arXiv:1607.00562v1 [cs.RO] 2 Jul 2016

Integrated Task and Motion Planning for Multiple Robots under
Path and Communication Uncertainties

Bradley Woosley and Prithviraj Dasgupta

Abstract—We consider a problem called task ordering with
path uncertainty (TOP-U) where multiple robots are provided
with a set of task locations to visit in a bounded environment
but the length of the path between a pair of task locations is
initially known only coarsely by the robots. The objective d the
robots is to find the order of tasks that reduces the path lendt
(or, energy expended) to visit the task locations in such a soario.
To solve this problem, we propose an abstraction called a tas
reachability graph (TRG) that integrates the task ordering with
the path planning by the robots. The TRG is updated dynamicdly
based on inter-task path costs calculated using a samplinigased
motion planner, and, a Hidden Markov Model (HMM)-based
technique that calculates the belief in the current path cos
based on the environment perceived by the robot's sensors én
task completion information received from other robots. Wethen
describe a Markov Decision Process (MDP)-based algorithmhat
can select the paths that reduce the overall path length to sit the
task locations and a coordination algorithm that resolves pth
conflicts between robots. We have shown analytically that au
task selection algorithm finds the lowest cost path returnedby the Robot 1 ¥
motion planner, and, that our proposed coordination algorthm is 3¥
deadlock free. We have also evaluated our algorithm on simated (a) (c)
Corobot robots within different environments while varying the
number of task locations, obstacle geometries and number of Fig 1. (a) Scenario showing two robots and six tasks, each tasksneed
robots, as well as on physical Corobot robots. Our results stw 1 robot to get completed, (b) Tasks selected by robots usingUCF
that the TRG-based approach can perform considerably bette algorithm; red-marked edges are unnavigable, blue dasdgése
in planning and locomotion times, and number of re-plans, wile ~ show re-calculated, collision-free paths, (c) Our propoakgorithm
traveling almost-similar distances as compared to a closedirst, Calculates a different task schedule for each robot thailteesén

i ; i lower path costs by including uncertainty in path cost arallakility
no uncertainty (CFNU) task selection algorithm. in real-time into the task schedule calculation. Dottedesdghow
the task reachability graph (TRG) edges not followed by eatiot
due to higher expected costs; dashed edges are colligenpiiths
I. INTRODUCTION calculcated by the motion planner.

Multi-robot task planning and path planning are impor-
tant problems in m.UItHObOt sy_stems .when robot_s have 0roposed Multi-robot Task Allocation (MRTA) techniquées] [4
perform tasks at different locations within an environmen

The problem is encountered in many applications of mul S well as multi-robot path planning techniques [5] to ad_slre
) his problem. However, on one hand, most MRTA techniques
robot systems such as automated surveillan¢e [1], robo

iC . .
- . . . ; Ssume that the costs or distances between the task laation

demining [2], and automated inspection of engineeringcstru '

R) .~ are fixed and known to all the robots as soon as they become
tures [3]. As a motivating example, we consider a scenario fQ . L . I

erformina standoff detection of explosives or landmirsia aware of the task. This criterion might not be valid if the

P Y EXp . ¥ robots have a coarse map of the environment and the path cost
autonomous robots where multiple robots are provided with, a . .

L . . . etween tasks can change dynamically as the robots discover
coarse map containing locations of objects of interest. T

. . dbstacles in the environment, or if due to communication
robots are required to autonomously plan their paths torget |

S . . constraints, the delivery of a task completed message is
proximity of each object of interest so that they can anatlyse delaved. On the other hand. path planning techniques atcoun
object with their detection sensors. For realizing this, ithain yed. - path p g 9

metric, such as the energy expended or the time requwedt t are being visited by the robots. Keeping a fixed order

robots to perform the tasks gets reduced. Researchers ht"flé/ﬁ/veen tasks might result in unnecessary longer paths to

*This work was partially supported as part of the COMRADE ®jpet complete the task schedule, especially _vvhen a dynamically
supported by the U.S. Office of Naval Research and by a GRA@Atgrom updated path around an obstacle could induce a shorter task
the University of Nebraska Omaha schedule.

B. Woosley is a graduate student and P. Dasgupta is a Profesgo T dd h b bl . d k
the Computer Science Department, University of Nebraskaai@, USA. 0 address the above problem, it would make sense to

{bwoosley, pdasgupta}@unomaha.edu investigate techniques that have a closer integration dxiw

http://arxiv.org/abs/1607.00562v1

the task and motion planning operations of robots. Reseaschthe paths between multiple robots [15]) [5] where robots
have proposed the Simultaneous Task and Motion Planniegchange their individual paths with each other and mutuall
(STAMP) problem to investigate this problem in the conteixt @xclusive paths are calculated for each robot in the rolaits
robotic manipulation[[6]. Our work advances this directimfn configuration space. To reduce the complexity of planning
research by proposing a framework called Task Orderingmundie the joint configuration space, a lightweight protocol was
Path Uncertainty (TOP-U) to address the STAMP problem jroposed in [[16] where robots iteratively make way for one
the context of a search and exploration scenario using wheelrobot at a time to reach its goal until a consistent set of
mobile robots. An example scenario shown in Figlle 1 imaneuvers have been determined for all robots to reach their
lustrates an example of the reduced time taken and distagoal. We use a complementary approach in this paper that
traveled when robots use our proposed algorithm, in cantraflows robots to mostly calculate path plans individually i
with Closest First No Uncertainty (CFNU) algorithm used fotheir local configuration space but if a set of robots get inith
task selection, that does not consider uncertainty in pastsc close proximity of each other they use a conflict resolution
and availabilities in its calculations. The main contribas algorithm to find collision free paths. Path planning in dyma

of our paper are the following: We present a formalizatioenvironments where the cost between the source and goal
of the problem called task ordering with path uncertaintypcations can change abruptly was addressed_in [17], [18]
(TOP-U), where multiple robots have to visits tasks whoagsing Markov Decision Processes (MDPs). In our proposed
locations are uncertain due to the presence of obstaclesapproach, path costs are also dynamically updated using the
the environment, while reducing the distances traveled h@bots’ sensor information, and the updated path costssa@ u
tween the tasks. We propose a data structure called a tamknediately to recalculate the task schedule using an MDP to
reachability graph (TRG) that is used to model the probleailow for switching between tasks to reduce the cost of the
and a Markov Decision Process (MDP)-based algorithm thatal path length to visit all the tasks.

each robot uses to dynamically calculate its task scheduleThe problem of finding a suitable ordering of operations
in real-time using the TRG. We also propose a distributest tasks to perform by multiple robots has been researched
coordination algorithm for resolving deadlock scenario® d as the Multi-Robot Task Allocation (MRTA) probleni [19],

to path conflicts between multiple robots using our algonith excellent reviews of MRTA are available in [20],][4]. Most
We have proved analytically that our task scheduling atbori of the approaches focus mainly on finding a suitable ordering
is optimal and the coordination algorithm is deadlock fide. of tasks while assuming appropriate robot motion planning
also provide extensive experimental results on simulatetl aechniques. Recently, researchers have addressed miatlg tig
physical Coroware Corbot robots, with different number afoupled task and motion planning under the simultaneols tas
robots and tasks within environments with different obletsc and motion planning (STAMP) problem. The proposed solu-
geometries and task distributions. Our results show that dion techniques combine symbolic task planning with cdntro
proposed TRG-based approach could perform upl 6 better based technique$ [21].][6]._[22] for a mobile manipulation
in planning and locomotion times with0% fewer replans, problem where task interdependencies form a critical dspec
while traveling similar distances as compared to a closestt fi and reasoning using symbolic task planning is critical to
no uncertainty (CFNU) selection algorithm. The rest of outetermine the task precedence. In contrast, for our setting
paper is structured as follows: in the next section, we discureducing the cost of the task schedule is more critical than t
existing research on MRTA and motion planning techniques. érder of tasks, and our algorithm uses probabilistic medtod
Sectior{TIl, we formalize the TOP-U problem and describe thaguickly incorporate robots’ perceptions about the envinent
robot task scheduling and multi-robot coordination algomis. into its plan.

