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Abstract.  This paper investigates users’ preferred interaction 
modalities when playing an imitation game with KASPAR, a 
small child-sized humanoid robot. The study involved 16 adult 
participants teaching the robot to mime a nursery rhyme via one 
of three interaction modalities in a real-time Human-Robot 
Interaction (HRI) experiment: voice, guiding touch and visual 
demonstration. The findings suggest that the users appeared to 
have no preference in terms of human effort for completing the 
task. However, there was a significant difference in human 
enjoyment preferences of input modality and a marginal 
difference in the robot’s perceived ability to imitate. 

1 INTRODUCTION 

Humans often use multi-modal interaction in daily 
communication and frequently use speech, physical gesture, and 
eye gaze when communicating with each other. In contrast, 
people do not usually interact with machines in the same way 
they interact with other humans. For example, when we open the 
fridge door in the morning, we do not usually greet it as we 
would another person. 

With the recent advances in technology, it is now quite 
common for people to speak to some machines. High-end 
consumer products such as smartphones and tablets have enough 
computing power to capture human speech and translate it into 
text commands. This allows people to use their voice to interact 
with the applications running on the device. This technology has 
given rise to digital virtual assistants such as: Siri [1] on the iOS 
platform, Google Now [2] on the Android platform, and Cortana 
[3] on the Windows platform. These systems enable people to 
get information simply by asking the device. For example, 
asking what the weather will be like, or when a flight will leave. 
Language learning programs, such as Duolingo [4], prompt users 
to say sentences and use a voice to text translation method to 
accept their answer. 

Traditionally robots have been associated with factories for 
building products such as cars. However, robots are now 
increasingly being used in a number of application areas where 
people can interact with them in a more natural way, in some 
ways similar to how they would interact with living creatures, 
such as indicated in the survey by Leite et al. [5]. For example, 
Pleo [6] changes its behaviour depending on how the user 
interacts with it, and Fernaeus et al. [7] used it to learn how 
people play with a robotic animal. KASPAR, a child-size 
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humanoid robot, has primarily been developed as a mediator to 
interact with children with autism in order to encourage basic 
communication and social interaction skills [8]. The consumer 
and research robot NAO [9] has been programmed to fulfil many 
tasks, one of which is as a companion robot (see Dautenhahn 
[10]) such as used in the research by Baxter et al. [11]. 

Since Sheridan [12] first associated Human-Robot Interaction 
(HRI) with teleoperation of factory robotic platforms, HRI 
research has extended into a number of different research areas 
(Goodrich and Schultz [13]). One of the areas of particular 
interest in recent years is multi-modal interfaces for multi-modal 
interactions. Stiefelhagen et al. [14] suggested that multi-modal 
interfaces are required to facilitate natural interaction. When 
humans are interacting with machines that have some human-
like characteristics, they have a tendency to anthropomorphise 
with the machine and communicate in ways similar to human-
human communication [15]. One of the objectives of HRI is to 
make human-robot interaction easier, more intuitive and more 
user friendly. By providing a multi-modal interface it may help 
keep the users engaged and interact with them in a more familiar 
manner, similar in some ways to which they may interact with 
other humans.  

Although interactive multi-modal systems have some distinct 
advantages, developing such systems poses many challenges. 
According to Turk [16], the performance of a multi-modal 
system depends on each unimodal technology. Currently each 
modality has its own ongoing progress as an active research 
field. For example, a survey by Argall and Billard [17] lists 
research that solely focuses on investigating the tactile input 
modality. 

Developing multi-modal interactive systems requires a 
substantial amount of computing power and robust integration 
algorithms. The integration algorithm of the robot’s sensing 
system needs to make decisions in real-time on which input to 
consider for giving an appropriate response or action through the 
robot’s actuators. The system has to be powerful enough to 
process different inputs such as visual, audio, and gesture cues. 
Integrating these social queues to flow naturally throughout the 
interaction session will also consume additional processing 
power. Providing a robust input modality and fusion to integrate 
all input data is a technically challenging task. Many hours of 
work would need to be devoted just to prepare the robot for a 
relatively simple task. This is one of the reasons that some HRI 
studies use Wizard-of-Oz [18] approaches to run experiments. 
By using these approaches, limitations on the technology can be 
set aside and replaced by behind-the-scene controllers to produce 
behaviour for the robot which is perceived by users as 
autonomous. 

