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Integrated Task and Motion Planning for Multiple Robots under
Path and Communication Uncertainties

Bradley Woosley and Prithviraj Dasgupta

Abstract—We consider a problem called task ordering with
path uncertainty (TOP-U) where multiple robots are provided
with a set of task locations to visit in a bounded environment,
but the length of the path between a pair of task locations is
initially known only coarsely by the robots. The objective of the
robots is to find the order of tasks that reduces the path length
(or, energy expended) to visit the task locations in such a scenario.
To solve this problem, we propose an abstraction called a task
reachability graph (TRG) that integrates the task ordering with
the path planning by the robots. The TRG is updated dynamically
based on inter-task path costs calculated using a sampling-based
motion planner, and, a Hidden Markov Model (HMM)-based
technique that calculates the belief in the current path costs
based on the environment perceived by the robot’s sensors and
task completion information received from other robots. Wethen
describe a Markov Decision Process (MDP)-based algorithm that
can select the paths that reduce the overall path length to visit the
task locations and a coordination algorithm that resolves path
conflicts between robots. We have shown analytically that our
task selection algorithm finds the lowest cost path returnedby the
motion planner, and, that our proposed coordination algorithm is
deadlock free. We have also evaluated our algorithm on simulated
Corobot robots within different environments while varyin g the
number of task locations, obstacle geometries and number of
robots, as well as on physical Corobot robots. Our results show
that the TRG-based approach can perform considerably better
in planning and locomotion times, and number of re-plans, while
traveling almost-similar distances as compared to a closest first,
no uncertainty (CFNU) task selection algorithm.

I. I NTRODUCTION

Multi-robot task planning and path planning are impor-
tant problems in multi-robot systems when robots have to
perform tasks at different locations within an environment.
The problem is encountered in many applications of multi-
robot systems such as automated surveillance [1], robotic
demining [2], and automated inspection of engineering struc-
tures [3]. As a motivating example, we consider a scenario for
performing standoff detection of explosives or landmines using
autonomous robots where multiple robots are provided with a
coarse map containing locations of objects of interest. The
robots are required to autonomously plan their paths to get in
proximity of each object of interest so that they can analysethe
object with their detection sensors. For realizing this, the main
computational problem is to calculate a suitable task plan or
ordering among the tasks for each robot so that a performance
metric, such as the energy expended or the time required by
robots to perform the tasks gets reduced. Researchers have
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Fig. 1. (a) Scenario showing two robots and six tasks, each task needs
1 robot to get completed, (b) Tasks selected by robots using CFNU
algorithm; red-marked edges are unnavigable, blue dashed edges
show re-calculated, collision-free paths, (c) Our proposed algorithm
calculates a different task schedule for each robot that results in
lower path costs by including uncertainty in path cost and availability
in real-time into the task schedule calculation. Dotted edges show
the task reachability graph (TRG) edges not followed by eachrobot
due to higher expected costs; dashed edges are collision-free paths
calculcated by the motion planner.

proposed Multi-robot Task Allocation (MRTA) techniques [4]
as well as multi-robot path planning techniques [5] to address
this problem. However, on one hand, most MRTA techniques
assume that the costs or distances between the task locations
are fixed and known to all the robots as soon as they become
aware of the task. This criterion might not be valid if the
robots have a coarse map of the environment and the path cost
between tasks can change dynamically as the robots discover
obstacles in the environment, or if due to communication
constraints, the delivery of a task completed message is
delayed. On the other hand, path planning techniques account
for dynamically discovered obstacles but they focus mainlyon
finding collision and conflict-free paths for robots and do not
adjust the ordering between the waypoints or task locations
that are being visited by the robots. Keeping a fixed order
between tasks might result in unnecessary longer paths to
complete the task schedule, especially when a dynamically
updated path around an obstacle could induce a shorter task
schedule.

To address the above problem, it would make sense to
investigate techniques that have a closer integration between
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the task and motion planning operations of robots. Researchers
have proposed the Simultaneous Task and Motion Planning
(STAMP) problem to investigate this problem in the context of
robotic manipulation [6]. Our work advances this directionof
research by proposing a framework called Task Ordering under
Path Uncertainty (TOP-U) to address the STAMP problem in
the context of a search and exploration scenario using wheeled,
mobile robots. An example scenario shown in Figure 1 il-
lustrates an example of the reduced time taken and distance
traveled when robots use our proposed algorithm, in contrast
with Closest First No Uncertainty (CFNU) algorithm used for
task selection, that does not consider uncertainty in path costs
and availabilities in its calculations. The main contributions
of our paper are the following: We present a formalization
of the problem called task ordering with path uncertainty
(TOP-U), where multiple robots have to visits tasks whose
locations are uncertain due to the presence of obstacles in
the environment, while reducing the distances traveled be-
tween the tasks. We propose a data structure called a task
reachability graph (TRG) that is used to model the problem
and a Markov Decision Process (MDP)-based algorithm that
each robot uses to dynamically calculate its task schedule
in real-time using the TRG. We also propose a distributed
coordination algorithm for resolving deadlock scenarios due
to path conflicts between multiple robots using our algorithm.
We have proved analytically that our task scheduling algorithm
is optimal and the coordination algorithm is deadlock free.We
also provide extensive experimental results on simulated and
physical Coroware Corbot robots, with different number of
robots and tasks within environments with different obstacles
geometries and task distributions. Our results show that our
proposed TRG-based approach could perform up to51% better
in planning and locomotion times with20% fewer replans,
while traveling similar distances as compared to a closest first,
no uncertainty (CFNU) selection algorithm. The rest of our
paper is structured as follows: in the next section, we discuss
existing research on MRTA and motion planning techniques. In
Section III, we formalize the TOP-U problem and describe the
robot task scheduling and multi-robot coordination algorithms.
Sections IV and V describe our analytical and experimental
results and finally we conclude.

II. RELATED WORK

Motion and task planning have been important problems
in robotics. Several approaches for solving them have been
proposed in literature over the past two decades, although
these problems have largely been treated separately. In motion
planning the objective is to find a collision free path for a robot
so that it can navigate within its environment [7]. Sampling-
based motion planners like probabilistic roadmap (PRM) [8]
and Rapidly-exploring Random Trees (RRT) [9] have been
used widely for motion planning. Recently, researchers have
proposed extensions to these techniques by using methods to
reduce the time required to calculate the paths and address
the problem of moving through narrow passages [10], [11],
[12], and handling uncertainty in obstacle locations [13],[14].
Researchers have also investigated the problem of coordinating

the paths between multiple robots [15], [5] where robots
exchange their individual paths with each other and mutually
exclusive paths are calculated for each robot in the robots’joint
configuration space. To reduce the complexity of planning
in the joint configuration space, a lightweight protocol was
proposed in [16] where robots iteratively make way for one
robot at a time to reach its goal until a consistent set of
maneuvers have been determined for all robots to reach their
goal. We use a complementary approach in this paper that
allows robots to mostly calculate path plans individually in
their local configuration space but if a set of robots get within
close proximity of each other they use a conflict resolution
algorithm to find collision free paths. Path planning in dynamic
environments where the cost between the source and goal
locations can change abruptly was addressed in [17], [18]
using Markov Decision Processes (MDPs). In our proposed
approach, path costs are also dynamically updated using the
robots’ sensor information, and the updated path costs are used
immediately to recalculate the task schedule using an MDP to
allow for switching between tasks to reduce the cost of the
total path length to visit all the tasks.