Sectiond IV andV/ describe our analytical and experimental

results and finally we conclude. I1l. TASK ORDERING WITH PATH UNCERTAINTY
We consider a set of wheeled, mobile robadgs,deployed
1. RELATED WORK within an environment. Robots are capable of localizing

. . . themselves within the environment and can also communicate
Motion and task planning have been important problems . . .
.) . wirelessly with each other. The environment contains a set
in robotics. Several approaches for solving them have bee g :

ST of_tasks, 7. Robots have to visit the locations of tasks to
proposed in literature over the past two decades, although

these problems have largely been treated separately. imlmofgl erform c->per_at-|ons required to complete the tasks. Eaéh_ tas
. L 4 . can require visits by one of more robots to get completed; the
planning the objective is to find a collision free path for bab

? : A . . _information about how many robots are required to complete
SO that it can navigate within its environment [7]. Sampling task is providedh priori toythe robots. W(zz consider tasks

based motion planners like probabilistic roadmap (PRM) [.
and Rapidly-exploring Random Trees (RRT) [9] have becﬂat are loosely coupled and all robots required to complete

) . : a task do not necessarily need to visit the task’s location at
used widely for motion planning. Recently, researchershal . T X
. . ; the same time. Each robot is initially aware of the locations
proposed extensions to these techniques by using methods
. . of the tasks, but does not know the exact paths between the
reduce the time required to calculate the paths and addres

the problem of moving through narrow passades [10]) [11 §< or the obstacles along those paths. To represent this path

[IE]* and handling unce_rtainty in obstacle locatidns [m 1in the rest of the paper, we have referred to task locationsasis for
Researchers have also investigated the problem of codirtina legibility.

uncertainty, each robot uses a task reachability graph JTR®. Dynamically Updating Edge Cost and Availability
a fully connected graph with task locations as its vertices. Edge Cost Update.TRG edge costs correspond to the
Formally, a TRG is denoted By RG = (V, E, C, P,t) where: istance that the robot requires to travel to reach from one
o« VB = {v§t> U veurr + IS the vertex set and.,.» is the TRG vertex to another. Each edge cost is initialized to the
robot's current location. Eachgt) corresponds to a task Euclidean distance between the pair of TRG vertices forming

location the robot is aware of at tinte the edge. However, if there exist previously unknown ohetac
« B — {65;-) : el(_;) — (v§t>,v§”)} is the edge set in the path between a pair of TRG vertices, then the distance
connecting the vertices in the TRG the robot travels might exceed the Euclidean distance legtwe

« Ot — {Cz(';)} is the expected distance or cost expendéBe vertices. To accommodate the path distance uncertainty
by a robot to traverse the path underlying edgg. the robot usesaprlobabilistic roadmap(PRM)-based pati: pla
ceurr.; denotes the expected cost from the robot's curref€r [14] to dynamically update the expected edge cost. The

location @e,,r) t0 v; PRM planner works by first generating a set of sampled
« P — {Pl('t')} is the probability that edgegt.) is not PointsR from the robot’s configuration space. It then uses the
available ! ! available information about obstacles perceived by thetob

Owing to path uncertainties between task locations (TR m its current locationveyrr 10 dgtermlne p.ath sgg_ment_s
at are close to obstacles and might result in collisiorhwit

vertices),C") and P() are estimated from perceived sensoy, h orobahility: such iated with a hiah
data and they get updated by the robot as it discovers obsta&'g probability; such segments are associated with a hig

and task availabilities while navigating between taskg. 4 e penal_ty value. FOIIOW'ngﬂ4]' the TRG edge cost calcutasio

V' — V denote a function that returns an ordering over € given by the following steps.

set of tasks. Each robot maintains its own TRG and plans itsl) Calculate the cost of each path segment that connects
path using its TRG. The problem facing each robot to find a any two sampled pointép1, p2) € Qfree © R* (Qfree
suitable order for visiting the tasks is specified by the Task IS the free space in the environment) as:

Ordering under Path Uncertainty (TOP-U) problem below: cost — peoll o 1y coll \ 7;
P2 = + (1 — dist(p1, p2),
TOP-U Problem. GivenTRG = (V, E,C, P,t) represent- PL P2 = Porpab Y+ (L= Py g,)distlpr, p2)
ing the set of tasks, inter-task costs and task availadslitit where pg‘fflm the probability of collision of segment
time ¢, determine a schedufe' (V) that induces an ordering (p1,p2) based on its distance to perceived obstacles,
(vt,v2,03...) over the tasks, given by: penalty is an arbitrary large number used to discourage
. . D (1) paths that have a high probability of collision and
S (V)W = ar(gr)r(li)n Z e SV)D (1 —pi))ei; dist(py, p2) is the Euclidean distance betwegn and
S(v)e
(vi,v5) P2
subject to: 2) Calculate the physical path; corresponding to TRG
edgee;; = (v;,v;) as a sequence of path segmemnts
0< pg) <1 (p1, p2)start---(P1, p2)ena, 9iven by:
Yoo a=pf)e) <BY @) pij =argmin Y costpy, p2
(vi,vs)ES(V)®) P (prp2)ep

S. t.: = v, =0,
whereB(is the battery available to a robot at current time Plavare = Ui P2ena = 1]

t. Note thatS*(V)® represents the path through the TRG 3) Calculate the expected cas} for TRG edgee;; as the
with the minimum expected cost, weighted with availability sum of the costs of path segments in pathcalculated
The second constraint above ensures that the robot is able to in step2 above, as:

complete this path with its currently available battery.té&o o ; 5
that{V'} can change dynamically for a robot as tasks can get cj=) costpip @)
completed by other robots. An instance of the TOP-U problem (Prop2)€pis

corresponds to the well-known traveling salesman problemEdge Availability Update. In our scenario, tasks are
(TSP) [23]. However, solving the conventional TSP might natompleted in a distributed manner by different robots and
guarantee an optimal path as edge costg) (could change a task (or, TRG vertex for a robot) might get completed
dynamically as robots discover previously unknown obstaclby other robots before the robot reaches it. When a task is
while traveling between tasks, while edge availabilitips)(completed, the last robot visiting the task broadcasts la tas
could change dynamically because some tasks got completedpletion message to all other robots. Each robot thensneed
by other robots. To address the dynamic nature of the prableimremove the TRG vertex for the task from its TRG. Because
we propose a Hidden Markov Model (HMM)-based methothessage communication in unstructured environments might
to update the edge availabilities, and then use the updatedunreliable, task completion message might be lost due to
information within an MDP to find the desired ordering ohoisy communication, or, the robot broadcasting the messag
the TRG vertices to solve the TOP-U problem. In the rest afight be outside the communication range of some robots.
the paper, for legibility, we have omitted the time notatiofio handle this uncertainty, it would be useful if the robot
from the TRG parameters, assuming it to be understood framould infer whether the task was still available or not, from
context. information related to the task’s availability that it cainedtly

from slice Slice 't' Slice (t+1) to slice

1) t2) given in FigurdD.
To solve the problem of calculating the probability of a task

