Appendix Az, will converge, tation should be conducted_only when force and |mpe_dance
as adaptation takes effect, which guarantees compensation of

the interaction force and tracking of the current reference
trajectory. Nevertheless, as shown in above stability analysis,
Upon convergence, the desired interaction faFgds main-  adaptation of force, impedance and trajectory can be eghlis
tained between the robot and the environment according sénultaneously.

Eq.(17). At the same time, the properties with adaptation of This also suggests that a force sensor should be used if
force and impedance are preserved which include trajectoayailable, as force and impedance adaptation could then be
tracking and control effort minimisation. However, froneth replaced by force feedback. In this way, trajectory adagmat
analysis in Appendix A, we cannot draw the conclusiowould not depend on the force estimation process and can in
that /', Kg, Kp andx, converge toF™*, K§, K}, andxzg,  principle happen faster than force and impedance adaptatio
respectively, which will require the condition of persiste is needed. However, the potential advantages of a force
excitation (PE), similar to classical adaptive controldhe sensor depends on the quality of the signal it could provide,
[3]. its cost and the complexity of its installation and use.

657“ - fd = KS&ET + KD(S:tr ) (22)



V. APPENDIX

A. Proof for minimisation of overall cost .J
Considering the definition of,. in Eq. (18), we have

N

BIn(t) = T () = J(t = T)
i) t e (r) — &l QT () — &l dr

; /LT[&(T) (T QTEn(r — T) — Ealr — T)] dr
+3 /LT[&(T) e QRlE (r — T) — Ealr — T)] dr
-3 fetr=n -l
. )[&(T —=T)—&a(r = T)|dr
2 /t_T[fr(T) — &a(T))T QY 66, (7) dr
% /tiT[&(T = T) =&t = 1)) Qr 86 (r) dr

& 50617 QTOE dr (@SE(t) = Ealt — T))

G

/t (@ (6 (r) — Ea(r))]7 86 (r) dr

(26)

Substituting Ineqs[{29) and(30) into Eg28) and congider
Ineq. [27) yields
— FT(s — BF)

t
§J, +0J. < / —0¢T Lo, (31)
t_

T

—tr[K% (ea” — BKs)] — r[K b (ci” — BKp)] dr
The rest is to deal with the residual in the above inequality,
which is similar to that in [2]. For completeness, we show
the outline in the following. In particular, we consider the
time derivative of.J,

J. =

L. 1 . )
e"M(q,4)¢ + 5" Mg, g)e

= T M(q, )+ %sTc(q)s (32)
as [5]

TMz=2"Cz Vz. (33)

Considering the closed-loop dynamics Eql(11), above equa-
tion can be written as
Jo(t)=eT(FT + KXo+ KL i —Te). (34)

Integrating.J, from ¢ — T to ¢ and considering Ineq[(81),

According to Egsl(1l5) td(17), we rewrite this inequality asye gbtain

Consider the difference betweeh of two consecutive

t
5J, < / Q. (& — Fy+ F + F)|T6¢, dr
t—T

t
- / (~LT66, + Q. F)Toe, dr.  (27)
t—T

periods

where t(-) stands for the trace of a matrix. We consider that

A

Then,

tr [

tr

§Je=J.— J.(t—T)
1

3| (FTQRF = FT(r = 1)Q5 Fir =)

+r(KEQ5' Ks — K& (1 — T)Q5'Ks(r —T)
HEDQR Kp — KB(r — T)Qp' Kp(r —T)]dr

(28)

FY Q7 F(r) — FT(r = T)Qz'F(r — T)
[FT(1)Q F(r) — FT(1)Qp F(r — T)]
HEFT(1)QF F(r —T) — F' (1 = T)Qp'F(r — T))
—FT(1)Q7'0F (r) — FT(r — T)Q 6 F(7)
—(2FT (1) + 0F(1)Qp 6 F (1)
—2FT(1)Q7'0F (1)

—QﬁT(T)[E(T) — B(T)F(r) + Q?(%T(T)]

similarly, we have

(29)

§(NQ5 Ks(r) — KE(r)(r = T)Q5' Ks(r — T)]
—2Ar{K(7)[e(r)a" (1) — B(1)Ks(7)]}
[ b(1)Qy ' Kp(r) = Kb(r = T)Qp' Kp(r —T)]
< 2K (7)(e(r)a" (1) = B(T)Kp(7))] (30)

0J = 0J.+6J+6Je

t
T
< /—5 T'e
t—T

Jrﬂ[ﬁ'TF + tl’(f(g:Ks + I?EKD)] dr

t
= / —eTTe
t—T

—BIFTF +tr(KTKs + KL Kp))
+B[FTF* +tr(KL K% + KHKE)] dr. (35)

- 5531L5§T

— 8¢ Lo,

A sufficient condition fordJ < 0 is

Arllell? + Az 0€ > + SUIE| + | Ks]l? + 1 Kp]1%)
~BUFINE| + I Ks 1531+ | KpllI£5]) > 036)

where A\r and A\, are the minimal eigenvalues éfand L,
respectively. Therefordle||, ||5&-||, || FIl. | Ks|l and || Kpl|
are bounded. In particular, they satisfy

ﬁ ~ ~ ~
Arllell® 4 Anld N + S UFIP + [1Ksl* + [ Kpl*)

B * * *
< S UIF 1>+ 1 K51% + 1 Kp|1%) (37)
By choosing large\r and A, |[¢]| and [|5&,|| can be made
small.

B. Proof for minimisation of overall cost when neglecting
damping

Consider the cost function

1

t
J = —/ (z, — xd)TKgiT TT(xT —xq)dr.
t—T

- (38)



Following similar procedures to Ineq§._{2€),127), we obtai
t
§J. < / [-LT6x, + Q.(F + Ksx,)]| oz, dr  (39)
t—T

Considering further the cost function

t
J = %/ FTQu'F +ved (Kg)Qg'ved Ks) dr. (40)
t—T
and following similar procedures from Ineds.J28)[fal(31g w
obtain

6Jr 4+ 6. (41)
t
< / —dx) Lox, — F' (e — BF) —t[K& (ex” — BKs)]dr.
t—T

The rest is similar to the case with damping and thus
omitted.
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