
Kinodynamic Motion Planning: 
A Novel Type Of Nonlinear, Passive Damping Forces

 (NADFs)
Ahmad A. Masoud

Electrical Engineering Department, KFUPM, P.O. Box 287, Dhaharan 31261, Saudi Arabia, masoud@kfupm.edu.sa 

Abstract-This paper extends the capabilities of the harmonic
potential field approach to planning to cover both the kinematic
and dynamic aspects of a robot’s motion. The suggested
approach converts the gradient guidance field from a harmonic
potential to a control signal by augmenting it with a novel type
of dampening forces suggested in this paper called: nonlinear,
anisotropic, dampening forces (NADFs). The combination of
the two provides a signal that can both guide a robot and
effectively manage its dynamics. The kinodynamic planning
signal inherits, fully, the guidance capabilities of the harmonic
gradient field. It can also be easily configured to efficiently
suppress the inertia-induced transients in the robot’s trajectory
without compromising the speed of operation. The approach
works with dissipative systems as well as systems acted on by
external forces without needing  full knowledge of the system’s
dynamics. Theoretical developments and simulation results are
provided in the paper. 

I. Introduction
The harmonic potential field approach to planning is emerging
as a powerful paradigm for the guidance of autonomous agents.
Since it was suggested in the mid-late eighties [1,2] the
approach is continuously developing to meet the stringent
requirements operation in a real-life environment imposed on an
agent. Up-till-now, the approach has amassed many attractive
properties crucial for enhancing goal reachability. The approach
is provably-correct driving the agent to a successful conclusion
if the task is manageable and providing an indication if the task
is intractable. It can be used to guide the motion of  an
arbitrarily shaped agent in an unknown environment regardless
of its geometry or even topology relying only on the sensory
data acquired online by the agent’s finite range sensors. The
method can also impose a variety of constraints on the agent’s
trajectory such as regional avoidance and directional constraints
[3-8]. Harmonic functions are also Morse functions and a
general form of the navigation functions suggested in [13], see
appendix. 
 

A planner may be defined as an intelligent, purposive, context-
sensitive controller that can instruct an agent on how to deploy
its motion actuators (i.e generate a control signal) so that a
target state may be reached in a constrained manner.
Traditionally, a planning task is distributed on two stages: a
high level control (HLC) stage and a low level control stage
(LLC), figure-1. The HLC stage receives data about the
environment, the target of the agent, and constraints on its
behavior. It then simultaneously processes these data to generate
a reference plan or trajectory marking the desired  behavior of
the robot. This trajectory, if actualized, leads to the agent
reaching its target in the specified manner. The reference
trajectory is then fed to an LLC in order to convert it into a
sequence of action instructions to be executed by the agent’s
actuators of motion. Unfortunately, the HLC-LLC paradigm for

planning suffers from serious problems that adversely impact its
performance in a realistic setting. An alternative may be
achieved by fusing the HLC and LLC modules into one called
the navigation control (NC). An NC attempts to directly convert
the environmental data, goal of the robot, and constraints on its
behavior into a control signal (figure-1). Khatib potential field
(PF) approach may be considered as one of the first methods to
cast planning in an NC framework [9]. The PF approach enjoys
several attractive features; most significant is the high speed by
which a robot can respond to the contents of its environment. 

     

       Figure-1: The HLC-LLC and NC control structures. 

The attractor-repeller setting Khatib used to generate the
potential field has some problems. The most serious one has to
do with convergence where it was observed that a robot guided
by such a method may stop somewhere in the workspace before
reaching its target; the problem was termed the local minima
problem. Many methods later appeared to generate potential
fields that do not suffer from this problem [10-12]. Koditschek
diffeomorphism approach [13] was among the first methods
suggested to remedy this shortcoming in the PF approach. To
convert the gradient guidance field from the potential surface (-
LV) into a control signal (u), a viscous dampening force that is
linearly proportional to speed is added: 

                                  (1)u B x V(x)= − ⋅ − ∇
•

This combination will only work provided that the initial speed
of the robot is lower than an upper bound S(x): 
                                                     (2)ω(x) S(x) x≤ ∈Ω
where T(x) is the initial speed of the robot at a location x, and
S is the workspace of the robot [14]. Practical application of the
above faced two difficulties: first, no method was provided to
compute the upper bound S. Even if a method is devised for
doing so, there is no guarantee that in a practical situation the
initial speed of a robot can be made to lie below the admissible
upper bound. The second difficulty has to do with the fact that
the satisfaction of the upper speed constraint guarantees only
that obstacle avoidance constraints will be upheld and
convergence to the target will be achieved. In potential field
methods, transients can be a serious concern that could make it
impractical to use these techniques for controlling a robot. Also,
the approach seems to only deal with dissipative systems where
no mention of how the method may be applied when external
forces such as gravity are present. 



In its current form the HPF approach can only operate in an
HLC mode providing only a guidance signal from the gradient
of the potential. This signal has to be converted into a control
signal by an LLC. Guldner and Utkin suggested an interesting
approach based on a sliding mode control for converting the
gradient field from an HPF into a control signal [21]. The
approach is robust, has good convergence properties, does not
require full knowledge of system dynamics and can make, with
little transients, the dynamic trajectory of the robot follow the
kinematic trajectory marked by the gradient field. The main
drawback fo the approach seems to be the high shattering the
control signal experiences.  