—“’@0) >@ > being still available fromP L L values, the robot first calculates
>\59//L %@———» the observed value aP L L variable for the current time step.
s l N For H M M;;, the observed value of variableL L;; for current

time stept is determined by assuming th&tL L is very large
@ D) when it isT" times more than the minimum cost of any edge
in the current TRG, as given by the equation below:

MO [SO | TNA | P(PLL)| P(PLL) P(ZLL\M_O, i),@):o.z% 50, [P0y)))

ool o[o] o | PPLLMO,50.TNA)=0788 [T oz P — FALSE if ¢;;/ <Tmin({c;, :Vk € V}) 3)

00| 1 0663|0337 | P(PLLMO,SO0, TNA)=0.663 [~ 02 U T)TRUE otherwise

0|1 0 |0.296 | 0.704 Sample inhibition probabilties CpT for SO

O] 1 0196 | 0804 whereT is a user defined constant that is based on system
11010 (0788|0212 and environment factors such as battery remaining, tearaih
10| 1 |0522]0478 MO, |P(MOy,1) TNA, | P(TNA..)

T T 0 Tozs Toser e — T os | Navigation conditions. The sequence of values}Perf.Jl. 2

T 1 To1ss | osas F | 0001 F | 00 is recorded, and used to estimate the probability of thes stat
CPT for PLI. CPT for MO CPT for TNA variable TNAl(-;), given byp(TNAl(-;)|PLL;-{j1:t}), using the

Fig. 2. Temporal Bayesian network used in the HMM for deteing the Forward_BaC.kW_ard algorithm [24]. The forward stage is give
suitability of path length to a task. by the equation:

observe. For our problem, we assume that this observable?(X“**+D|pLLl!") = <P(X{t+’““}|TNAZ(.§+’“))

information related to task availability is the distancepath TN AR
length remaining to reach the task - if the path length is Y
very large, it could be due to the task becoming unavalfable P(TNA§§+k)|PLLZ{J;:t})>

One caveat to using the path length as an indicator of task

availability is that it is also affected by obstacles alohg t and the backwards stage is given by:
path; it changes dynamically as the robot encounters dbstac

while going towards the task. The problem facing the robot

then is to observe the path length values over the recent pR$PLLL (X (*)) = > (P(PLLZ(?JFl))ITNAEfJFI))

and infer from it whether the task is still available. TNASTY
To model this inference problem, each robot uses a Hidden (et} (1) ()
Markov Model (HMM) [24]; one HMM, HM M;;, is used P(PLLY Y| TNA;)P(TNAj; |X(’“)))

to update the availability of each TRG edgg. The crucial
HMM variable is Path Length LongRLL) that evolves whereX® is the combination of the set of state variables,

temporally as the robot encounters static obstack3)(@and MO, SO andTNA at time t, PLL;.{jl:t} is set of evidence

mobile obstgcles]\({O) on its range sensor, or, receives @p| | observations) from time throught, andTNAl(;) is the
task completion message called task not availably 1), as yajue of the variabld” N A;; at timet. Finally, to integrate the
shown in Figuré P. VariablesO, MO andTN A are binary- ca|culated value o' N A;; with the TRG edge;;, we model
valued and they too evolve with time as the robot mov&fe task availability as probabilistic availability; of TRG
towards the task and encounters obstacles, or receives té‘ébeeij- pi.; gets a valug when the robot is certain that the
completion message. The temporal transition model is giveikk is available and there exists a finite distance pathatchre
in Figure[2 via the arrows moving between dashed box§s,and, 0 when the path to reach the task is infinitely large
the sample temporal probabilities of these variables &€ alneaning the task is not available; intermediate probaslit
provided. The dependencies between these variablesiaffectepresent the uncertainty of the task not being completed by
PLL are captured in each slice of the HMM as shown insid&her robots and still remaining available to the rohet. is
the dashed boxes in Figuié 2. Because each of the variaklgg:jated by normalizing Equatih 3, given by:
affecting PLL - static obstacles, mobile obstacles and task
not available - do not affect each other and can be considered p(TNA;;|PLLU
as independent of each other, their probabilistic effect on Pij = D -) (4)

, p(INAy;[PLLTY)

PLL can be combined relatively easily from the individual o -
inhibition probabilities for these variables using a neBR The normalization ensures that the robot has a probahility

model. An example noisy-OR based probability calculatio®f leaving TRG vertex; through at least one of its incident
for PLL is shown alongside Figuld 2. We assume that tf&lges.
environment has &8% communication success rate, 2
communication failure rate, leading to the probabilityueal B, TOP-U Solution using Markov Decision Process

2Note that when a TRG edge is removed, it can be looked uponeas th Following the update of the Edge costs and availabilities,
edge length becoming infinitely large. the robot has to select the TRG edge with the minimum

Update TRG (Alg. 2)
Calculate MDP policy

Path cost
changed OR
task reached OR

task not available

Start robot,
init TRG
No more tasks

OR insufficient battery

Next task as

Robot stop

Task not
reached

Broadcast current\ Navigate towards task

location

© O N o g b~ W N

=
o

Multi-robot collision
avoidance (Alg. 3)

with other robots
11

Fig. 3. State diagram showing the operation of a robot udmegdifferent

algorithms proposed. 13

14
15
16
17
18
19

updateTRG(TRG =< V, E, P,C >,v)

Input: TRG: task reachability graphy’: destination
TRG vertex

Output: v: destination TRG vertexpath: path to

destination TRG vertex

updateV’ removing completed tasks, if any

for (v;,v;) € E do

path’ < replan path fromy; to v; (PRM)

¢ij <pathLengthgath’)

end

path < replan path fromv,,. to v’ using PRM-planner

Generate observation3L L;; for everye;; in TRG

Updatep;; using HMM in Eqn[% for every;;

Update MDP, TRG with new values 6f, p;;, ¢;; for

everye;;

Unew + Next task as per updated MDP policy (E@h. 5)

2 if Upew = {0} then

| return null; // No more tasks
end
if Vpew # v then
v ¢ Vpew: [l Switch tasks
path < PRM path between..,,., andv’
end
returnv’, path

1

2 Build initial PRM roadmap

Algorithm 2: Algorithm to update TRG and path when TRG
vertices are removed (task completed) or a new obstacletésted
that triggers a path re-calculation.