The problem of finding a suitable ordering of operations
or tasks to perform by multiple robots has been researched
as the Multi-Robot Task Allocation (MRTA) problem [19],
excellent reviews of MRTA are available in [20], [4]. Most
of the approaches focus mainly on finding a suitable ordering
of tasks while assuming appropriate robot motion planning
techniques. Recently, researchers have addressed more tightly
coupled task and motion planning under the simultaneous task
and motion planning (STAMP) problem. The proposed solu-
tion techniques combine symbolic task planning with control
based techniques [21], [6], [22] for a mobile manipulation
problem where task interdependencies form a critical aspect
and reasoning using symbolic task planning is critical to
determine the task precedence. In contrast, for our setting,
reducing the cost of the task schedule is more critical than the
order of tasks, and our algorithm uses probabilistic methods to
quickly incorporate robots’ perceptions about the environment
into its plan.

III. TASK ORDERING WITH PATH UNCERTAINTY

We consider a set of wheeled, mobile robots,R, deployed
within an environment. Robots are capable of localizing
themselves within the environment and can also communicate
wirelessly with each other. The environment contains a set
of tasks,T . Robots have to visit the locations of tasks to
perform operations required to complete the tasks. Each task
can require visits by one of more robots to get completed; the
information about how many robots are required to complete
a task is provideda priori to the robots. We consider tasks
that are loosely coupled and all robots required to complete
a task do not necessarily need to visit the task’s location at
the same time. Each robot is initially aware of the locations
of the tasks, but does not know the exact paths between the
tasks1 or the obstacles along those paths. To represent this path

1In the rest of the paper, we have referred to task locations astasks for
legibility.



uncertainty, each robot uses a task reachability graph (TRG),
a fully connected graph with task locations as its vertices.
Formally, a TRG is denoted byTRG = (V,E,C, P, t) where:

• V (t) = {v
(t)
i ∪ vcurr} is the vertex set andvcurr is the

robot’s current location. Eachv(t)i corresponds to a task
location the robot is aware of at timet

• E(t) = {e
(t)
ij : e

(t)
ij = (v

(t)
i , v

(t)
j )} is the edge set

connecting the vertices in the TRG
• C(t) = {c

(t)
ij } is the expected distance or cost expended

by a robot to traverse the path underlying edgeeij .
ccurr,i denotes the expected cost from the robot’s current
location (vcurr) to vi

• P (t) = {p
(t)
ij } is the probability that edgee(t)ij is not

available

Owing to path uncertainties between task locations (TRG
vertices),C(t) andP (t) are estimated from perceived sensor
data and they get updated by the robot as it discovers obstacles
and task availabilities while navigating between tasks. Let S :
V → V denote a function that returns an ordering over the
set of tasks. Each robot maintains its own TRG and plans its
path using its TRG. The problem facing each robot to find a
suitable order for visiting the tasks is specified by the Task
Ordering under Path Uncertainty (TOP-U) problem below:

TOP-U Problem. GivenTRG = (V,E,C, P, t) represent-
ing the set of tasks, inter-task costs and task availabilities at
time t, determine a scheduleS∗(V )(t) that induces an ordering
(v1, v2, v3...) over the tasks, given by:

S∗(V )(t) = argmin
S(V )(t)

∑

(vi,vj)

∈ S(V )(t)(1− p
(t)
ij )c

(t)
ij

subject to:

0 ≤ p
(t)
ij ≤ 1

∑

(vi,vj)∈S(V )(t)

(1− p
(t)
ij )c

(t)
ij ≤ B

(t) (1)

whereB(t) is the battery available to a robot at current time
t. Note thatS∗(V )(t) represents the path through the TRG
with the minimum expected cost, weighted with availability.
The second constraint above ensures that the robot is able to
complete this path with its currently available battery. Note
that{V } can change dynamically for a robot as tasks can get
completed by other robots. An instance of the TOP-U problem
corresponds to the well-known traveling salesman problem
(TSP) [23]. However, solving the conventional TSP might not
guarantee an optimal path as edge costs (cij) could change
dynamically as robots discover previously unknown obstacles
while traveling between tasks, while edge availabilities (pij)
could change dynamically because some tasks got completed
by other robots. To address the dynamic nature of the problem,
we propose a Hidden Markov Model (HMM)-based method
to update the edge availabilities, and then use the updated
information within an MDP to find the desired ordering of
the TRG vertices to solve the TOP-U problem. In the rest of
the paper, for legibility, we have omitted the time notation
from the TRG parameters, assuming it to be understood from
context.

A. Dynamically Updating Edge Cost and Availability

Edge Cost Update.TRG edge costs correspond to the
distance that the robot requires to travel to reach from one
TRG vertex to another. Each edge cost is initialized to the
Euclidean distance between the pair of TRG vertices forming
the edge. However, if there exist previously unknown obstacles
in the path between a pair of TRG vertices, then the distance
the robot travels might exceed the Euclidean distance between
the vertices. To accommodate the path distance uncertainty,
the robot uses a probabilistic roadmap(PRM)-based path plan-
ner [14] to dynamically update the expected edge cost. The
PRM planner works by first generating a set of sampled
pointsR from the robot’s configuration space. It then uses the
available information about obstacles perceived by the robot
from its current locationvcurr to determine path segments
that are close to obstacles and might result in collision with
high probability; such segments are associated with a high
penalty value. Following [14], the TRG edge cost calculations
are given by the following steps.