The challenge of creating a multi-modal interactive robotic 
system has inspired the research in the current study which 
investigates users’ preferences of input modality when providing 



information to a robot. The study was designed to ask users to 
experience three different modalities whilst delivering the same 
instructions to the robot.  

2 RELATED WORK 

The study took related research in Human-Computer Interaction 
(HCI) into consideration. As suggested by Kiesler and Hinds 
[19], and Breazeal [20], existing work in HCI offers rich 
resources and inspiration for research in HRI.  

The experiment “Put That There” by Bolt [21] is widely 
considered a pioneering demonstration that first showed the 
value and opportunity of multi-modal interfaces over uni-modal 
interfaces in HCI. The experiment was conducted using speech 
and gesture as command channels to draw a map. 

The multi-modal interface raised a question of when the 
system is capable of multi-modal interactions, will the users 
utilise the ability to interact multi-modally? Oviatt [22] 
discussed ten myths about multi-modal interaction that give 
useful guidance to researchers building multi-modal systems. He 
stated that with multi-modally capable systems, users tend to 
switch between uni-modal and multi-modal interaction with the 
multi-modal interactions being the most predictable, based on 
the type of action being performed. In a previous study Oviatt et 
al. [23] found that 86% of the time participants used multi-modal 
commands when navigating a map in order to move, add, 
modify, or calculate the distance between objects. For 
performing tasks that require no navigation of the map, such as 
printing the map, the participants interacted multi-modally less 
than 1% of the time. 

Later, Oviatt et al. [24] conducted an experiment using a 
Wizard-of-Oz approach, and concluded that the cognitive load of 
the task will drive the users’ preference towards either uni-modal 
or multi-modal interaction. Tasks with higher difficulty will 
often cause the users to utilize the multi-modality of the system. 
With repetitive tasks, users would initially communicate multi-
modally. Once the tasks became more familiar they then tended 
to prefer one particular interaction modality four times more 
often than interacting multi-modally. 

Schüssel et al. [25] experimented using speech, gesture, and 
touch in multi-modal interactions to select graphical icons on a 
computer monitor. This experiment was also conducted using the 
Wizard-of-Oz approach and measured what modality was used 
and combined by the users to complete the task. The overall 
results of the modalities used were: touch (63.2%), speech 
(21.6%), gesture (11.2%), speech+gesture (3.6%), speech+touch 
(0.5%). None of the participants used speech+gesture+touch at 
the same time. 

Carbini et al. [26] observed users’ preferences for using a 
story telling game. Each user was given a task to compose a 
coherent story from a set of objects on a computer screen. It was 
found that children could easily interact using speech and gesture 
as compared to adults. The results of the full dataset were: 
gesture (45%), speech (5%), gesture+speech (50%). 

All of the research cited above was conducted in HCI 
domains, where the users interacted with computers. This current 
research is focused on the interaction between humans and 
robots. Presented below are some studies that are more closely 
related to research in HRI. 

Research by Khan [27] surveyed 134 respondents about their 
preferred interaction modalities with a robot. One of the 

questions asked in this survey was the preferred method of 
communicating with a service robot to take care of clothes on a 
couch, or when the robot is to inform the user that the task has 
been completed. The results showed that speech was the most 
preferred interaction modality (82%), followed by touch screen 
(63%), gestures (51%), and typing commands (45%). However, 
the results of this study are limited because the survey was 
conducted by asking participants to complete a questionnaire 
without the participants having interacted with an actual robot.  

Salem et al. [28] conducted research to compare the 
preference of modality in HRI. In contrast to the current 
research, they investigated the output side of the multi-modal 
interface. They examined the perceptions of users regarding a 
robot when the robot provides information to the human uni-
modally (voice only) and multi-modally (voice and gesture). It 
was found that the robot was evaluated more positively if it 
displayed non-verbal behaviours, such as hand and arm gestures 
along with speech, even if they do not semantically match the 
spoken utterances. 

Humphrey and Adams [29] also conducted a study relevant to 
our current research, by measuring users’ preference for 
visualising a tele-operated robot’s compass. They compared two 
different compass visualisations: top-down and world-aligned. 
The top-down visualisation received higher preference, but there 
was no significant difference to the world-aligned visualisation 

3 THE STUDY 

The study presented in this paper builds on two main 
observations from the related work discussed above which are: 

1. As described in [24], simple task interaction can be 
conducted sufficiently using a uni-modal system only. 

2. Previous research established significant differences of 
modality preference one over another and the most-preferred 
modality also differed ([25], [26], and [27]). 