TRGTaskSelec{T RG =<V, E, P,C >)
Input: T RG: task reachability graph

3 Initialize MDP with current TRG information
4 Determine paths in robots configuration space using

5 veurr <— CUrrent position of robot
6 while V' is not empty AND battery available for next

10
11
12
13
14
15

16

17
18
19
20
21
22
23

expected cost, weighted with availability to solve the TOP-
U problem (Equatiof]l). Because of the uncertainties in edge
costs and availabilities, a Markov Decision Process(MBP) i
used to do this. An MDP[[24] consists of a set of states,
a set of actions to transition between states, along with a
probability distribution and reward for each action at each
state. The output of an MDP is a policy that prescribes
an action at each state, which maximizes the cumulative,
expected reward to the robot to reach a desired or goal state
from its current state. A more thorough discussion on MDPs
collision + coordinatePati{RG, v') and solution techniques is given in[_[24]. For our TOP-U
if collision — FALSE then problem, the TRG’s verticed/, represent the MDP’s states,

if (taskCompleted message recd. from anothe the set of actions at each state (TRG vertex) of the MDP
robot) OR (new obstacle detected in robot's correspond to the edges from that TRG vertex, TRG edge

PRM planner between all TRG edges = (v;,v;) € E

vertexdo

v’ < Next task as per MDP policy

path < PRM path betweem,,,» andv’
while v’ not reacheddo

Updateuv,,., using localization system
Broadcastv,.,,,- to other robots

/lavoid collisions w. other robots (Al@] 3)

path) then availabilities give the transition probabilities betweBtDP
(v/, path) « updateTRG['RG, ') states, while the inve_rse of the TRG _edge costs correspond to
(Alg.) the reward for reaching each state in the MDP (lower edge
end costs corresponds to larger rewards). The policy caladilbye

the MDP gives the maximum expected reward (or minimum
expected cost, weighted by availability) for the robot tsitvi
the TRG vertices. The MDP is solved using the value iteration
algorithm, that solves the following equation:

Move along current segment pfith

end

end

Removev’ from V' //reachedy’

Communicate completion of task to all other robots
end

) = -1
Algorithm 1: Algorithm to select a task in the TRG using an U(vi) = Courrs +7§22§ZP(U’C|U“QU)U(U’C) ®)
MDP-based policy. o
Wherec(julmi is the inverse expected cost from the robots

current location tov;, v is a user-defined, reward-discount
factor andP(vy|v;, e;;) is the probability that the robot will

reach tasky, when starting at task; and attempting to follow 1 coordinatePath

the edgee;; towards taskv; which may or may not be the Input: v": destination TRG vertex]' RG" task
same task as;. v, # v; happens if the robot was to attempt reachability graph

going to taskv;, but due to obstacles, communications, etc. Output: Is the robot currently in a collision

it determines that it is better to instead go to tagk The 2 if another robot withinO; then
equation forP(v|v;, e;;) is given below, which ifv, = v;, 3 stop
the probability is the edge availability, anduf # v;, then it 4 build/update collision shape
is the probability of the edge not being available distréult 5 if previous winner token releaseten
evenly to the remaining tasks. 6 | prio < robot id
7 end
Ploglos,es;) = L—py ifj=k © ° Ifpriority is either robot id oro _
v “fri - otherwise 9 send/receive priority to/from other robots within

10 select robot with lowest prio ii®; as winner
C. Robot Navigation and Multi-robot Path Coordination Al | if I was winner, but lost this rounthen
gorithms 12 | transfer winner token to winning robot
end

. . . 13
The main algorithm used by a robot for selecting tasks 191 it | am winnerthen

visit is shown in Algorithn{Jl. The main idea of the algorithm_ (v/, path) « updateTRGLRG, v')

Is to select the tash{’, determined by thg MDP p_olicy, and /lother robots considered as static obstacles in
plan a path to reach it. If the path results in potential sadlis PRM

with other robots’ paths, path conflicts are resolved (ling
Every time the path cost to a task changes due to obstaclas, or
task completed message from another robot is received, a TRG

if v/ = null then
/INo more valid paths available to the robot

update is triggered (lindé4). This might result in switching 20 endp”o oo
the task the robot is headed to. The robot continues to moye else
towards its currently selected task until it is reached gmohu 5 | Move along current segment pfith
reaching the task its removes its vertex from the TRG and end
broadcasts task complete message to other robots (lihes " it outsideO. then
20). '
The algorithm used to update the TRG is shown in Ajf’ e|ndrelease winner token

gorithm[2. When a robot's TRG vertex set or path costs n
the TRG change, it calculates a new navigation path to Iis
destination vertex’ (lines 2 — 7) and new edge availability
values using its current perception in the HMM (life- 9).
These updated values are incorporated into the MDP and the
MDP’s policy is recalculated to yield the new destinatiogpz
vertex (line10 — 11). If the recalculated policy prescribes a
new target vertexy,..,then the robot performs a task switch
and its destination vertex is changed frarhto v,.., (line

. 5
15 —17). The algorithm also handles the case where all tasgks

end
else
if All priorities in collision shape arex then
path < performJointPlanning(TRG)
if path = null then
| exit FAILURE
end
Set all robots prio to robot id
return TRUE

: . end
in a robot’s TRG might get completed by other robots befo end
it reached those tasks; in that case the algorithm returndl a n return FALSE

vertex and empty path(linel — 13) so that the robot Stops..; and

40 return FALSE

D. Coordinating paths between robots to avoid collisions Algorithm 3: Modified Algorithm to avoid collisions between

If robots determine their paths individually using Algo- robots in close proximity of each other.
rithm [, it could lead to robot collisions when the planned
paths of two or more robots intersect with each other. Tochvoi
this scenario, we have used a collision avoidance algorithimthe right to move (lines3 — 7). All other robots in the
shown in Algorithn8. Each robot uses the locations broadcasllision circle, which do not hold the winner token, remain
by other robots to check if there are other robots withistationary (line24 — 26). The winner robot uses the PRM
a radius ofr.,;, called the collision circle, of itself (lines planner in conjunction with updating the TRG using Algomith
2). When a set of robots are within the collision circle dBl to find a path to its destination vertek The path returned
each other, all the robots stop and the robots exchange thsithe PRM planner is executed and the moving robot releases
identifiers, representing their priorities, with each oth& the winner token once it is outside its collision circle @i
leader election algorithm called the bully algorithim1[25] i9,14—22). If the PRM planner is not able to find a path to the
then used to select the robot with the highest priority as tlgeal, e.g., if the goal is unreachable because there is @noth
winner. The winner robot holds the winner token, which give®bot within the collision circle that is stopped right aethoal

lower than that of AlgorithmlfrRGTaskSelectve get:

(1 —pij)(cij + A) + pijeij < (1= pij)cij (7
or, (1 — pij)A + pijcij < 0
A

R RN,
)

or, pi; >

1 — %

A
Because, by definitiorz;; andA are both> 0, we getp;; > 1,

Fig. 4. (a) Example collision circle. The boxes represent the ®bot, iR i ; -
the numbers are the robot's ids, and the circles represntithke Which is not valid ayij € [O’ 1]' Therefore, the expected cost

of size r..; around the robot. Collision circle for robot 1 @, — returned byA’ cannot be lower. Hence proved. n
{1,2,3}, (b) Two example collision shapes. The boxes represent the . .