In this paper a method is suggested to utilize the HPF approach
in an NC mode. This is accomplished by augmenting the
gradient guidance field  from an HPF with a new type of
dampening force called: nonlinear anisotropic dampening forces
(NADFs). It is shown that an NADF-based control can
efficiently suppress inertia-induced artifacts in the dynamical
trajectory of the system making it closely follow the kinematic
trajectory while maintaining an agile system response. The
approach does not require the system dynamics to be fully
known.  A loose upper bound is sufficient for constructing a
well-behaved control signal that can deal with dissipative
systems as well as systems being influenced by external forces
(e.g. gravity).   

This paper is organized as follows:  section II provides a brief
background of the potential field approach.  The NADF
approach is presented in section III.  Sections IV and V discuss
the application of the approach to dissipative systems and
systems experiencing external forces respectively.   Simulation
results are in section VI, and conclusions are placed in section
VII. 

II. Background
The HPF approach appeared shortly after the work of  Khatib.
Although the approach was brought to the forefront of motion
planning independently and simultaneously by different
researchers [16-20], the first work to be published on the subject
was that by Sato in 1986 [1]. The HPF approach eliminates the
local minima problem encountered in  [9] by forcing the
differential properties of the potential field to satisfy the Laplace
equation inside the workspace of the robot (S) while
constraining the properties of the potential at the boundary of S
('=MS). The boundary set ' includes both the boundaries of the
forbidden zones (O) and the target point (xT). A basic setting of
the HPF approach is:
                                          x0S∇ ≡2V(x) 0
subject to:          .                            (3)V 0| & V 1|X X XT

= == ∈Γ

The trajectory to the target (x(t)) is generated using the HPF-
based, gradient dynamical system: 
                                        (4)

x V(x) x(0) x0

•
= −∇ = ∈Ω

The trajectory is guaranteed to:

                 1-            2-         (5)lim x(t) x
t T
→∞

→ x(t) ∈ ∀Ω t

whereby a proof of (5) may be found in [3]. Figure-2  shows the
negative gradient field of a harmonic potential for the simple
environment of a room with two dividers. Figure-3 shows the
trajectory, x(t), generated using the gradient dynamical system

in (4). It ought to be mentioned that the HPF approach is only
a special case of a broader class of planners called PDE-ODE
motion planners [5] where the field is generated using the
boundary value problem (BVP): solve: 
                               L(V(x))  / 0                    x 0 S
subject to:               P(V(x)) = 0   x 0 '.             (6)

The trajectory is generated using the nonlinear system: 

                                                  (7)x V x x 0 x0

•

= = ∈F( ( )) ( ) Ω
where L is scalar partial differential operator, P is a governing
relation restricting the potential or some of its properties at the
boundary to a certain value, F is a nonlinear vector function
mapping R6RN, N is the dimension of x, PDE stands for partial
differential equation, and ODE stands for ordinary differential
equation. Planners assuming a PDE-ODE setting other than that
of the one in (3) may be found in [3,7,8]. 

 Figure-2: Guidance field of an HPF. 
   

Figure-3: Trajectory generated by the field in figure-2. 

The trajectory, x(t), generated by the dynamical system in (4) is
only  a reference trajectory that should be fed to an LLC in
order to generate the control signal, u, the robot is using. One
way of converting the guidance signal into a control signal is to
augment the gradient field with a component that is proportional
to speed. This seemingly straight forward solution is
problematic.  In figure-4, the negative gradient of the potential
in figure-2 is used to navigate a 1kg point mass. The dynamic
equation of the system is: 
                                           (8)
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where B=0.1. Despite the fact that the initial speed of the robot
is zero, the trajectory violated the avoidance condition and
collided with the walls of the room. 



Figure-4: trajectory of a point mass controlled by the field in figure-2. 

III. The NADF Approach
An intuitive  solution to the problem of converting a  gradient
guidance field into a navigation control signal is to  increase the
coefficient of the linear velocity term to a sufficiently high level.
The linear velocity component acts as a dampener of motion
that may be used to place the inertial force under control by
marginalizing its disruptive influence on the trajectory of the
robot that the gradient field is attempting to generate. The
following example demonstrates that this solution is impractical.
In order to generate a control signal that would satisfy the
avoidance constraints (5), the coefficient of dampening of the
system is increased to B=0.15. Figure-5 shows the resulting
trajectory and figure-6  shows the distance to the target as a
function of time. Although the trajectory did converge to the
target point (xT) and did  not violate the regional avoidance
constraints, unacceptable transients along with significant
deviations from the path marked by the gradient field (figure-2)
are present. In a second attempt to generate a well-behaved
control signal, the dampening coefficient is significantly
increased to B=.7. Although a well-behaved trajectory was
obtained (figure-7), significant slowdown of motion did occur
(figure-8). 

The method for converting the gradient field from a harmonic
potential into a navigation control signal by simple
augmentation with a linear velocity dampening term is incorrect.
This approach ignores the dual role the gradient field plays as a
control and guidance provider. The field guides a robot to the
target using vectors that point out the directions along which the
robot has to move if the target is to be reached and the obstacles
are to be avoided. At the same time, these vectors are forces that
act on the mass of the robot in order to actuate motion.
Obviously the inertia of the robot will have a disruptive
influence on motion. The linear dampening term manages the
inertial forces in an attempt to make the motion yield to the
guidance provided by the gradient field. 

A dampening component that is proportional to velocity
exercises omni-directional attenuation of motion  regardless of
the direction along which it is heading. This means that the
useful component of motion marked by the direction  along
which  the  goal  component  of  the gradient of the artificial
potential is pointing is treated in the same manner as the
unwanted inertia-induced, noise component of the trajectory.
These two components should not be treated equally.
Attenuation should be restricted to the inertia-caused disruptive

Figure-5: Trajectory, point mass, linear dampening increased. 