1) Calculate the cost of each path segment that connects
any two sampled points(ρ1, ρ2) ∈ Qfree ⊆ ℜ2 (Qfree

is the free space in the environment) as:

costρ1, ρ2 = pcollρ1,ρ2
penalty + (1− pcollρ1,ρ2

)dist(ρ1, ρ2),

where pcollρ1,ρ2
the probability of collision of segment

(ρ1, ρ2) based on its distance to perceived obstacles,
penalty is an arbitrary large number used to discourage
paths that have a high probability of collision and
dist(ρ1, ρ2) is the Euclidean distance betweenρ1 and
ρ2

2) Calculate the physical pathρij corresponding to TRG
edgeeij = (vi, vj) as a sequence of path segmentsρ =
(ρ1, ρ2)start...(ρ1, ρ2)end, given by:

ρij = argmin
ρ

∑

(ρ1,ρ2)∈ρ

costρ1, ρ2

s. t.: ρ1start
= vi, ρ2end

= vj

3) Calculate the expected costcij for TRG edgeeij as the
sum of the costs of path segments in pathρij calculated
in step2 above, as:

cij =
∑

(ρ1,ρ2)∈ρij

costρ1, ρ2 (2)

Edge Availability Update. In our scenario, tasks are
completed in a distributed manner by different robots and
a task (or, TRG vertex for a robot) might get completed
by other robots before the robot reaches it. When a task is
completed, the last robot visiting the task broadcasts a task
completion message to all other robots. Each robot then needs
to remove the TRG vertex for the task from its TRG. Because
message communication in unstructured environments might
be unreliable, task completion message might be lost due to
noisy communication, or, the robot broadcasting the message
might be outside the communication range of some robots.
To handle this uncertainty, it would be useful if the robot
could infer whether the task was still available or not, from
information related to the task’s availability that it can directly
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Fig. 2. Temporal Bayesian network used in the HMM for determining the
suitability of path length to a task.

observe. For our problem, we assume that this observable
information related to task availability is the distance orpath
length remaining to reach the task - if the path length is
very large, it could be due to the task becoming unavailable2.
One caveat to using the path length as an indicator of task
availability is that it is also affected by obstacles along the
path; it changes dynamically as the robot encounters obstacles
while going towards the task. The problem facing the robot
then is to observe the path length values over the recent past
and infer from it whether the task is still available.

To model this inference problem, each robot uses a Hidden
Markov Model (HMM) [24]; one HMM, HMMij, is used
to update the availability of each TRG edgeeij . The crucial
HMM variable is Path Length Long (PLL) that evolves
temporally as the robot encounters static obstacles (SO) and
mobile obstacles (MO) on its range sensor, or, receives a
task completion message called task not available (TNA), as
shown in Figure 2. VariablesSO,MO andTNA are binary-
valued and they too evolve with time as the robot moves
towards the task and encounters obstacles, or receives task
completion message. The temporal transition model is given
in Figure 2 via the arrows moving between dashed boxes,
the sample temporal probabilities of these variables are also
provided. The dependencies between these variables affecting
PLL are captured in each slice of the HMM as shown inside
the dashed boxes in Figure 2. Because each of the variables
affecting PLL - static obstacles, mobile obstacles and task
not available - do not affect each other and can be considered
as independent of each other, their probabilistic effect on
PLL can be combined relatively easily from the individual
inhibition probabilities for these variables using a noisy-OR
model. An example noisy-OR based probability calculation
for PLL is shown alongside Figure 2. We assume that the
environment has a98% communication success rate, or2%
communication failure rate, leading to the probability value

2Note that when a TRG edge is removed, it can be looked upon as the
edge length becoming infinitely large.

given in Figure 2.
To solve the problem of calculating the probability of a task

being still available fromPLL values, the robot first calculates
the observed value ofPLL variable for the current time step.
ForHMMij, the observed value of variablePLLij for current
time stept is determined by assuming thatPLL is very large
when it isΓ times more than the minimum cost of any edge
in the current TRG, as given by the equation below:

PLL
(t)
ij =

{

FALSE if c(t)ij ≤ Γmin({c
(t)
ik : ∀k ∈ V })

TRUE otherwise
(3)

whereΓ is a user defined constant that is based on system
and environment factors such as battery remaining, terrainand
navigation conditions. The sequence of values forPLL

(1...t)
ij

is recorded, and used to estimate the probability of the state
variableTNA

(t)
ij , given by p(TNA

(t)
ij |PLL

{1:t}
ij ), using the

Forward-Backward algorithm [24]. The forward stage is given
by the equation:

P (X(t+k+1)|PLL
{1:t}
ij ) =

∑

TNA
(t+k)
ij

(

P (X{t+k+1}|TNA
(t+k)
ij )

P (TNA
(t+k)
ij |PLL

{1:t}
ij )

)

and the backwards stage is given by:

P (PLL
{k+1:t}
ij |X(k)) =

∑

TNA
(k+1)
ij

(

P (PLL
(k+1)
ij )|TNA

(k+1)
ij )

P (PLL
{k+2:t}
ij |TNA

(k+1)
ij )P (TNA

(k+1)
ij |X(k))

)

whereX(t) is the combination of the set of state variables,
MO,SO and TNA at time t, PLL

{1:t}
ij is set of evidence

(PLL observations) from time1 throught, andTNA
(t)
ij is the

value of the variableTNAij at timet. Finally, to integrate the
calculated value ofTNAij with the TRG edgeeij , we model
the task availability as probabilistic availabilitypij of TRG
edgeeij . pi,j gets a value1 when the robot is certain that the
task is available and there exists a finite distance path to reach
it, and, 0 when the path to reach the task is infinitely large
meaning the task is not available; intermediate probabilities
represent the uncertainty of the task not being completed by
other robots and still remaining available to the robot.pij is
calculated by normalizing Equation 3, given by:

pij =
p(TNAij |PLL{1:t})

∑

j p(TNAij|PLL{1:t})
. (4)

The normalization ensures that the robot has a probability1
of leaving TRG vertexvi through at least one of its incident
edges.

B. TOP-U Solution using Markov Decision Process

Following the update of the edge costs and availabilities,
the robot has to select the TRG edge with the minimum
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Fig. 3. State diagram showing the operation of a robot using the different
algorithms proposed.

1 TRGTaskSelect(TRG =< V,E, P, C >)
Input : TRG: task reachability graph

2 Build initial PRM roadmap
3 Initialize MDP with current TRG information
4 Determine paths in robots configuration space using

PRM planner between all TRG edgeseij = (vi, vj) ∈ E

5 vcurr ← current position of robot
6 while V is not empty AND battery available for next

vertexdo
7 v′ ← Next task as per MDP policy
8 path← PRM path betweenvcurr andv′

9 while v′ not reacheddo
10 Updatevcurr using localization system
11 Broadcastvcurr to other robots
12 //avoid collisions w. other robots (Alg. 3)
13 collision← coordinatePath(TRG, v′)
14 if collision = FALSE then
15 if (taskCompleted message recd. from anothe

robot) OR (new obstacle detected in robot’s
path) then

16 (v′, path)← updateTRG(TRG, v′)
(Alg. 2)

17 end
18 Move along current segment ofpath
19 end
20 end
21 Removev′ from V //reachedv′

22 Communicate completion of task to all other robots
23 end

Algorithm 1: Algorithm to select a task in the TRG using an
MDP-based policy.