robots, the numbers are the robot’s ids, and the circleesaprthe Eemma IV.2. The solution found by AlgorithfiRGTaskSe-
circle of sizer.,; around the robot. Collision shape for robot 1 idect remains admissible when there are errors in the edge cost
Cr1 = {1,2,3,4,5}, Likewise collision shape for robot 6 i€ = g availability estimates

{6,7}. '

Proof: Let ¢jj.cst, €c @andp;j est, €, denote the estimated
values and errors in edge costs and availabilities retubyed

location, the moving robot relinquishes its right to move b{'® PRM and HMM respectively,(using Algorithim 2, lings
nd 9), wheree. € R,e. < ¢;; and p;;.+ € [0,1] and

setting its priority to a high valuext) (lines11—12). Another Lo
robot from within the set of stopped robots gets a chance QOS_ pg NG débll It thg true cost gno: ava|lablllty of edge
run the bully algorithm and attempts to move. This protocgii 'S denoted byc;; and p;; respectivelycij.ca = ci; + cc

ensures that at least one robot exits the collision circlg wid"® Pij.est = Pij T €p- For AIgonthmTRQTaskSelectb not
each execution of the bully algorithm, and finally there ifyon overestimate edge costs with these estimated values Theore

one robot left inside the collision circle. This robot thewerts [V.I] should hold when they are used in Equation 8. That is,

to using Algorithn1 to plan its path. (1= Pijest) (Cijest + D) + DijesiCijest > (1= Pijiest)Cijest-
Substituting above values of; .,; andp;; ..; we get:

(pij + €p)(cij +€c) + (1 — (pij +6))A >0 (8)

IV. THEORETICAL RESULTS As p;; has limited domain of0, 1], and the above equation

is linear in p;;, we can check the two boundary points of

In this section, we prove some properties related to offfe domain; if the inequality is satisfied for both boundsyrie

proposed algorithms. then it is satisfied for all points inside the domain. Notet tha
then whenp;; = 0, ¢, € [0,1] and whenp;; = 1, ¢, €
[—1,0]. Substitutingp;; = 0 in Equation8, we get,(c;; +
€c+ (1 —€,)A > 0. Sincee, € [0,1] and¢;;, A > 0, each
of the terms on Lh.s. of the last inequality is 0 and the
inequality holds. Similarly, substituting;; = 1 in Equation

Theorem IV.1. Algorithm TRGTaskSeledinds a solution that B We get(e, + 1)(cij + ec) — ;A > 0. Sincee, € [-1,0]
is admissible, that is, it never overestimates the expemet Whenpi; = 0, we substitute the boundary valuesegfin the

A. Task Selection Algorithm Properties

to a task calculated using the TRG. last equation; wher, = —1, we getA > 0 which is valid
from the definition ofA; whene, = 0, we get(c;; +¢.) > 0,
Proof: (By Contradiction.) Let us suppose there is anothevhich is valid, because, by definition< ¢;;. []

algorithm A’ that selects TRG edges with lower expected co
than Algorithm TRGTaskSelectLet v; and vy (v; # vjr)
respectively denote the task (vertex) selected by Algorith
TRGTaskSeleand A’, when the robot is at vertex,. Using Proof: Suppose the robot is at vertexandv; is the next
Equations[b and16, the MDP in AlgorithfiRGTaskSelect vertex selected by AlgorithifRGTaskSelect

(Alg. B, line 11) calculates the expected cost to reach For consistency property, we need to show that< c;i, +
from v; using TRG edge;; as (1 — p;;)ci;. Algorithm A’, ¢, for any vy, # v;, v;. We prove by contradiction - suppose
which does not follow the vertex recommendation made ky; > c;i + ci;. Note that the TRG is a complete graph and
Algorithm TRGTaskSelecselects a different TRG edgsg;,, verticesv;, v; andv;, form a triangle. Consequentlyfe;;|| <
which has cost;;, with probability (1 — p;;) and TRG edge |[|eix||+||ex;||, where||e;;|| is the Euclidean distance between
e;; With probability p;;. The robot’s expected cost to reach; andv,. From Sectiof II-A, the path;; for navigating the

vj using Algorithm A" is then (1 — p;;)cij» + pijcij. Since, robot along TRG edge;; has costc;;; it is found by the

by Equatiorb, the MDP selects the edge with the minimupath planner and from Equatigh 2, it is guaranteed to be the
cost, it follows that,c;; < c;j; let ¢;r = ¢;; + A, A > 0. minimum cost, collision-free path connecting and v;. In

By our assumption that the expected cost calculatedibis other wordsflg € Q .., satisfyingc;; > ci, + ¢,;. Because

sI‘heorem IV.3. The solution found by AlgorithfiRGTaskS-
electis consistent.

a task location has to be in the free space in the environments Sl.(t) - Cft): The set of all robots in the collision shape
vk € Qfree and, so, the last inequality is valid fgr = vy. of robota; that have surrendered their right to move

Therefore,ci; # cir + cx;. Therefore, our assumption wWas e also define a sek" as the set of all robots that
invalid. Hence proved. 1

were originially in the collision shape of robat, but have

Theorem IV.4. The solution found by AlgorithRGTaskS- since left. Formally, X" = Ui cIN\CY. The elements
electis optimal. of the above sets are mutually exclusive and the subsets full

. t) . . .
Proof: From Theorem&1V]1 and 1M.3 it follows that theparu.tlon(tt)he s(te)Cf ', in otfggr wc()tr)ds the foll(?)vvmggt)propertles
solution found by AlgorithnTRG TaskSeleds both admissible hozg' W; (thLi N {@}’(tWi ﬂsi(t): {@é)’ Li"ns;~ = {0},
and consistent. Therefore, the solution is optimal. m Wi ULTUST =0, and X NG = {0}

Similar to Lemmé& V.2, it can be shown that the solutiop emma V.5, If during round ¢, there are robots currently
found by Algorithm TRGTaskSeleds consistent and henceyaiting to be allowed to move, then in the next round, there
optimal, even with errors in path cost estimates. has to be a}t)least one robc(nttthlr)\at is selected for movement.
B. Completeness of Coordination Algorithm Thatis, ifW; 7 {0} then L # {0}

Next, we analyse the synchronization properties of our Proof: Line [I0 selects one elemen from eachO\”
proposed multi-robot coordination algorithm to show that wherea; € C; for membership inLEt). The robot selected
does not give rise to deadlock or livelock conditions betwe@&an be a member of one of two seis, Lgt) ora; € Wi(t).
robots, resulting in their inability to move and reach taskg o, ¢ LZ(-t), then Ll(t“) # {0}, becausez; will remain in
To facilitate this analysis, we consider the movement of tfpgt). And if a; € w® then because, # 0 in the next
robots be_tween sets, corresponding to robot states defmeqiR]e Step,Ll(_tJrl) _ Lit) U {a;}, which meanngtﬂ) £ {0},
the algorithm. Therefore, we can conclude thatTiF(" {0}, then in the