Figure-6: Distance to target versus time.
        

Figure-7: Trajectory, high linear dampening. 
       

Figure-8: Distance to target versus time. 

component of motion, while the component in conformity with
the guidance of the artificial potential should be left unaffected
(figure-9).



To better manage the effect of the inertial forces, a more
carefully constructed dampening component that treats the
gradient of the artificial potential both as an actuator of
dynamics and as a guiding signal is needed. A dampening force
(M) that behaves in the above manner is: 

      (9)M(x, x) [(n ) n ( V(x)
V(x)

( V(x) )) V(x)
V(x)

]t
T

T
T& = +

∇
∇

⋅ ⋅ ∇
∇
∇

• • •

x x xΦ

where n is a unit vector orthogonal to LV. This force is given
the name:  nonlinear, anisotropic, dampening force (NADF).
For the two dimensional case, an NADF has the form:    
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Figure-9: nonlinear, anisotropic, dampening force (NADF). 

IV- Dissipative  Systems
In this section two propositions are stated and proven. The first
proposition shows that a gradient field of a harmonic potential
generated by the BVP in (3) combined with NADF can
guarantee global, asymptotic convergence of a fully actuated
second order dissipative dynamical system.  The second
proposition shows that the dynamic trajectory of the system can
be made arbitrarily close to the kinematic trajectory generated
by the system in (4); hence, preserving the spatial constraints.

Proposition-1: Let V(x) be a harmonic potential generated using
the BVP in (3). The trajectory of the dynamical system: 

                          (11)D x x C x x x B M x x K V x 0( )&& ( , & )& ( , & ) ( )+ + ⋅ + ⋅∇ =d

will globally, asymptotically converge  to: 
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for any positive constants Bd and K, where x0RN, V(x):RN6R,
D(x) is an N×N positive definite inertia matrix,  containsC(x, x)x& &

the centripetal, Coriolis, and gyroscopic forces.  Proof of the
above proposition is carried out using the LaSalle invariance
principle [23]. 

Proof: Let = be the Liapunov function candidate: 

                           (13)Ξ(x, x) K V(x) 1
2

x D(x)xT& & &= ⋅ +

Note that since V(x) is harmonic, it must assume its maxima on
' and minima on xT . In other words, V(x) can only be zero at
xT ; otherwise, its value is greater than zero: 

  .                  (14)Ξ(x, x)
0 iff x 0, x 0

positive otherwise
&

&
=

= =⎡

⎣
⎢

The time derivative of the above function is: 

           .          (15)& & & & & & & &&Ξ(x, x) K V(x) x 1
2

x D(x)x x D(x)xT T T= ⋅∇ + +

Substituting: 
                 (16)&& & & &x D (x)[ C(x, x)x Bd M(x, x) K V(x)]1= − − ⋅ − ⋅∇−

 along with (9) in the above equation yields: 
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Using the passivity property: 
                             (18)& & & &x (D(x) 2 C(x, x))x 0T − ⋅ =

and rearranging the terms we get: 

      (19)& & &

& &
&
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Φ
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d
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as can be seen 
,       (20)& &Ξ ≤ ∀0 x, x

where & &Ξ = =0 for x, x 0

according to LaSalle principle any bounded solution of (11) will
converge to the minimum invariant set: 

         .       (21)E {x 0, x}⊂ =&
Determining E requires studying the critical points of V(x)
where LV(x)=0.  According to the maximum principle, xT is the
only minimum (stable equilibrium point) V(x) can have. Besides
xT , V(x) has other critical points {xi} at which LV=0; however,
the hessian at these points is non-singular, i.e. V(x) is Morse
[24]. A proof of this result may be found in the appendix.  From
the above we conclude that E contains only one point  which is
the point  to which motion will converge. x x , x 0T= =&



Proposition-2: Let D be the trajectory constructed as the spatial
projection of the solution, x(t), of the first order differential
system in (4). Also Let Dd be the trajectory constructed as the
spatial projection of the solution, x(t), of the second order
system in (11), figure-10. Then there exist a Bd that can make
the maximum deviation  between D and Dd (*m) arbitrarily small.
             

∇
∇

V x
V x

( )
( )

       Figure-10: The kinematic and dynamic trajectories. 

Proof: The gradient field from an HPF does not only work as a
guide of motion to the target; it also may be used to cover S
with a complete set of boundary-fitted basis coordinates (figure-
11).
    

         Figure-11: Boundary-fitted coordinate system.

The radial basis of the system (LV/*LV*) marks the useful
component of motion. The basis orthogonal to this component
span the disruptive component of motion (*) which NADF is
required to attenuate (figure-12). 

 

       Figure-12: The disruptive component of motion. 