1 updateTRG(TRG =< V,E, P, C >, v′)
Input : TRG: task reachability graph;v′: destination

TRG vertex
Output : v: destination TRG vertex,path: path to

destination TRG vertex
2 updateV removing completed tasks, if any
3 for (vi, vj) ∈ E do
4 path′ ← replan path fromvi to vj (PRM)
5 cij ←pathLength(path′)
6 end
7 path← replan path fromvcurr to v′ using PRM-planner
8 Generate observationsPLLij for everyeij in TRG
9 Updatepij using HMM in Eqn. 4 for everyeij

10 Update MDP, TRG with new values ofV , pij , cij for
everyeij

11 vnew ← Next task as per updated MDP policy (Egn. 5)
12 if vnew = {∅} then
13 return null; // No more tasks
14 end
15 if vnew 6= v′ then
16 v′ ← vnew ; // Switch tasks
17 path← PRM path betweenvcurr andv′

18 end
19 returnv′, path

Algorithm 2: Algorithm to update TRG and path when TRG
vertices are removed (task completed) or a new obstacle is detected
that triggers a path re-calculation.

expected cost, weighted with availability to solve the TOP-
U problem (Equation 1). Because of the uncertainties in edge
costs and availabilities, a Markov Decision Process(MDP) is
used to do this. An MDP [24] consists of a set of states,
a set of actions to transition between states, along with a
probability distribution and reward for each action at each
state. The output of an MDP is a policy that prescribes
an action at each state, which maximizes the cumulative,
expected reward to the robot to reach a desired or goal state
from its current state. A more thorough discussion on MDPs
and solution techniques is given in [24]. For our TOP-U
problem, the TRG’s vertices,V , represent the MDP’s states,
the set of actions at each state (TRG vertex) of the MDP
correspond to the edges from that TRG vertex, TRG edge
availabilities give the transition probabilities betweenMDP
states, while the inverse of the TRG edge costs correspond to
the reward for reaching each state in the MDP (lower edge
costs corresponds to larger rewards). The policy calculated by
the MDP gives the maximum expected reward (or minimum
expected cost, weighted by availability) for the robot to visit
the TRG vertices. The MDP is solved using the value iteration
algorithm, that solves the following equation:

U(vi) = c−1
curr,i + γ max

eij∈E

∑

vk

P (vk|vi, eij)U(vk) (5)

wherec−1
curr,i is the inverse expected cost from the robots

current location tovi, γ is a user-defined, reward-discount
factor andP (vk|vi, eij) is the probability that the robot will



reach taskvk when starting at taskvi and attempting to follow
the edgeeij towards taskvj which may or may not be the
same task asvk. vk 6= vj happens if the robot was to attempt
going to taskvj , but due to obstacles, communications, etc.
it determines that it is better to instead go to taskvk. The
equation forP (vk|vi, eij) is given below, which ifvk = vj ,
the probability is the edge availability, and ifvk 6= vj , then it
is the probability of the edge not being available distributed
evenly to the remaining tasks.

P (vk|vi, eij) =

{

1− pij if j = k
pij

|V |−1 otherwise
(6)

C. Robot Navigation and Multi-robot Path Coordination Al-
gorithms

The main algorithm used by a robot for selecting tasks to
visit is shown in Algorithm 1. The main idea of the algorithm
is to select the task,v′, determined by the MDP policy, and
plan a path to reach it. If the path results in potential collisions
with other robots’ paths, path conflicts are resolved (line11).
Every time the path cost to a task changes due to obstacles, ora
task completed message from another robot is received, a TRG
update is triggered (line14). This might result in switching
the task the robot is headed to. The robot continues to move
towards its currently selected task until it is reached and upon
reaching the task its removes its vertex from the TRG and
broadcasts task complete message to other robots (lines16−
20).

The algorithm used to update the TRG is shown in Al-
gorithm 2. When a robot’s TRG vertex set or path costs on
the TRG change, it calculates a new navigation path to its
destination vertexv′ (lines 2 − 7) and new edge availability
values using its current perception in the HMM (line8 − 9).
These updated values are incorporated into the MDP and the
MDP’s policy is recalculated to yield the new destination
vertex (line10 − 11). If the recalculated policy prescribes a
new target vertex,vnew then the robot performs a task switch
and its destination vertex is changed fromv′ to vnew (line
15− 17). The algorithm also handles the case where all tasks
in a robot’s TRG might get completed by other robots before
it reached those tasks; in that case the algorithm returns a null
vertex and empty path(lines12− 13) so that the robot stops.

D. Coordinating paths between robots to avoid collisions

If robots determine their paths individually using Algo-
rithm 1, it could lead to robot collisions when the planned
paths of two or more robots intersect with each other. To avoid
this scenario, we have used a collision avoidance algorithm
shown in Algorithm 3. Each robot uses the locations broadcast
by other robots to check if there are other robots within
a radius ofrcoll, called the collision circle, of itself (lines
2). When a set of robots are within the collision circle of
each other, all the robots stop and the robots exchange their
identifiers, representing their priorities, with each other. A
leader election algorithm called the bully algorithm [25] is
then used to select the robot with the highest priority as the
winner. The winner robot holds the winner token, which gives

1 coordinatePath
Input : v′: destination TRG vertex;TRG: task

reachability graph
Output : Is the robot currently in a collision

2 if another robot withinOi then
3 stop
4 build/update collision shape
5 if previous winner token releasedthen
6 prio← robot id
7 end
8 //priority is either robot id or∞
9 send/receive priority to/from other robots withinOi

10 select robot with lowest prio inOi as winner
11 if I was winner, but lost this roundthen
12 transfer winner token to winning robot
13 end
14 if I am winnerthen
15 (v′, path)← updateTRG(TRG, v′)
16 //other robots considered as static obstacles in

PRM
17 if v′ = null then
18 //No more valid paths available to the robot
19 prio←∞
20 end
21 else
22 Move along current segment ofpath
23 end
24 if outsideOi then
25 release winner token
26 end
27 end
28 else
29 if All priorities in collision shape are∞ then
30 path← performJointPlanning(TRG)
31 if path = null then
32 exit FAILURE
33 end
34 Set all robots prio to robot id
35 return TRUE
36 end
37 end
38 return FALSE
39 end
40 return FALSE

Algorithm 3: Modified Algorithm to avoid collisions between
robots in close proximity of each other.