Let dist@;, a;) denote the Euclidean distance between o (t+1) d '
robotsa;,a; € R. We define the collision circle for robotnext time stepl; 7 {0} u
a; asO; = {a; : a; € R,dist(a;, a;)< reout, Wherereou is Lemma IV.6. coordinatePathieadlocks when no robots are
the distance away from robat that we consider robots to beallowed to move and there are no robots available to be
in immediate risk of collision. An example of a collisiondie selected for movement. This occurs Wh@j? = Wi(t) =
can be seen in Figuid 4(a), where robot 1 has robots 2 angy3t-1) _ {0}, and c® £ {0}
in its collision circle. This means tha;, = {1,2,3}. We next * ‘
define the concept of a collision shape. A collision shapbkas t Proof: As, Ci(t) = {0} is the termination case’]zgt) +
group of all robots that are either in each others collisiocie, {0} is a necessary condition. When the robots deadlock, that
or, through sharing collision circles with other robotsncameans that for the rest of time, no robots are allowed to move.
reach the collision circle of another robot without exitiagy Or, mathematically3t’ such thatLl(.t) = {0} V¢t > t'. By
overlapping collision circles. As shown in Figure 4(b), oob Lemmal[l\V35, this implies thaWi(t) = {0} vt > ¢ — 1. This
3 is not in the collision circle of robot 1, however it is in themplies that for each rountithat is in deadloci.!”) = W" =
same collision shape as robot 1, because by traveling throqui(t—l) = {0}. -

the collision circle of robot 2, robot 1 can reach the callisi
circle of robot 3. On the other hand, robot 6 is not in théheorem IV.7. Algorithm coordinatePath does not deadlock.

collision shape of robot 1 because there is no way to move intoWe analyse the operation of the collision avoidance algo-
the collision circle of robot 6 without leaving collisionrcles. .wh 1 2s 2 ‘method to move robots between two s6tsand
To help defiP? the collision shape, we first define a recursiy@i_ Initially, all robots inC; are placed in¥;, and fromW;,
helper setH;™, i:orrespondlng to robat; € B; at recursive mayements through; andL; are possible until the movement
stepn, as H"* = H" Ujeptn O and Y = 0, As into X, is possible. Based on the above descriptions, a
n — 0o, Hl_["l becomes the set of all robots in the currerfieadlock can only occur when no robot is allowed to move,
collision shape. We can now define a collision shape as: meaning that no winners have been selected, and there are no
o [n] available waiting robots to become winners.
Definition 1. Let H; " denote a helper set of robat;, as Proof: By LemmalIV8, coordinatePathdeadlocks when
defined above. Then collision shapg = lim,,_, o, Hi[”] LW — w® — - _ {0} and oW £ {0}. As oW 4
The collision circle and collision shape of a robot gefd}, andC” = L” uw” U 5™, this implies thatC!") =
updated as the algorithm proceeds. We Gé@ and C’Z.(t) to Si(t). Line[29 tests for this condition when all robots remaining
denote the collision circle and collision shape of robait in the collision shape have a priority 0é. This causes joint
round ¢ respectively. We now define three subsetsaﬁf) configuration space planning to be called, which is guasghte

used in our analysis. to find paths for all robots, if such paths exist, or a failuteew
. Wi(t) C Ci(t): The set of all robots in the collision shapePaths do not exist, but does not deadlock. If paths do edist, a
of robota; waiting for their turn to move of the robots in the suspended stsg@ are transitioned into

. LZ(.t) C Ci(t): The set of all robots in the collision shapghe waiting Statd/Vi(tH), on line[34. In otherword§l-(

of robota; that are allowed to move {0} and "™ = 5 The conditions for deadlock given in

t+1)

the highest priority robot in its collision circl®. Transitions
from L back toW occur when a robot loses its position as

the highest priority robot in its collision circle, when itas
moving. The robot would still be able to move towards its goal
if the higher priority robot was not there. Also, considee th
worst case scenario, where, as each robot selectediiroro
get into L, moves and encounters a robot of higher priorty,
causing it to transition from. back to W. Even assuming
Fig. 5. State diagram for AlgorithroordinatePath that L contains only one robot at a time, as the set of robots
is finite, and all robot ids are unique insid& or L, there
t+1 must exist at least one robot with highest priority, whichce
LemmalIV8 no longer holds aWi(w 710} " enteringL, can not be moved back?W asechereyis no other
Definition 2. A livelock occurs for algorithntoordinatePath higher prority robot to prevent its movement. This highest
when there is no robot in the collision shape that is able tpriority robot only has two destination states that it caacte
reach the sink state X through a finite set of state transstiory or X; either of which breaks the lodfy —L—1V. Therefore,

across the W, L, and S states. a scenario where a robot cycles betwé&n— L — W states

. . cannot exist. |
Lemma IV.8. Any cycle in the state transition graph that
contains stateS cannot be a livelocking cycle Lemma IV.12. It is not possible for robots to eternally stay

in the statelV’
Proof: Once a robot enters statg, there are only two

scenarios, stay irt or exit stateS by going only to state Proof: This would be considered a deadlock state. For
W. In the first case, there will come a time where either albbots to stay ini¥/, there must be a higher priority robot
robots have entered. This triggers a joint planning, which inside their collision circle that is selected to movelioAll
is guaranteed to not result in livelock. In the second cdwe, tmembers ofL. must remain in motion, otherwise they become
only way a robot inS is allowed to reachV is if another members ofS, and no longer the highest priority robot in the
robot makes a transition fromk to X. This implies, from collision circle, causing a new robot from¥" to be selected.
the definition of livelock, that algorithntoordinatePathis Robots in L can not remain perennially inside the collision
not in livelock, because robots outside of the coordinaté paircle as the path planner PRM generates a path to goal. If a
algorithm can make progress towards their tasks uninlabitdeasible path is found by the planner, the robot will leave th
B collision circle by transitioning froml to X. On the other

Lemma IV.9. There are only a finite number of cycles Orhand, if a feasible path cannot be determined, the robotente

paths through the state graph in Figuré 5 that could feasib@' -
result in a livelock scenario Theorem IV.13. Algorithm coordinatePatldoes not result in

Proof: Based on Lemmd M8, any cycle that movedVelock

through S can be eliminated from the list, which leaves Proof: Livelock is when the robots are still able to
only two possible states to move through. Then based on tieve, however they make no progress towards completing
properties of finite state machines, all cycles which result their goals. To do this, the robots must remain in states that
multiple visits of the same state in a row can be collapsed inallow motion, but never reach their goal locations (tasks),
the equivalent cycle visiting that state only once. As stigis, exit their collision shapes. Figufé 5 shows all of the pdssib
leaves us with only three potential cyclé¥, L, andIV — L. transitions between states of tleeordinatePathalgorithm.
B Through inspection of this figure, we can determine that
Lemma IV.10. It is not possible for robots to eternally stay“veIOCk oceurs when the robpts follow any cygle in the
in state L. graph.wnhout any robptfs. (_antermg stake This provides the
following livelock possibilities for the robots:

Proof: All robots in L must remain moving and may 1) Stay in\/
not remain stopped for any time not required for planning or 2) stay inZ
sensing. The paths returned by PRM are the shortest path i) cycle between states statés and L
the roadmap to the goal possition. Based on these two facts,

the rqbpt must either move out of t_he (.:oII|S|0n.s_hape., OreNtEemma [IVI1 shows that optiof] 3 cannot exist. And
a collision with another robot causing its transition eithreo

WorSd di Fth lisi ith a high .. lemma[IVI2 shows that optidd 1 cannot exist. Based on this,
or.> depending on ifthe collision was with a higher priority, » -5 conclude thatoordinatePatidoes not livelock. m
robot, or if the collision caused all feasible paths for thbat

to become blocked. []

temma [IVI0 shows that the optiofl 2 cannot exist.