The dynamic equation describing the disruptive component is:

    (25)n D(x)x n C(x, x)x Bd n M(x, x) K n V(x) 0T T T T&& & & &+ + ⋅ + ⋅ ∇ =
Examining the above equation term by term yields: 
1-   ,       (26)n V 0T∇ =

2-    = n xT[(n x) n ( V(x)
V(x)

( V(x) x)) V(x)
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]t
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Φ (n t & )x

3- assuming that an upper bound can be placed on the speed: 
      (27)&x max≤ ν

the norm of the matrix C may be bound as: 
                (28)C(x, x) cmax& ≤

4- any inertia matrix belonging to a physical system is positive
definite, invertible, and have a bounded norm: 

                  (29)D(x) d max≤

where dmax, cmax, and <max are finite, positive constants. Based on
the above, a dynamic equation that yields an upper bound on *
is: 

                               (30)d n x c n x B n x 0max
T

max
T

d
T⋅ − + ⋅ =&& & &

or     && &δ δ+ ⋅ =∆ 0
where , , and   . && &&δ = n xT & &δ = n xT ∆ =

−B c
d

d max

max

To determine the effect of the disruptive  time component (>(t))
that acts normal to LV, the impulse response (h(t)) of (30) is
obtained: 

                         .                      (31)h(t) 1 1 h (t)`

= − =− ⋅

∆
Φ

∆
∆( ) ( )e tt

The deviation as a function of time may be computed as: 
δ ξ( ) ( )t t= ∗h(t)

where * denotes the convolution operation.  Since it was shown
in proposition-1 that motion will converge to xT and all dynamic
terms will tend to zero, >(t) may be bounded as: 

      ,                         (32)ξ(t) dt I
0

≤
∞

∫
therefore:          ,δ ξ( ) ( )t 1 t= ≤

∆ ∆
h (t) * I` max

where I and Imax are positive constants. By properly selecting a
value for ), the maximum deviation *m can be made arbitrarily
small. In other words the dynamic trajectory of (11) will closely
follow the kinematic trajectory of (4) and the spatial constraints
will be preserved.  It ought to be mentioned that since NADF is
by design made to be zero when motion is in accordance with
the guidance field LV, Bd can be made arbitrarily large without
slowing down the system. This fact is clearly reflected by the
simulation results (figure-24). 

V. Systems with External Forces
The NADF approach may be adapted for designing constrained
motion controller for mechanical systems experiencing external
forces (e.g. gravity). The dynamical equation of such systems
has the form:            

                               (33)D(x)x C(x, x)x G(x) F&& & &+ + =
where G(x) and F are vectors containing the external forces and
the applied control forces respectively. A controller consisting
of the gradient guidance field and a strong enough NADF (34)
has the ability to make the trajectory of the system  in (33)
closely follow the kinematic trajectory from an initial  starting
point (xo) to the target point xT, 
           .           (34)F B M(x, x) K V(x)d= − ⋅ − ⋅∇&

However, due to the presence of the external forces the
controller will not be able to hold the state close to the target
point and drift will occur (Figure-26). Arimoto and Miyazaki
showed that steady state error caused by the external forces may
be cancelled by using an integral control action [27].
Unfortunately, an integral action raises the order of the
mechanical system and could cause it to become unstable if it is
not tuned properly. The integrator also induces difficult to
manage transients in the response of the system. 

Here an alternative approach to using an integrator is suggested.
The suggested approach does not endanger stability and can
cancel the error caused by the external forces bringing the
dynamic trajectory arbitrarily close to the target point.  The
approach capitulates on the ability of the controller in (34) to
drive motion arbitrarily close to the target point. Once the



trajectory is close to the target, a passive clamping control
action is activated to trap the trajectory in a set close to the
target. After motion is trapped by the clamping control, an
iterative procedure is suggested for totally cancelling the error.
In the following the suggested clamping control is described

1. Clamping control: 
The effect of the clamping control (Fc) is strictly localized to a
hyper space of radius F surrounding the target point. If motion
is heading towards the target, this control component is inactive.
On the other hand, if motion starts heading away from the
target, the control becomes active and attempts to drive the
trajectory back to the target (Figure-13). 
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    Figure-13: The clamping control. 

A form of a clamping control that behaves in the above manner
is: 
                      (35)F (x,x) (x x ) ( x x ) (x (x x ))C T T

T
T& &= − ⋅ − − ⋅ −Φ Φσ

The strength of Fc is adjusted by multiplying it with a constant
Kc so that the steady state error is kept below a desired level (,).
Unlike the integrator, the use of a clamping control will keep the
mechanical system stable for any positive value of Kc. 

Proposition-3:
For the mechanical system in (33), a controller of the form: 
                       (36)F B M(x, x) K V(x) K F (x, x)d C C= − ⋅ − ⋅∇ − ⋅& &

can make             lim x(t) x
t T→∞

− ≤ <ε σ

and                 (37)lim x 0
t→∞

=&

provided that: 
1- K, Bd, and Kc are all positive, 

2-             Kc $ Fmax/,, 
                   x0SFF max G(x)max X

=

and                 .                            (38)Ωσ σ= − ≤{x: x x }T

3- a high enough value of Bd is selected so that at some instant
in time t` 

            (39)x(t`) xT− < σ
4- K is high enough so that the gradient field is capable of
directing the trajectory to SF

       X0S-SF     (40)K V(X) G (X) V(X)
V(X)

T⋅∇ >
∇
∇

Proof: Consider a Liapunov function candidate similar to the
one in (13) with a gravitational potential energy term (P(X))
added: 

                    (41)Ξ(x, x) K V(x) 1
2

x D(x)x P(x)T& & &= ⋅ + +

note that:     and    .   (42)G(x) P(x)= −∇ P(x) G(z) dz
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Differentiating (42) with respect to time we get: 
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2

x D(x)x x D(x)x x G(x)T T T T= ⋅∇ + + +

solving for  from equations (33, 34) and substituting the&&x
results in (43) we get: 
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Since Kc and Bd are  positive we have: 

,       (45)& &Ξ ≤ ∀0 x, x
where  .& &Ξ = =0 for x, x 0
Since we are assuming that K and Bd are selected high enough
so that the dynamic trajectory will follow the kinematic
trajectory and enter SF , the minimum invariant set to which the
trajectory is going to converge may be computed from the
equation: 
                               (46)G(x) K V(x) K F (x, x 0) 0C C+ ⋅∇ + ⋅ = =&

Since M(0)=1, and x0SF (i.e. M(F-*x-xT*)=1), equation (46)
becomes: 
                       (47)G(x) K V(x) K (x x ) 0C T+ ⋅∇ + ⋅ − =
As can be seen if condition 2 on KC is satisfied, the solution of
the above equation has to lie in the set S, ={x:*x-xT*<,}. This
means that the deviation of the end of the dynamic trajectory
from the target point should at most be ,. 
 