it the right to move (lines3 − 7). All other robots in the
collision circle, which do not hold the winner token, remain
stationary (line24 − 26). The winner robot uses the PRM
planner in conjunction with updating the TRG using Algorithm
2 to find a path to its destination vertexv′. The path returned
by the PRM planner is executed and the moving robot releases
the winner token once it is outside its collision circle (lines
9, 14−22). If the PRM planner is not able to find a path to the
goal, e.g., if the goal is unreachable because there is another
robot within the collision circle that is stopped right at the goal
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Fig. 4. (a) Example collision circle. The boxes represent the robots,
the numbers are the robot’s ids, and the circles represnt thecircle
of size rcoll around the robot. Collision circle for robot 1 isO1 =

{1, 2, 3}, (b) Two example collision shapes. The boxes represent the
robots, the numbers are the robot’s ids, and the circles represnt the
circle of sizercoll around the robot. Collision shape for robot 1 is
C1 = {1, 2, 3, 4, 5}, Likewise collision shape for robot 6 isC6 =

{6, 7}.

location, the moving robot relinquishes its right to move by
setting its priority to a high value (∞) (lines11−12). Another
robot from within the set of stopped robots gets a chance to
run the bully algorithm and attempts to move. This protocol
ensures that at least one robot exits the collision circle with
each execution of the bully algorithm, and finally there is only
one robot left inside the collision circle. This robot then reverts
to using Algorithm 1 to plan its path.

IV. T HEORETICAL RESULTS

In this section, we prove some properties related to our
proposed algorithms.

A. Task Selection Algorithm Properties

Theorem IV.1. AlgorithmTRGTaskSelectfinds a solution that
is admissible, that is, it never overestimates the expectedcost
to a task calculated using the TRG.

Proof: (By Contradiction.) Let us suppose there is another
algorithmA′ that selects TRG edges with lower expected cost
than Algorithm TRGTaskSelect. Let vj and vj′ (vj 6= vj′ )
respectively denote the task (vertex) selected by Algorithm
TRGTaskSelectandA′, when the robot is at vertexvi. Using
Equations 5 and 6, the MDP in AlgorithmTRGTaskSelect
(Alg. 2, line 11) calculates the expected cost to reachvj
from vi using TRG edgeeij as (1 − pij)cij . Algorithm A′,
which does not follow the vertex recommendation made by
Algorithm TRGTaskSelect, selects a different TRG edgeeij′ ,
which has costcij′ with probability (1− pij) and TRG edge
eij with probability pij . The robot’s expected cost to reach
vj′ using AlgorithmA′ is then(1 − pij)cij′ + pijcij . Since,
by Equation 5, the MDP selects the edge with the minimum
cost, it follows that,cij < cij′ ; let cij′ = cij + ∆, ∆ > 0.
By our assumption that the expected cost calculated byA′ is

lower than that of AlgorithmTRGTaskSelect, we get:

(1− pij)(cij +∆) + pijcij < (1− pij)cij (7)

or, (1− pij)∆ + pijcij < 0

or, pij >
∆

∆− cij

or, pij >
1

1− cij
∆

Because, by definition,cij and∆ are both> 0, we getpij > 1,
which is not valid aspij ∈ [0, 1]. Therefore, the expected cost
returned byA′ cannot be lower. Hence proved.

Lemma IV.2. The solution found by AlgorithmTRGTaskSe-
lect remains admissible when there are errors in the edge cost
and availability estimates.

Proof: Let cij,est, ǫc and pij,est, ǫp denote the estimated
values and errors in edge costs and availabilities returnedby
the PRM and HMM respectively,(using Algorithm 2, lines7
and 9), where ǫc ∈ R, ǫc ≪ cij and pij,est ∈ [0, 1] and
0 ≤ pij + ǫp ≤ 1. If the true cost and availability of edge
eij is denoted bycij and pij respectively,cij,est = cij + ǫc
and pij,est = pij + ǫp. For Algorithm TRGTaskSelectto not
overestimate edge costs with these estimated values Theorem
IV.1 should hold when they are used in Equation 8. That is,
(1− pij,est)(cij,est +∆) + pij,estcij,est > (1− pij,est)cij,est.
Substituting above values ofcij,est andpij,est we get:

(pij + ǫp)(cij + ǫc) + (1− (pij + ǫp))∆ > 0 (8)

As pij has limited domain of[0, 1], and the above equation
is linear in pij , we can check the two boundary points of
the domain; if the inequality is satisfied for both boundaries,
then it is satisfied for all points inside the domain. Note that
then whenpij = 0, ǫp ∈ [0, 1] and whenpij = 1, ǫp ∈
[−1, 0]. Substitutingpij = 0 in Equation 8, we getǫp(cij +
ǫc + (1 − ǫp)∆ > 0. Sinceǫp ∈ [0, 1] and cij ,∆ > 0, each
of the terms on l.h.s. of the last inequality is> 0 and the
inequality holds. Similarly, substitutingpij = 1 in Equation
8, we get(ǫp + 1)(cij + ǫc) − ǫp∆ > 0. Sinceǫp ∈ [−1, 0]
whenpij = 0, we substitute the boundary values ofǫp in the
last equation; whenǫp = −1, we get∆ > 0 which is valid
from the definition of∆; whenǫp = 0, we get(cij + ǫc) > 0,
which is valid, because, by definitionǫ≪ cij .

Theorem IV.3. The solution found by AlgorithmTRGTaskS-
elect is consistent.

Proof: Suppose the robot is at vertexvi andvj is the next
vertex selected by AlgorithmTRGTaskSelect.

For consistency property, we need to show thatcij < cik +
ckj for any vk 6= vi, vj . We prove by contradiction - suppose
cij > cik + ckj . Note that the TRG is a complete graph and
verticesvi, vj andvk form a triangle. Consequently,||eij || <
||eik||+ ||ekj ||, where||eij || is the Euclidean distance between
vi andvj . From Section III-A, the pathρij for navigating the
robot along TRG edgeeij has costcij ; it is found by the
path planner and from Equation 2, it is guaranteed to be the
minimum cost, collision-free path connectingvi and vj . In
other words∄q ∈ Qfree, satisfyingcij > ciq + cqj . Because



a task location has to be in the free space in the environment,
vk ∈ Qfree and, so, the last inequality is valid forq = vk.
Therefore,cij ≯ cik + ckj . Therefore, our assumption was
invalid. Hence proved.

Theorem IV.4. The solution found by AlgorithmTRGTaskS-
elect is optimal.

Proof: From Theorems IV.1 and IV.3 it follows that the
solution found by AlgorithmTRGTaskSelectis both admissible
and consistent. Therefore, the solution is optimal.