V. EXPERIMENTAL RESULTS
Lemma IV.11. It is not possible for robots to eternally cycle

between setdl” to I and back tolV. To verify our approach, we have run several experiments

on the Webots robot simulator using a model of the Coroware
Proof: Transitions fromiW to L occur when a robot is Corobot robot, as well as on physical Corobot robots. The

TABLE |
MAPPING BETWEEN ENVIRONMENT PARAMETERS ANCL OAD VALUES to complete it; the variable for visits per taskKis) was varied

over 1, 2, and3. To present our results in a concise manner,

Tasks | Robots | Visits | Load we have used a parameter representing each robot's average
?o g i é;g; task load, given byl = Y2<T The different combinations

5 1 1 5 of T, R and Vis, and corresponding values df used for

10 3 2 6.67 our experiments are given in Talile I. User-defined constants
ig é ; 18 were set toy = 0.8 (Discount rate of MDP in Equatiof] 5)

15 1 1 15 andI’ = 1.5 (PLL parameter in Equatidi 3), unless otherwise

15 3 3 15 stated. Probability values used in the HMM were similar to

those given in Figurgl2, which were based on average times
for a robot for avoiding static and mobile obstacles witlia t
environments used for the experiments. All results werg-ave
aged overl0 simulation runs. We have compared the quality
of task ordering performed by our proposed technique with an
approach where the task ordering is done using CFNU [27]
- each robot selects the task that has the least cost on its
TRG from its current location, without modeling uncertést
in the inter-task paths or updating TRG edge availabilities
The CFNU algorithm switches tasks when another task is
closer to it than the currently selected task, as measured
using straight line distance. To enable comparison, batk ta
ordering approaches use the same underlying path planner
1 and multi-robot coordination mechanism, when necessaey. W
have reported three metrics for quantifying the perforneanc
of the algorithms - the distances traveled by the robots, the
number of replans (with and without task switches) and the
times (planning and locomotion) taken to visit all taskss@l

—— TRG
--e-- CFNU N

Switching Replans
Non-switching Replans

Switching replans
Non-switching Replans

%6 5 0w ow ® 4 s 8 1w B u B to understand only the performance of our MDP-based task
ot tosd selection method, we have reported the metrics separately f
© (d) single robot scenarios, whef&| = |Vis| = 1. That is,there

Fig_-Gh- A\(/jer%g% number of relplans by tl?(ach _rOEot whichh(a)lmglgtask is only 1 robot that has to visit all tasks once, and edge
e (0 G o el ok ST o0 I 590 CENU availabily is affected only by previously unknown ob
arranged in increasing orders for average robot task Ibagc) Switching effects due to communication uncertaintiesTaiskComplete
replans single robot case (d) Non-switching replans singb®t case messages sent by other robots do not arise.
Figured®(a) and (b) show the number of replans made by

each robot, resulting in and not resulting in task switches
Corobot is a 4-wheeB0cm x 30cm, skid-steer robot which respectively for the two algorithms for the different loaalues
we control in a differential wheel manner. It is equippedhwitshown in Tablé€ll. We observe that, on average, the TRG-based
an indoor Stargazer localization systeml[26] which prosidepproach results id0% less replanning an@1% less task
2D location and heading, Hokuyo laser distance sensor whighitching than the CFNU approach. The reduced planning and
provides a270° range up tobm in distance at a resolution oftask switching by the TRG-based algorithm can be attributed
%O, and wireless communications. The on-board computer hasits ability to reason more efficiently about task availitibs
an 1.6GHz Intel Atom 330 processor with 4GB of RAM. Thaising its costs and beliefs about paths in the MDP based
simulator provides a Gaussian distributed noise to sensr approach, along with real-time sensor data incorporated in
actuator motions. The environments have a sizd (k& 10 its decisions using the HMM. In contrast, the CFNU approach
m?; obstacles were placed at different locations within thases only Euclidean distances to select tasks and conggguen
environment. The number of task®')(was varied oveb,10 performs poorly. In Figurdd 6(c) and (d), the number of repla
and15. The task locations were selected in a way that if theresulting in and not resulting in tasks switches are shown fo
were a single robot in the environment following a closest firthe single robot cases. We see that the switching replans are
task selection strategy, it would cause the robot to swiiskd the same for both approaches because there are no othes robot
for 50% of the replans it does. When there are multiple robots the environment which could complete the task before the
one of them is selected arbitrarily and placed at a locatisabot reaches it first. We also see that the TRG performs fewer
that would effect the aforemention&6% task switching for non-switching replans.
replans. Any other robots are placed randomly in the envi-In Figures[T(a) and (b), we show the average time taken
ronment, while keeping an even distribution. For the défear for both approaches, this includes path planning and task
settings we have used, the robot positions are the samel foraatlering times, and, locomotion times for each robot, which
runs in an environment. The number of robad® (sed werd includes time taken to resolve inter-robot path conflicieigis
and3 . For each task a certain number of robots had to visitAlgorithm[3. The TRG-based approach takes much less time

00— to the CFNU approach.

. e We also observe that as the average task lbadf the
robots increase (from left to right on the x-axis), the dists
traveled by the robots increases. The robots using the TRG-
based approach travel distances betwe&6% (more) to32%

(less) than the CFNU approach, with an average improvement
of about6% (less distance traveled) across all experiments.
The TRG-based approach sometimes travels a small amount
more than the CFNU approach when the robot decides to
abandon its current task for another task. In that case, the
CFNU approach will switch as soon as the other task becomes
closer, which in some cases is the best decision, where as the
TRG-based approach will continue to follow its previousktas
even though another task is closer. In some cases this might
be the best thing to do because the closer task might be on
the other side of a wall that the robot has yet to discover and

4000

3000

Plan Time (s)
Navigation time (s)

Plan time (s)
8
8

S e e ™ actually require more distance to explore enough of the wall
4 6 8 10 12 u 16 : .
Load Load to realize that the task is no longer the closest; TRG perdorm
(©) (d) better in such scnearios. In some of the environments with a

Fig. 7. Average times taken by TRG and CFNU approaches. Tapiso larger load value, the TRG-based approach starts to perform
for multi-robot scenarios, bottom row is for single roboesarios. The left better.

column shows time for planning paths and solving the MDP F& TOP- ; ;

U problem. The right column shows time taken traveling betwéasks and We also tested our prpposed algorlthm on hySICaI Corobot
performing collision avoidance. Experiments performed different values '0bOts. We used the environment shown in Téable 1 (left) veher
of T, T and V'is. Values on the x-axis are arranged in increasing orders féhe white dots represent the tasks that the robot must Visis.
average robot task loafl. environment was also designed such that a CFNU closest-
task-first algorithm would switcs0% of the time. We tested

for a fixed value ofl' = 5.0, and tested folR| = {1,2},

Vis = {1,2}, and|T| = 5. Results were averaged over three
runs, and are shown in TallIé Il (right). In both environments
the robots were able to navigate and visit the tasks with the

e
Y

e
s

Perecnt switching replans

0.2 N — required number of visits. In comparing these results teeho
ol - - - i “n:za""' ew | shown in Figurd 6, we can see that the hardware performed
Load Load fairly similar. For example, Tablglll shows that the five sk
(@) (b) one robot, one visit environment had four switching replans