Another alternative to the use of integration is to reduce steady
state by increasing the gain of the gradient field (K) to a
sufficiently high level. This approach makes the transient
difficult to manage and increases the control effort. On the other
hand, selecting a high gain of the clamping control (KC) to
manage the steady state error will not cause the above problems.
This is due to the fact that this control component is designed to
be minimally intrusive affecting the system only when it is
needed. This is clearly demonstrated by simulation  (Figure-
27,28,29)
 

2. Iterative, blind error cancellation: 
While clamping control has the ability to reduce the steady state
error to an arbitrarily small value, sometimes it is desired that
this error be totally cancelled. Here, an iterative, blind
procedure is suggested  for error cancellation. The procedure
works by providing an alternative path ($) other than the error
channel (KPAe, where KP is a positive definite matrix) to supply
the control signal (u) that is needed to hold the robot at a
location xT (figure-14),  

          u = kAe + $       (48)
    

         Figure-14: The suggested scheme for iterative error cancellation.



 The fixed point iteration method [28] is used to evolve an
estimate of the control signal so that the steady state error is
driven to zero. This procedure is implemented using a switched
logic circuit with one memory storage element. One
implementation requires the circuit to have two inputs: the
control that is directly fed to the robot and velocity of the
robot’s coordinates in order to assess convergence (other means
to decide if the robot has converged may be used). There is only
one output consisting of the bias term $. The bias term is
iterativly determined as follows: when motion is about to settle
(i.e. *dx/dt*< ", where 0 < " <<1), the circuit measures the
value of u and assigns it to <. This value is kept till at another
instant i the event becomes true again. At the i’th instant we
have: 

u=G( xi),  $=G(xi-1), and  KPAe = KPA(xT-xi)        (49)

where xi is the position of the robot at the i’th settling instant.
Relating the above quantities using (48) yields the recursive
relation: 

          G( xi) = G(xi-1) + KPA(xT-xi) .       (50)

Proposition-4: 
The recursive relation in (50) has a fixed point at which: 

    (xT-xi) = 0            (51)

Proof:  Using Taylor series expansion around xT, we have: 

G(x) = G(xT) + J(G(xT))(x-xT)+ ....       (52)
         = G(xT) + F(x-xT)

where J is the Jacobian matrix of G and F is a function
containing the (x-xT) terms of the Taylor series. Substituting
(52) into (50) we get: 

            F(e`i) = F(e`i-1) - KPAe`i       (53)
where     e`i = - (xT - xi) .       (54)

Now let 0=F(e`) and Q be the inverse function of F in the
neighborhood of xT. Substituting Q in (53), we obtain the
recursive relation: 

KPAQ(0i) + 0i = 0i-1 .                      (55)

At a fixed point we have : 
          0i = 0i-1       (56)

or        KPAQ(0i) = 0.

Since KP is positive definite, i.e. it is not singular: 
           Q(0i) = e`i = (xi - xT) = 0       (57)

In other words:              xi = xT .

Proposition-5: 
For any positive definite KP, the fixed point x=xT is a stable
attractor fixed point, i.e. if xi is sufficiently close to xT, 

               (58)lim
i→∞

→x xi T

Proof:  In the close neighborhood of xT, equation (50) may be
written as: 

          J(G(xT))A(xi-xT) =J(G(xT))A(xi-1-xT) +KPA(xT-xi)       (59)
Notice that: J(G(xT)) = J(LP(xT)) = H(xT)       (60)

where H is the symmetric hessian matrix. Substituting (60) in

(59) yields the equation: 

[KP + H(xT)]Aei = H(xT)Aei-1       (61)
where          ei = (xT-xi) . 

Since KP is positive definite and H is symmetric, they are
simultaneously diagonalizable into: 
 

    K=UUT and H=U7UT       (62)
 

where U is a nonsingular matrix and 7 is a diagonal matrix with
non-negative elements 8l, l=1,..,N, see [29, page-86].Using the
above decomposition (61) may be written as: 
 

  U(I+7)UTAei = U7UTAei-1       (63)
 

Using the transformation qi = UTAei ,
we have qi = AAqi-1       (64)

where
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It is well-known that the solution of (64) is: 
       qi = AiAq0       (66)

Since

                  l=1,..,N       (67)0
1

1≤
+

<
λ
λ
l

l

we have:          .       (68)lim lim
i i→∞ →∞

= ⋅ →q U e 0i
T

i

Since U is a nonsingular matrix 

               (69)lim
i→∞

→e 0i

or               (70)lim
i i→∞

→x xT

VI. Results
In this section several simulation examples are presented to
demonstrate the capabilities and versatility of the NADF
approach. 