Similar to Lemma IV.2, it can be shown that the solution
found by Algorithm TRGTaskSelectis consistent and hence
optimal, even with errors in path cost estimates.

B. Completeness of Coordination Algorithm

Next, we analyse the synchronization properties of our
proposed multi-robot coordination algorithm to show that it
does not give rise to deadlock or livelock conditions between
robots, resulting in their inability to move and reach tasks.
To facilitate this analysis, we consider the movement of the
robots between sets, corresponding to robot states defined by
the algorithm.

Let dist(ai, aj) denote the Euclidean distance between
robots ai, aj ∈ R. We define the collision circle for robot
ai asOi = {aj : aj ∈ R, dist(ai, aj)≤ rcoll}, wherercoll is
the distance away from robotai that we consider robots to be
in immediate risk of collision. An example of a collision circle
can be seen in Figure 4(a), where robot 1 has robots 2 and 3
in its collision circle. This means thatO1 = {1, 2, 3}. We next
define the concept of a collision shape. A collision shape is the
group of all robots that are either in each others collision circle,
or, through sharing collision circles with other robots, can
reach the collision circle of another robot without exitingany
overlapping collision circles. As shown in Figure 4(b), robot
3 is not in the collision circle of robot 1, however it is in the
same collision shape as robot 1, because by traveling through
the collision circle of robot 2, robot 1 can reach the collision
circle of robot 3. On the other hand, robot 6 is not in the
collision shape of robot 1 because there is no way to move into
the collision circle of robot 6 without leaving collision circles.
To help define the collision shape, we first define a recursive
helper setH [n]

i , corresponding to robotai ∈ R at recursive
step n, as H

[n+1]
i = H

[n]
i

⋃

j∈H
[n]
i

Oj and H
[0]
i = Oi. As

n → ∞, H
[n]
i becomes the set of all robots in the current

collision shape. We can now define a collision shape as:

Definition 1. Let H [n]
i denote a helper set of robotai, as

defined above. Then collision shapeCi = limn→∞ H
[n]
i

The collision circle and collision shape of a robot get
updated as the algorithm proceeds. We useO

(t)
i andC

(t)
i to

denote the collision circle and collision shape of roboti at
round t respectively. We now define three subsets ofC

(t)
i

used in our analysis.
• W

(t)
i ⊆ C

(t)
i : The set of all robots in the collision shape

of robotai waiting for their turn to move
• L

(t)
i ⊆ C

(t)
i : The set of all robots in the collision shape

of robotai that are allowed to move

• S
(t)
i ⊆ C

(t)
i : The set of all robots in the collision shape

of robotai that have surrendered their right to move

We also define a setX(t)
i as the set of all robots that

were originially in the collision shape of robotai, but have
since left. Formally,X(t)

i =
⋃t

j=0 C
(j)
i \C

(t)
i . The elements

of the above sets are mutually exclusive and the subsets fully
partition the setC(t)

i , in other words the following properties
hold:W (t)

i ∩L
(t)
i = {∅}, W (t)

i ∩S
(t)
i = {∅}, L(t)

i ∩S
(t)
i = {∅},

W
(t)
i ∪ L

(t)
i ∪ S

(t)
i = C

(t)
i , andX(t)

i ∩ C
(t)
i = {∅}

Lemma IV.5. If during round t, there are robots currently
waiting to be allowed to move, then in the next round, there
has to be at least one robot that is selected for movement.
That is, ifW (t)

i 6= {∅} thenL(t+1)
i 6= {∅}.

Proof: Line 10 selects one elementaj from eachO(t)
i

whereaj ∈ Ci for membership inL(t)
i . The robot selected

can be a member of one of two sets,aj ∈ L
(t)
i or aj ∈W

(t)
i .

If aj ∈ L
(t)
i , thenL

(t+1)
i 6= {∅}, becauseaj will remain in

L
(t)
i . And if aj ∈ W

(t)
i , then becauseaj 6= ∅ in the next

time step,L(t+1)
i = L

(t)
i ∪ {aj}, which meansL(t+1)

i 6= {∅}.
Therefore, we can conclude that ifW (t)

i 6= {∅}, then in the
next time stepL(t+1)

i 6= {∅}.

Lemma IV.6. coordinatePathdeadlocks when no robots are
allowed to move and there are no robots available to be
selected for movement. This occurs whenL

(t)
i = W

(t)
i =

W
(t−1)
i = {∅}, andC(t)

i 6= {∅}.

Proof: As, C(t)
i = {∅} is the termination case,C(t)

i 6=
{∅} is a necessary condition. When the robots deadlock, that
means that for the rest of time, no robots are allowed to move.
Or, mathematically,∃t′ such thatL(t)

i = {∅} ∀t ≥ t′. By
Lemma IV.5, this implies thatW (t)

i = {∅} ∀t ≥ t′ − 1. This
implies that for each roundt that is in deadlockL(t)

i = W
(t)
i =

W
(t−1)
i = {∅}.

Theorem IV.7. Algorithm coordinatePath does not deadlock.

We analyse the operation of the collision avoidance algo-
rithm as a method to move robots between two sets,Ci and
Xi. Initially, all robots inCi are placed inWi, and fromWi,
movements throughSi andLi are possible until the movement
into Xi is possible. Based on the above descriptions, a
deadlock can only occur when no robot is allowed to move,
meaning that no winners have been selected, and there are no
available waiting robots to become winners.

Proof: By Lemma IV.6,coordinatePathdeadlocks when
L
(t)
i = W

(t)
i = W

(t−1)
i = {∅} andC

(t)
i 6= {∅}. As C

(t)
i 6=

{∅}, andC(t)
i = L

(t)
i ∪W

(t)
i ∪ S

(t)
i , this implies thatC(t)

i =

S
(t)
i . Line 29 tests for this condition when all robots remaining

in the collision shape have a priority of∞. This causes joint
configuration space planning to be called, which is guaranteed
to find paths for all robots, if such paths exist, or a failure when
paths do not exist, but does not deadlock. If paths do exist, all
of the robots in the suspended stateS

(t)
i are transitioned into

the waiting stateW (t+1)
i , on line 34. In other wordsS(t+1)

i =

{∅} andW (t+1)
i = S

(t)
i . The conditions for deadlock given in
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Fig. 5. State diagram for AlgorithmcoordinatePath.

Lemma IV.6 no longer holds asW (t+1)
i 6= {∅}.

Definition 2. A livelock occurs for algorithmcoordinatePath
when there is no robot in the collision shape that is able to
reach the sink state X through a finite set of state transitions
across the W, L, and S states.