Those considerations above come from the HCI research 
domain where humans interact with computers. This study puts 
them in HRI perspective, where humans interact with robots, to 
see whether they can be applicable to the HRI domain. 

Based on the first observation (1), our research investigated 
further the modality comparison by conducting an experiment 
that asked users to do a simple-task, comparing the using of 
specific and different modalities in different sessions. Based on 
the second consideration (2), the study also evaluated which 
modality was most preferred. 

This research aimed toward developing an autonomous 
humanoid robot that can perform a real-time multi-modal 
interaction. The developed system provides the capability to 
detect voice commands, and interprets gestures and touch. All 
processes run in parallel in real-time. In the discussion section, 
this paper presents the comparison of user preferences for the 
three input channel modalities when instructing the robot to 
move its arms. 

The basic idea of the experiment for the research was to 
develop a robot that can be taught to dance following music. 
This idea was limited in the required capability in order to match 
the robot’s physical limitations in speed of movement. The 
dance was changed to a simple mime task, and the music was 
limited to a single nursery rhyme. With these changes, the 
experiment became teaching the robot to mime following a 
nursery rhyme. The robot could be instructed to move its arms 



using voice commands, by the users' gestures, and by physically 
guiding the arms. 

The experiment was run non-intrusively so that the users did 
not need to use gloves or markers. The users also did not have to 
wear a microphone or headphone. The voice command system 
used a speaker-independent system so it did not have to be 
trained prior to the experiment. 

4 EXPERIMENT SETUP 

This section describes the experimental setup for the study. The 
study was approved by the University of Hertfordshire Ethics 
Committee under protocol number a1213/10. 
 

 

Figure 1. KASPAR Robot 
 

4.1 The Robot 

This research uses KASPAR [30], a child-alike humanoid robot 
(shown in Figure 1). It has 17 Degrees of Freedom (DoFs) and 
has an internal PC to run the robot autonomously. The robot uses 
eSpeak [31] text-to-speech engine for speaking. 

 

 

Figure 2. Compliance Mechanism 
 

For the study, a program was developed to feature a servo 
compliance system. The block diagram of the compliance system 
is shown in Figure 2. It has a controller that measures the servos’ 
torque values. This measurement is used to allow the software to 
detect whether the arms are being moved by an external force. It 
will then adjust the servos’ positions to comply with the external 

force. With this feature, users can move KASPAR’s arms 
without breaking the servos. This controller works independently 
and can override any arm movement commands sent by the 
higher level controller. 

In the current implementation, there was a time delay in the 
compliance controller’s loop path introduced by the hardware 
interface. This made the control bandwidth of the servos only 
achieve 1 Hz, which is lower than the human force control 
bandwidth which is around 20 Hz [32]. This made the arms 
slightly stiff to move. 

The system used an additional external PC beside the internal 
PC. The PC’s communicated using TCP/IP through an Ethernet 
connection. The robot was built to have a WiFi connection as 
well but this wireless connection was never used in the 
experiment because of the latency in data transmission. 

 

 

Figure 3. System Architecture 
 

The external PC runs the high demand processes, such as the 
gesture detection and speech recognition. The global architecture 
of the system can be seen in Figure 3. The GUI controller runs 
on the external PC and sends commands to the internal PC to 
control the robot. The robot has several force sensitive resistor 
(FSR) sensors to detect touches. They are located on both palms 
and on the upper arms. This research did not restrict the 
participants on where they could touch the robot when moving 
its arms. During the experiment, the system only used the 
compliance system mentioned above to allow the participants to 
move the robot’s arms physically. 

4.2 Sensors 

KASPAR was equipped with sensors to provide the following 
input modalities: (i) voice command, (ii) gesture, and (iii) touch. 
The developed system uses the Microsoft speech recognition 
engine. With non-intrusive interaction in mind, the system uses a 
directional microphone to listen to the user’s voice. The 
microphone location was adjusted so the sound coming from the 
robot (voice and mechanical servo movements) was less likely to 
disturb the user’s voice. 

The speech recognition engine was programmed to detect 5 
different commands that could be used to instruct the robot to 
move its arms. The robot has colour markers on its fingers (see 
Figure 1) to refer to the arms by colour instead of left and right 
(the former was deemed to be easier for participants to use when 
facing the robot). The markers are red and blue. The commands 
are: (i) red up, (ii) blue up, (iii) arms open, (iv) red down, and (v) 



blue down. As suggested by the name, ‘up’ and ‘down’ 
commands will instruct the corresponding red or blue arm to go 
up or down. The ‘arms open’ command will make both arms 
open wide. 