1. Point mass in a cluttered environment: 
The gradient field in figure-2 is augmented with NADF  instead
of the linear, viscous, dampening forces. The combination of
both gradient field and NADF is used to steer a 1Kg mass from
a start point to a target point. An excessively high dampening
coefficient, Bd=10,  is used.  The trajectory of the mass is shown
in figure-15, and the mass distance to the target, D(t),  as a
function of time is shown in figure-16. As can be seen, the
kinodynamic trajectory of the mass is almost identical to that
marked by the gradient field (kinematics only) in figure-3.
Moreover, motion of the mass is almost six times faster than its
viscous dampening counterpart shown in figure-7 with a settling
time (TS) of about 12 seconds compared to 72 seconds.  Figure-
17 shows the corresponding radial speed along the mass
trajectory and figure-18 shows the control signal (X-Y force
components). 



Figure-15: Trajectory, NADF, Bd=10. 

Figure-16: Distance to target versus time, NADF. 

Figure-17: Radial speed versus time, NADF. 

Figure-18: x and y control force components , NADF.

2. Point mass with upper speed limit: 
As can be seen from figure-17, the radial speed of the mass
continuously increases prior to reaching the target. This is a
result of NADF not having any friction forces along the radial
component of the trajectory. While a fast response is required,
measurers to prevent motion from racing out of control are
desirable. Placing an upper limit on speed may be done using 

  Figure-19: Trajectory - speed limit imposed. 

Figure-20: Distance to target versus time - speed limit imposed.

Figure-21: Radial speed of the trajectory - speed limits imposed. 

Figure-22: x and y control force components for the point mass with
constraints on speed. 

the approach in [4]. In  figure-19 a 5 m/sec speed limit is
imposed on the trajectory. As can be seen from figure-21, the
radial speed keeps increasing and stops at the imposed limit.
While limiting speed causes the settling time to increase from
12 seconds to 16 seconds (figure-20), it also causes a drop in the
control effort (figure-22). 



3. Settling time - a comparison: 
NADF and linear viscous dampening exhibit fundamentally
different behavior as far as convergence is considered. The
settling time for the point mass with no constraints on speed
example is drawn in figure-23 as a function of the linear viscous
friction coefficient (B).  As can be seen, the TS-B relation is
convex with one value for B corresponding to a global minimum
of TS. This is expected since for low B high oscillations will
prevent motion  from  quickly settling in the 5% zone around
the target. On the other hand, a high value for B reduces the
oscillations by slowing down the response delaying the entrance
to the 5% zone.  

     Figure-23: TS versus B for linear dampening.

The relation between TS and the coefficient of NADF (Bd) is a
rapidly and strictly decreasing one (figure-24). Similar to the
linear case, for a low value of Bd high oscillations will prevent
the quick capture of the trajectory in the 5% zone around the
target. As the value of Bd increases, NADF, by design, only
impedes the component of motion along the coordinate field
tangent to the gradient guidance field (figure-25).  This
component does not contribute to convergence and it only
causes delay in reaching the target. Since NADF attenuates  this
and only this component of motion leaving the motion along the
gradient field unaffected, the delay in reaching the target drops
as Bd increases yielding a strictly decreasing profile of the TS-Bd
curve. 
         

Figure-24: Settling time versus NADF coefficient. 

The TS versus the coefficient of dampening profile is important.
It determines the ability to tune the controller so that the
specifications are met. In tuning the controller there are two
requirements: it is required that the maximum spatial deviation
(*m) between the kinematic and the dynamic path be as small as
possible so that the constraints are upheld. It is also required that
the settling time be as small as possible. The first requirement

is achieved by making the coefficient of dampening high
enough. In the linear  viscous dampening case one can only
strike a compromise between TS and *m. For the NADF case this
compromise is not needed since both TS and *m are strictly
decreasing as a function of Bd. 

Figure-25: Motion along gradient lines contribute to convergence, motion
along tangent liens causes only delays.

4. Point mass with external forces 
As mentioned before, the NADF approach may be adapted to
work with second order systems experiencing external forces
using the suggested clamping control.  In this example a point
mass with constant external forces acting on it having the
system equation in (71) is controlled using a gradient field and
NADF. 
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As can be seen from figure-26, for a sufficiently high Bd the
controller will succeed in driving the mass to the target and
avoiding the obstacles. However, when the target is reached,
drift caused by the external forces occur. 

Figure-26: Trajectory, NADF - external force present.

In figure-27 a clamping control similar to the one in (35) is
added with K=1, Bd=10, KC=10. As can be seen, the controller
was able to hold the trajectory near the target point relying only
on a loose, upper bound estimate of the drift. Despite  the high
value of KC , the trajectory settled in an overdamped manner
with no oscillations taking place. The distance versus time curve
and the Fx, Fy control forces are shown in figures-28, 29
respectively.



The sliding mode (SM) control approach suggested by Guldner
and Utkin in [21] for converting a gradient guidance signal in to
a control signal has the ability to handle systems with external
forces. In this approach a sliding surface (S) is defined as: 

         .       (72)S x v t V
Vd= −
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Using this surface a control signal is constructed as: 

       (73)F F S
S0= −

Figure-27: Trajectory, NADF and clamping - external force present.

Figure-28: Distance to target versus time - NADF and clamping - external
force present.

Figure-29: x and y control force components, NADF and clamping - external
force present.

where vd and Fo are the maximum allowable speed and control
forces respectively. The sliding mode control is applied to the
point mass with drift in (71).  The parameters of the sliding
surface are set so that a settling time of 6 sec similar to the one
using NADF and clamping control is obtained. Fo is set to
obtain a maximum control effort of 100 N. The trajectory is
shown in figure-30, the distance to the target versus time is in
figure-31. The control forces are shown in figures-32,33.
Compared to the NADF approach with clamping the trajectory
obtained using the SM approach is a little shaky and
experiences some oscillations near the target. However, the
biggest difference has to do with the quality and magnitude of
the control signals used by both approaches. 