Lemma IV.8. Any cycle in the state transition graph that
contains stateS cannot be a livelocking cycle

Proof: Once a robot enters stateS, there are only two
scenarios, stay inS or exit stateS by going only to state
W . In the first case, there will come a time where either all
robots have enteredS. This triggers a joint planning, which
is guaranteed to not result in livelock. In the second case, the
only way a robot inS is allowed to reachW is if another
robot makes a transition fromL to X . This implies, from
the definition of livelock, that algorithmcoordinatePathis
not in livelock, because robots outside of the coordinate path
algorithm can make progress towards their tasks uninhibited.

Lemma IV.9. There are only a finite number of cycles or
paths through the state graph in Figure 5 that could feasibly
result in a livelock scenario

Proof: Based on Lemma IV.8, any cycle that moves
through S can be eliminated from the list, which leaves
only two possible states to move through. Then based on the
properties of finite state machines, all cycles which resultin
multiple visits of the same state in a row can be collapsed into
the equivalent cycle visiting that state only once. As such,this
leaves us with only three potential cycles,W , L, andW → L.

Lemma IV.10. It is not possible for robots to eternally stay
in stateL.

Proof: All robots in L must remain moving and may
not remain stopped for any time not required for planning or
sensing. The paths returned by PRM are the shortest path in
the roadmap to the goal possition. Based on these two facts,
the robot must either move out of the collision shape, or enter
a collision with another robot causing its transition either into
W orS depending on if the collision was with a higher priority
robot, or if the collision caused all feasible paths for the robot
to become blocked.

Lemma IV.11. It is not possible for robots to eternally cycle
between setsW to L and back toW .

Proof: Transitions fromW to L occur when a robot is

the highest priority robot in its collision circleO. Transitions
from L back toW occur when a robot loses its position as
the highest priority robot in its collision circle, when it was
moving. The robot would still be able to move towards its goal
if the higher priority robot was not there. Also, consider the
worst case scenario, where, as each robot selected fromW to
get into L, moves and encounters a robot of higher priorty,
causing it to transition fromL back toW . Even assuming
thatL contains only one robot at a time, as the set of robots
is finite, and all robot ids are unique insideW or L, there
must exist at least one robot with highest priority, which, once
enteringL, can not be moved back toW as there is no other
higher prority robot to prevent its movement. This highest
priority robot only has two destination states that it can reach,
S orX ; either of which breaks the loopW−L−W . Therefore,
a scenario where a robot cycles betweenW − L −W states
cannot exist.

Lemma IV.12. It is not possible for robots to eternally stay
in the stateW

Proof: This would be considered a deadlock state. For
robots to stay inW , there must be a higher priority robot
inside their collision circle that is selected to move toL. All
members ofL must remain in motion, otherwise they become
members ofS, and no longer the highest priority robot in the
collision circle, causing a new robot fromW to be selected.
Robots inL can not remain perennially inside the collision
circle as the path planner PRM generates a path to goal. If a
feasible path is found by the planner, the robot will leave the
collision circle by transitioning fromL to X . On the other
hand, if a feasible path cannot be determined, the robot enters
S.

Theorem IV.13. Algorithm coordinatePathdoes not result in
livelock.

Proof: Livelock is when the robots are still able to
move, however they make no progress towards completing
their goals. To do this, the robots must remain in states that
allow motion, but never reach their goal locations (tasks),or
exit their collision shapes. Figure 5 shows all of the possible
transitions between states of thecoordinatePathalgorithm.
Through inspection of this figure, we can determine that
livelock occurs when the robots follow any cycle in the
graph without any robots entering stateX . This provides the
following livelock possibilities for the robots:

1) Stay inW
2) Stay inL
3) Cycle between states statesW andL

Lemma IV.10 shows that the option 2 cannot exist.
Lemma IV.11 shows that option 3 cannot exist. And
lemma IV.12 shows that option 1 cannot exist. Based on this,
we can conclude thatcoordinatePathdoes not livelock.

V. EXPERIMENTAL RESULTS

To verify our approach, we have run several experiments
on the Webots robot simulator using a model of the Coroware
Corobot robot, as well as on physical Corobot robots. The



TABLE I
MAPPING BETWEEN ENVIRONMENT PARAMETERS ANDLOAD VALUES

Tasks Robots Visits Load
5 3 1 1.67
10 3 1 3.33
5 1 1 5
10 3 2 6.67
10 1 1 10
15 3 2 10
15 1 1 15
15 3 3 15
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Fig. 6. Average number of replans by each robot which (a) results in a task
switch, and (b) does not result in a task switch, using the TRGand CFNU
approaches for different values ofT , R and V is. Values on the x-axis are
arranged in increasing orders for average robot task loadL. (c) Switching
replans single robot case (d) Non-switching replans singlerobot case

Corobot is a 4-wheel30cm × 30cm, skid-steer robot which
we control in a differential wheel manner. It is equipped with
an indoor Stargazer localization system [26] which provides
2D location and heading, Hokuyo laser distance sensor which
provides a270◦ range up to5m in distance at a resolution of
1
3

◦
, and wireless communications. The on-board computer has

an 1.6GHz Intel Atom 330 processor with 4GB of RAM. The
simulator provides a Gaussian distributed noise to sensor and
actuator motions. The environments have a size of10 × 10
m2; obstacles were placed at different locations within the
environment. The number of tasks (T ) was varied over5, 10
and15. The task locations were selected in a way that if there
were a single robot in the environment following a closest first
task selection strategy, it would cause the robot to switch tasks
for 50% of the replans it does. When there are multiple robots,
one of them is selected arbitrarily and placed at a location
that would effect the aforementioned50% task switching for
replans. Any other robots are placed randomly in the envi-
ronment, while keeping an even distribution. For the different
settings we have used, the robot positions are the same for all
runs in an environment. The number of robots (R) used were1
and3 . For each task a certain number of robots had to visit it

to complete it; the variable for visits per task (V is) was varied
over 1, 2, and3. To present our results in a concise manner,
we have used a parameter representing each robot’s average
task load, given byL = V is×T

R
. The different combinations

of T,R and V is, and corresponding values ofL used for
our experiments are given in Table I. User-defined constants
were set toγ = 0.8 (Discount rate of MDP in Equation 5)
andΓ = 1.5 (PLL parameter in Equation 3), unless otherwise
stated. Probability values used in the HMM were similar to
those given in Figure 2, which were based on average times
for a robot for avoiding static and mobile obstacles within the
environments used for the experiments. All results were aver-
aged over10 simulation runs. We have compared the quality
of task ordering performed by our proposed technique with an
approach where the task ordering is done using CFNU [27]
- each robot selects the task that has the least cost on its
TRG from its current location, without modeling uncertainties
in the inter-task paths or updating TRG edge availabilities.
The CFNU algorithm switches tasks when another task is
closer to it than the currently selected task, as measured
using straight line distance. To enable comparison, both task
ordering approaches use the same underlying path planner
and multi-robot coordination mechanism, when necessary. We
have reported three metrics for quantifying the performance
of the algorithms - the distances traveled by the robots, the
number of replans (with and without task switches) and the
times (planning and locomotion) taken to visit all tasks. Also,
to understand only the performance of our MDP-based task
selection method, we have reported the metrics separately for
single robot scenarios, where|R| = |V is| = 1. That is,there
is only 1 robot that has to visit all tasks once, and edge
availability is affected only by previously unknown obstacles;
effects due to communication uncertainties ofTaskComplete
messages sent by other robots do not arise.