The system could only detect one particular command at a 
time. After saying a command, the user was expected to wait for 
the robot to respond before saying the next command. 

A Microsoft Kinect was used by the system to detect the 
human partner's gestures. The Kinect SDK provided a skeleton 
representation of the user's position and pose. The position of the 
wrists were measured and interpreted as commands to move the 
robot arms. The system was programmed so that it only detected 
5 positions, which were equivalent to the 5 voice commands. 

Touch input modality was provided to the robot by using the 
developed compliance system. The users could move the robot’s 
arms by moving the arm directly. They could hold any part of 
the arm in order to move it e.g. the users could move the arms by 
moving the upper arm or moving the hand. The latter requires 
smaller force because it is further away from the shoulder joint.  

4.3 Layout 

The physical layout of the experiment is shown in Figure 4. The 
robot was ‘sitting’ on the table and the Kinect sensor was located 
next to the robot. Video cameras were used to record the 
activities during the experiment sessions. 
 

 

Figure 4. Experiment layout 
 

Next to the robot was an instruction sign (see Figure 5) which 
reminded the user of the five instructions that could be used to 
control the robot. The instruction sign showed arrows to reflect 
the direction of the arms movement. 

 

Figure 5. Instruction sign 

4.4 Interaction Scenario 

The task given to the participants in this study was teaching a 
humanoid robot to mime to a rhyme. The rhyme was ‘Hickory 
Dickory Dock’. The participants had to instruct the robot to 
move the arms to mime by following the lines of the rhyme. The 
task was repeated in several sub-sessions by only allowing one 
or two of these modalities in each session: voice, gesture, touch, 
and voice+gesture. 

4.5 Experiment Procedure 

Before starting the experiment, the participants completed a 
demographic questionnaire and signed a consent form. 

The experiment was divided into two main sessions: 
1. Introduction session 
In the beginning, the participant was introduced to the robot 

and asked to shake its hand. This was to familiarise the 
participants with the robot, and to let them know that it was fine 
to physically move its ‘red arm’ (right arm), even though it felt 
slightly stiff. Next, they were introduced to the nursery rhyme, 
and told what to do during the main trial session. The 
participants were also instructed on how to move the arms using 
each input modality. 

During the introduction session, the robot was operated semi-
autonomously using a wireless clicker to advance between sub-
sessions. At the end of the introduction session, the participants 
were told that the following was the main trial, and the robot 
would run fully autonomously. 

2. Main trial session 
In the main trial, the participants were left alone interacting 

with the robot which ran autonomously. The investigator stayed 
in the same room reading a book and sat back-facing the 
participants at a table without any computer or electronics 
devices. The participants were told that in case of emergency or 
if they wanted to stop, they could notify the investigator at any 
time. 

The trial was run individually with a single participant for 
each trial session. The robot first asked the participants to 
instruct it on how to move in order to follow the nursery rhyme. 
The robot said the rhyme, and the participant should then instruct 
the robot to move for each line of the rhyme. The participant 
could instruct the robot to move the arms while the robot said the 
rhyme, except in the voice command mode session, where the 
participants were instructed (by the robot) to say the command 
after the robot has finished saying the rhyme. In the touch 
modality sessions, the participants had to move forward close to 
the robot to move its arms. 

In total, there were 4 sub-sessions in the main trial. Each sub-
session presented to the participant a different input modality. 
The first three were arranged so each participant had a different 
order of voice, gesture, and touch modalities. In total there were 
9 possible different orders. In the fourth sub-session, the 
participant was asked to instruct the robot using a freely chosen 
combination of gesture and voice commands. After each sub-
session, the robot performed the complete ‘dance’ with 
movements and timings specified by the commands that had 
been given by the participant. 

After the main trial session, a second questionnaire recorded 
the users’ preferences of the methods to teach the robot. Before 
the whole session ended, the participants were also asked 



verbally whether they had any comments they wanted to express 
regarding the experiment. 

4.6 Dependent Measurements 

The post-trial questionnaire asked four questions using the Likert 
scale, and the participants rated their answers on a scale from 1 
to 5. The first one was “Did you fully understand what 
instructions KASPAR said during the main session?” (1 being 
“not very well” and 5 being “very well”). 

The second question was “In terms of effort, how did you feel 
about the different methods to teach KASPAR to dance?” (1 
being “very hard” and 5 being “very easy”). 