Figure-30: Trajectory - sliding mode control. 

Figure-31: Distnace to target versus time - sliding mode control.

Figure-32- y force control component - sliding mode control.



Figure-33: x force control component - sliding mode control.

5. Point mass with external forces and sensor noise: 
The NADF is robust to the presence of sensor noise. The
example in figure-34 of a point mass with drift is repeated with
sensor noise causing errors in localizing the boundary of the
environment. The trajectory, distance to the target  versus time
curve, and control forces are shown in figures-35,36.  Despite
the considerable amount of noise and the fact that the raw
sensory data was used in the synthesis of the controller without
any processing, the trajectory, convergence characteristics and
control signal  remained reasonably well-behaved. 

Figure-34: Sensor noise did not have too much effect on the trajectory. 

Figure-35: Distance to target versus time (sensory noise). 

Figure-36: x and y control force component with sensor noise present. 

6. The narrow corridor effect: 
In his seminal work that appeared in the mid-eighties [9] Khatib
suggested that the sensors of a robot be directly coupled to its
servo loops. The coupling was achieved via potential fields. The
result was a very high increase in the speed at which the robot
responds to the contents of the environment. 

In the early nineties, Koren and Bornestien reported what they
referred to as a serious and inherent deficiency in Khatib’s
method [15]. They found that if an autonomous robot that is
guided by the potential field method is operating in a narrow
corridor, the robot could behave erratically, oscillating in a
sustained manner between the two walls of the corridor. The
artifact was called the “narrow corridor effect”. The
implications of such a finding are significant. Since a service
autonomous robot will have to pass through corridors in order
to deliver mail in offices, laundry in hospitals, or parts in
factories, the use of potential field-based planners is
immediately ruled out and alternatives  should be sought. 

While this author agrees with [15] that the narrow corridor
effect is a serious artifact, he disagrees with it being an inherent
deficiency in the potential field approach. This artifact is caused
by  a misunderstanding of  the dual role the gradient of a
potential field plays as both a control and guidance provider.
This misunderstanding led to an improper coupling between the
gradient field and the robot’s servo loops that, among other
things, caused the narrow corridor artifact. The NADF approach
suggested in this paper takes this fact into account and properly
couples the gradient field to the servo loops of a robot totally
eliminating the narrow corridor effect. 

A  mobile robot utilizing Khatib’s approach behaves normally
in an empty corridor (figure-37). However, its behavior changes
dramatically if an obstruction is present along its way. The
presence of the obstruction seems to ignite sustained oscillations
in the trajectory of the robot (figure-38).



Figure-37: Motion proceeds normally when the corridor is empty. 

Figure-38: The presence of an obstruction triggers sustained oscillations. 

In figure-39 the coefficient of dampening is increased ten times
(from B=.3 to B=3) in order to get rid of the oscillations. As can
be seen, remaining strong transients are  clear. In the previous
case, the robot was able to travel 25 meters in 10 seconds. The
increase in dampening cut the travel distance  to 4 meters in 10
seconds making the robot impractically slow. 

Figure-39: Increasing linear dampening slowed down the system and did not
eliminate transient. 

The linear viscous dampening force is replaced by NADF. The
dampening coefficient used is Bd=5 (figure-40). As can be seen,
the robot responded well to the presence of the obstruction with
little overshoot taking place. Not only a significant improvement
in transients was achieved, the robot, despite the large value of
the dampening coefficient,  became more agile covering more
than twice the distance in the linear dampening case (figure-37).
 A significant increase of Bd to 30 seems to have no effect on
the distance the robot is able to travel (figure-41). 

Figure-40: NADF significantly reduced transients and speeded  up motion. 

Figure-41: Increasing Bd did not slow down motion.
 
 In figure-42 robustness  of the approach to the presence of
sensor noise is tested. A wideband noise that is uniformly
distributed between (-0.5, 0.5) is added to the sensor causing
uniform jitters in the registered reading of the wall. Same as
figure-41, a Bd=30 is used. As can be seen, the effect of this
relatively large sensor noise is almost negligible on the
trajectory of the robot where a steady path was still maintained
and the travel distance was not affected. 

            Figure-42: Same as figure-40 but with sensor noise added.

In figure-43 the ability of the NADF control to handle
emergency braking of motion is tested. A barrier is placed in the
path of the robot. As can be seen, the control was able to brake
motion in a well-behaved manner. Figure-44 shows the control
forces. Figure-45 demonstrates the ability of the controller to
handle multiple obstructions.

   

Figure-43: Robot braking motion to avoid collision. 

  

Figure-44: x and y components of the braking force. 



Figure-45: he robot passing through a multi-obstruction environment. 

7. The multi-agent case: 
NADFs may also be applied for the multi-robot case. In [22,30]
a complete, decentralized, multi-agent planner was suggested
considering the kinematics of the robots only (figure-46).

         

Figure-46: Self-organization  using the vector-harmonic potential  approach.
  

 Figure-47  shows the paths for two massless robots that are
trying to exchange positions. When mass is added (1Kg each),
the planner totally fails (figure-48).  
 

Figure-47:Two robots exchanging positions, kinematics only. 

    

     Figure-48: Same as figure-14, but with 1kg mass added to each robot.