Figures 6(a) and (b) show the number of replans made by
each robot, resulting in and not resulting in task switches
respectively for the two algorithms for the different load values
shown in Table I. We observe that, on average, the TRG-based
approach results in40% less replanning and61% less task
switching than the CFNU approach. The reduced planning and
task switching by the TRG-based algorithm can be attributed
to its ability to reason more efficiently about task availabilities
using its costs and beliefs about paths in the MDP based
approach, along with real-time sensor data incorporated into
its decisions using the HMM. In contrast, the CFNU approach
uses only Euclidean distances to select tasks and consequently
performs poorly. In Figures 6(c) and (d), the number of replans
resulting in and not resulting in tasks switches are shown for
the single robot cases. We see that the switching replans are
the same for both approaches because there are no other robots
in the environment which could complete the task before the
robot reaches it first. We also see that the TRG performs fewer
non-switching replans.

In Figures 7(a) and (b), we show the average time taken
for both approaches, this includes path planning and task
ordering times, and, locomotion times for each robot, which
includes time taken to resolve inter-robot path conflicts using
Algorithm 3. The TRG-based approach takes much less time
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Fig. 7. Average times taken by TRG and CFNU approaches. Top row is
for multi-robot scenarios, bottom row is for single robot scenarios. The left
column shows time for planning paths and solving the MDP for the TOP-
U problem. The right column shows time taken traveling between tasks and
performing collision avoidance. Experiments performed for different values
of T , T andV is. Values on the x-axis are arranged in increasing orders for
average robot task loadL.
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Fig. 8. Percent of replans resulting in a task switch (a) all cases (b) single
robot case

for both planning and navigation compared to the CFNU
approach. In this case, the TRG-based approach requires up
to 51% less planning time, and, up to75% lower locomotion
and coordination times than the CFNU approach. This is
because the TRG-based approach accounts for both the known
obstacles between tasks and the likelihood that the task will
become unavailable. The CFNU approach behaves myopically
and selects the closest task to visit, which could be on the
other side of a large obstacle and require considerable planning
and locomotion times to reach. In contrast, the TRG-based
approach uses the robots perception of the environment to
weight the path costs to tasks with the corresponding path
belief to reduce the overall path costs. Note that when the
number of tasks is small, or the average task load per robot is
close to 1, both algorithms have comparable performance for
all three metrics as each robot has to visit only one task and
there is no task ordering required. Figures 7(c) and (d) show
the average time taken by TRG and CFNU approaches in the
single robot case as the average robot load increases. We can
see that our TRG approach takes less planning time compared

to the CFNU approach.
We also observe that as the average task loadL of the

robots increase (from left to right on the x-axis), the distances
traveled by the robots increases. The robots using the TRG-
based approach travel distances between−16% (more) to32%
(less) than the CFNU approach, with an average improvement
of about6% (less distance traveled) across all experiments.
The TRG-based approach sometimes travels a small amount
more than the CFNU approach when the robot decides to
abandon its current task for another task. In that case, the
CFNU approach will switch as soon as the other task becomes
closer, which in some cases is the best decision, where as the
TRG-based approach will continue to follow its previous task
even though another task is closer. In some cases this might
be the best thing to do because the closer task might be on
the other side of a wall that the robot has yet to discover and
actually require more distance to explore enough of the wall
to realize that the task is no longer the closest; TRG performs
better in such scnearios. In some of the environments with a
larger load value, the TRG-based approach starts to perform
better.

We also tested our proposed algorithm on physical Corobot
robots. We used the environment shown in Table II (left) where
the white dots represent the tasks that the robot must visit.This
environment was also designed such that a CFNU closest-
task-first algorithm would switch50% of the time. We tested
for a fixed value ofΓ = 5.0, and tested for|R| = {1, 2},
V is = {1, 2}, and |T | = 5. Results were averaged over three
runs, and are shown in Table II (right). In both environments,
the robots were able to navigate and visit the tasks with the
required number of visits. In comparing these results to those
shown in Figure 6, we can see that the hardware performed
fairly similar. For example, Table II shows that the five tasks,
one robot, one visit environment had four switching replans,
which is within the margin of error for the switching replans.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we introduced the TOP-U problem where
robots have to determine the order to visit a set of task
locations when the path costs between a pair of tasks can vary
dynamically as the robot discovers obstacles while navigating
between tasks. We proposed a data structure called a task
reachability graph (TRG) along with techniques to integrate
the task ordering with uncertainty in path costs and availabil-
ities. Our analytical results show that our proposed algorithm
is optimal and complete. The algorithm’s performance was
also evaluated extensively through experiments and was shown
to result in reduced time and fewer computations (less task
switching) as compared to an algorithm that does not consider
uncertainty in path costs and task availabilities. As future
work, we are considering analyzing situations with stricter
constraints such as a partial ordering over the task set. In
the present work, multi-robot coordination is handled using a
light-weight coordination mechanism where all robots, except
one, stop. We are investigating techniques to integrate tighter,
but fast, coordination approaches to improve the coordination
of robots, such as exchanging path plans and calculating a plan



TABLE II
OVERHEAD VIEW OF ENVIRONMENT USED FOR TESTING WITH2 COROBOT ROBOTS AND5 TASKS; WHITE DOTS REPRESENT TASK LOCATIONS(LEFT)

AND EXPERIMENTAL RESULTS

Rob. Vis. Dist. Traveled (cm) # Switches # Non-switches PlanTime (s) Navigation Time (s)
1 1 2102 ± (349.94) 4± (0) 0.67± (1.15) 613.96 ± (144.54) 1415.96 ± (238.87)
2 1 1130.45 ± (86.92) 2.83 ± (0.58) 2.5± (1.32) 835.6 ± (269.11) 746.86 ± (48.66)
2 2 6118.95 ± (2689.5) 4.5± (1.5) 3.17± (2.52) 760 ± (372.83) 3921.43 ± (1704.98)

in the joint configuration space, only when robots get within
close proximity of each other.
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