The third question was “In terms of enjoyment, how did you 
feel about the different methods to teach KASPAR to dance?” (1 
= least enjoyable, 5 = most enjoyable).  

The fourth question asked “When KASPAR showed what it 
had learned, how well did you feel KASPAR followed your 
instruction?” (1 = not very well, 5 = very well).  

Every question from 2 to 4 had separate answers for each 
interaction modality. 

5  RESULTS 

The experiment was conducted with 16 participants; six females 
and 10 males aged 20 to 48 years old. They were recruited from 
the university staff and students. The invitation was advertised 
verbally and they were given a link of an online scheduler 
(Doodle [33]) to pick the available time slots that were suitable 
for them. In each gender category, 1 person was very familiar 
with robotic systems, while none had a prior knowledge of the 
robot setup that was used in this experiment. 
 

 

Figure 6. Questionnaire result on human effortlessness 

 

 

Figure 7. Questionnaire result on human enjoyment 

 

Figure 8. Questionnaire result on different instruction modalities 

 
For the first question of the questionnaire, that asked whether 

the participants fully understood what the robot said during the 
experiment, no participant selected a value lower than 4. The 
mean score was 4.56 (SD = 0.51). The middle point of the 
answer was weighted as 3. 

The questionnaire result on the effort to teach the robot to 
dance is shown in Figure 6. The data were checked using one-
way repeated-measures ANOVA. The result was F(3,42) = 
0.848, p = 0.476, which meant none was significant. The result 
suggests that no particular modality is perceived as harder than 
the others. 

The result that is shown in Figure 7 shows participants' 
perceived enjoyment of conducting the task for each modality. 
The touch modality received the least enjoyable rating. The 
statistical analyses indicated a significant difference in 
preferences, F(3,42) = 6.461, p = 0.001. The pairwise 
comparisons results indicated that there was a significant 
difference (p = 0.008) between participants ratings for gesture 
(M = 4.4, SD = 0.74) and touch (M = 3.07, SD = 1,28) 
interaction modalities. 

Finally, Figure 8 shows the participants’ perception of the 
robot's ability to follow instructions. The difference was 
marginally significant, F(3,39) = 2.56, p = 0.069. The pairwise 
comparisons showed a preference (p = 0.011) for touch (M = 
4.43, SD = 0.65) over voice+gesture (M = 3.43, SD = 0.85). 

6 DISCUSSION 

This research has investigated a robotic system that can be 
taught movements to follow a nursery rhyme. The development 
of the software is only presented briefly as it would be better to 
be presented as a technical paper. Three modalities were 
provided as input channels to give information to the robot as 
commands to move its arms. They are voice, gesture, and touch. 
Two modalities were provided as output channels: voice and 
gesture. The robot operated autonomously during individual 
sessions. The robot had touch-compliance which allows humans 
to physically move its arms into a desired pose. The system 
supported integration of multiple modalities through a TCP/IP-
based inter-process communication mechanism. The experiment 
was conducted with adult participants. 

The research findings indicated that being given a task which 
was to teach a robot to mime actions that follow a nursery 
rhyme, there was no statistically significant difference in 
preference ratings regarding human effort. 



In contrast, there were favourable preferences regarding the 
human enjoyment. The touch modality was the least preferred 
and the gesture modality was rated the highest. The authors 
argue that the touch modality scored lowest due to the 
participants worrying about breaking the arms of the robot. This 
was because the compliance only controlled the arms 
compliance at a 1 Hz cycle rate instead of 20 Hz (see [32]). 

For the robot’s perceived ability to follow instructions, touch 
modality received the highest rating. The combined 
voice+gesture modalities received the lowest. This could be due 
to the robot only performing the instructed action after the voice 
command had completed, while the action after the gesture mode 
interaction was followed immediately. However, they were not 
statistically significant at the 5 % level, and only indicated a 
trend towards higher mean preference to the touch modality. 

In general, without considering the task, the results are in 
contrast to the result in [25], [26], and [27]. However, this 
contrast indicates an agreement with [22] and [24], namely that 
for certain tasks humans can communicate to robots effectively 
using a uni-modal communication channel. 

7 FUTURE WORK 

This research is eventually aiming to evaluate how best to teach 
a robot and what constitutes an effective teaching strategy. The 
work presented here is an initial attempt towards that direction, 
and further research is required. The software system could be 
further developed to accommodate more complex input 
interfaces. It would also be useful to conduct the same 
experiment with different user groups, e.g. children or people 
with special needs. 
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