In figure-49 linear dampening is added to control the inertial
forces (B=1). Figure-50 shows the distance to target of robot-1
as a function of time. It took the robot about 13 seconds to reach
its target. In figure-51, NADF was used (Bd=10). As can be seen
from the distance - time profile in figure-52, it took robot-1 only
two seconds to reach its target. 

 

Figure-49: Linear dampening added to manage inertia, B=1.

Figure-50: Distance to target versus time for robot-1 in figure-16. 
               

Figure-51: NADF added to manage inertia, Bd=10. 
            

        Figure-52: Distance to target versus time for robot-1 in figure-52.



8. Iterative error removal: 
The iterative procedure to remove the steady state error
suggested in the previous section is tested using a simple
pendulum (figure-53) with concentrated mass M=1Kg and
length L=1M. The dynamic equation of the pendulum is: 

       (74)M L M g u⋅ ⋅ + ⋅ ⋅ =&& sin( )Θ Θ
where g is the acceleration constant and u is the external applied
control torque. 

                    

            Figure-53: A simple pendulum. 

A simple controller with position and velocity feedback (75) is
used to move the pendulum from 1=0 to 1=B/2. 

                           (75)u K B= − ⋅ − ⋅Θ Θ&
 
             

       Figure-54: Steady state error caused by weight of pendulum. 

As can be seen from figure-54, the weight of the pendulum
causes significant steady state error. In order to remove the
error, the switching circuit suggested in V.2 is added to the
controller. Different switching thresholds are used to assess the
sensitivity of the procedure to the presence of transients (figure-
55). As can be seen, the error was eliminated in all cases.
Although the iterative error cancellation procedure was
designed to be used when transients fade away and motion
settles, simulation shows that the procedure exhibits little
sensitivity to the presence of transients that enables us to loosely
choose the threshold ". Actually, the simulation reveals that
better results in terms of having a lower settling time could be
obtained if switching is carried out before motion completely
settles. 

           
In figure-56 the effect of the forward gain on the speed of
convergence is shown. As expected, the higher the forward gain
is the faster the system converges to its target.               

     

Figure-55: Error cancellation using switching circuit - different thresholds.   
      

                Figure-56: Effect of forward gain on convergence. 

VII. Conclusions
In this paper the capabilities of the HPF approach are extended
to tackle the kinodynamic planning case. The extension is
provably-correct and bypasses many of the problems
encountered by previous approaches. It is based on a novel type
of nonlinear, passive dampening forces called  NADFs. The
suggested approach enjoys several attractive properties. It is
easy to tune; it can generate a well-behaved control signal; the
approach is flexible and may be applied in a variety of
situations, it is provably-correct; it is resistant to sensor noise;
it does not require exact knowledge of system dynamics, and it
can tackle dissipative systems as well as systems under the
influence of external forces. 

It ought to be emphasized that most of the problems attributed
to the potential field approach are a result of the
misunderstanding of the dual role a potential field plays as a
motion actuator and a guidance provider. The NADF approach
is a step forward in taking both of these roles into account. 
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Appendix
A. Definition: Let V(X) be a smooth ( at least twice
differentiable) scalar function (V(X): RN 6 R). A point Xo is
called a critical point of V if the gradient vanishes at that point
(LV(Xo)=0); otherwise, Xo is regular. A critical point is Morse,
if its Hessian matrix (H(Xo)) is nonsingular. V(X) is Morse if
all of its critical points are Morse [24]. 



B. Proposition:  If V(X) is a harmonic function defined in an N-
dimensional space (RN) on an open set S, then the Hessian
matrix at every critical point of V is nonsingular, i.e. V is
Morse. 

Proof: There are two properties of harmonic functions that are
used in the proof: 
1- a harmonic function (V(X)) defined on an open set S
contains no maxima or minima, local or global in S. An extrema
of V(X) can only occur at the boundary of S, 

2- if V(X) is constant in any open subset of S, then it is constant
for all S. Other properties of harmonic functions may be found
in [26]. 

Let Xo be a critical point of V(X) inside S. Since no maxima or
minima of V exist inside S, Xo has to be a saddle point. Let
V(X) be represented in the neighborhood of Xo using a second
order Taylor series expansion:
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Since Xo is a critical point of V, we have: 
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Notice that adding or subtracting a constant from a harmonic
function yields another harmonic function , i.e. V` is also
harmonic. Using eigenvalue decomposition [25]: 
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where U is an orthonormal matrix of eigenvectors, 8’s are the
eigenvalues of H(Xo), and >=[>1 >2 ..>N]T = U(X-Xo). Since V`
is harmonic, it cannot be zero on any open subset S; otherwise,
it will be zero for all S, which is not the case. This can only be
true if and only if all the 8i’s are nonzero. In other words, the
Hessian of V at a critical point Xo is nonsingular. This makes
the harmonic function V also a Morse function. 

The navigation function defined in [13] is a special case of a
harmonic potential field. According to [13] a navigation
function must satisfy the following properties: 

1- it is smooth (at lest C2), 
2- it contains only one minimum located at the target point, 
3- it is a Morse function, 
4- it is maximal and constant on '. 

A harmonic function (V) is C4 and Morse. Harmonic  functions
are extrema-free in S. Their maxima and minima can only
happen at the boundary of S. In the harmonic approach ' and
the target point (XT) are treated as the bounary of S. Through
applying the appropriate boundary conditions, the minimum of

V is  forced to occur on XT. Also, by the application of the
Drichlet boundary conditions, the value of V is forced to be
maximal and constant at '. The Drichlet condition (constant
potential on the boundary) is one of many settings used in
constructing a harmonic potential that may be used for
navigation.
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