Fig. 8. Percent of replans resulting in a task switch (a) afles (b) single Which is within the margin of error for the switching replans
robot case

VI. CONCLUSIONS ANDFUTURE WORK

for both planning and navigation compared to the CFNU In this paper, we introduced the TOP-U problem where
approach. In this case, the TRG-based approach requiresroipots have to determine the order to visit a set of task
to 51% less planning time, and, up @% lower locomotion locations when the path costs between a pair of tasks can vary
and coordination times than the CFNU approach. This dgynamically as the robot discovers obstacles while naiwigat
because the TRG-based approach accounts for both the kndstween tasks. We proposed a data structure called a task
obstacles between tasks and the likelihood that the tadk wéachability graph (TRG) along with techniques to integrat
become unavailable. The CFNU approach behaves myopicdlig task ordering with uncertainty in path costs and aviilab
and selects the closest task to visit, which could be on thiees. Our analytical results show that our proposed atbori
other side of a large obstacle and require considerablaipign is optimal and complete. The algorithm’s performance was
and locomotion times to reach. In contrast, the TRG-basato evaluated extensively through experiments and wagrsho
approach uses the robots perception of the environmenttdoresult in reduced time and fewer computations (less task
weight the path costs to tasks with the corresponding patvitching) as compared to an algorithm that does not conside
belief to reduce the overall path costs. Note that when th@&certainty in path costs and task availabilities. As fatur
number of tasks is small, or the average task load per robotierk, we are considering analyzing situations with stricte
close to 1, both algorithms have comparable performance fmmnstraints such as a partial ordering over the task set. In
all three metrics as each robot has to visit only one task atite present work, multi-robot coordination is handled gsan
there is no task ordering required. Figukés 7(c) and (d) shdight-weight coordination mechanism where all robots,eptc

the average time taken by TRG and CFNU approaches in thee, stop. We are investigating techniques to integrateetig
single robot case as the average robot load increases. We lmainfast, coordination approaches to improve the cooriinat
see that our TRG approach takes less planning time compaoédobots, such as exchanging path plans and calculatingra pl

TABLE Il
OVERHEAD VIEW OF ENVIRONMENT USED FOR TESTING WITH2 COROBOT ROBOTS AND5 TASKS; WHITE DOTS REPRESENT TASK LOCATION$LEFT)
AND EXPERIMENTAL RESULTS

Rob. Vis. Dist. Traveled (cm) # Switches # Non-switches Plafime (s) Navigation Time (s)
1 1 2102 £ (349.94) 4+ (0) 0.67 + (1.15) 613.96 + (144.54) 1415.96 £ (238.87)
2 1 1130.45 £ (86.92) 2.83+(0.58) 2.5+ (1.32) 835.6 + (269.11) 746.86 £ (48.66)

2 2 6118.95 + (2689.5) 4.5 £ (1.5) 3.17 + (2.52) 760 + (372.83) 3921.43 + (1704.98)

in the joint configuration space, only when robots get withifn9] B. Gerkey and M. Mataric, “A formal analysis and taxonpnof
close proximity of each other. task allocation in multi-robot systemsThe International Journal
of Robotics Researchvol. 23, no. 9, pp. 939-954, 2004. [Online].
Available: | http://ijr.sagepub.com/content/23/9/93&mac:
[20] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-leas multirobot
REFERENCES coordination: A survey and analysig?toceedings of the IEER/oIl. 94,
no. 7, pp. 1257-1270, July 2006.
[1] R. Zlot and A. Stentz, “Market-based multirobot coomtion for [21] L. Kaelbling and T. Lozano-Pérez, “Integrated taskl amotion planning

complex tasks,1. J. Robotic Res.vol. 25, no. 1, pp. 73-101, 2006. in belief space,International Journal of Robotics Researatol. 32, no.
[2] W. Lenagh, P. Dasgupta, and A. Mufioz-Meléndez, “A gpajueuing- 9-10, 2013.
based algorithm for multi-robot task allocatiofRobotics vol. 4, no. 3, [22] J. Wolfe, B. Marthi, and S. Russell, “Combined task anation planning
pp. 316-340, 2015. for mobile manipulation,” ininternational Conference on Automated
[3] S. Rutishauser, N. Correll, and A. Martinoli, “Collatative coverage us- Planning and Schedulingforonto, Canada, 2010.
ing a swarm of networked miniature robot&bbotics and Autonomous [23] T. Cormen, C. Leiserson, R. Rivest, and C. Stdintroduction to
Systemsvol. 57, no. 5, pp. 517-525, 2009. Algorithms MIT Press, June 2009.
[4] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensiggdnomy [24] S. Russell and P. Norvidartificial Intelligence: A Modern Approach
for multi-robot task allocation,1. J. Robotic Res.vol. 32, no. 12, pp. Prentice Hall, June 2009.
1495-1512, 2013. [25] H. Garcia-Molina, “Elections in a distributed commgi system,"|lEEE
[5] G. Wagner and H. Choset, “Subdimensional expansion faltimbot Trans. Computersvol. 31, no. 1, pp. 48-59, 1982.
path planning,” Artif. Intell., vol. 219, pp. 1-24, 2015. [Online]. [26] Stargazer from hagisonic inc. [Online]. Available:
Available: | http://dx.doi.org/10.1016/j.artint.2014.001 http://eng.hagisonic.kr/cnt/prod/prod010102?uid&4datel D=2%$& $fieldName=$&%$
[6] I. Sucan and L. Kavraki, “Accounting for uncertainty ifmailtaneous [27] B. Woosley and P. Dasgupta, “Multirobot task allocatiwith real-time
task and motion planning using task motion multigraphs,”IHEE path planning,” inFLAIRS Conferenge2013, pp. 574-579.

International Conference on Robotics and Automatigh Paul, May
2012, pp. 4822-4828.

[7] H. Choset, W. Burgard, S. Hutchinson, G. Kantor, L. Ké&r&. Lynch,
and S. Thrun,Principles of Robot Motion: Theory, Algorithms, and
Implementation MIT Press, June 2005.

[8] R. Bohlin and L. Kavraki, “Path planning using lazy prmi ICRA
vol. 1, 2000, pp. 521-528.

[9] S. Lavalle, “Rapidly-exploring random trees: A new tofdr path
planning,” Tech. Rep., 1998.

[10] J. Gammell, S. Srinivasa, and T. Barfoot, “Informed*:rrOptimal
sampling-based path planning focused via direct samplifgamm
admissible ellipsoidal heuristic,” in2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Chicago,USA,
September 14-18, 20142014, pp. 2997-3004. [Online]. Available:
http://dx.doi.org/10.1109/IROS.2014.6942976

[11] K. Hauser, “Lazy collision checking in asymptoticatiptimal motion
planning,” inRobotics and Automation (ICRA), 2015 IEEE International
Conference onMay 2015, pp. 2951-2957.

[12] C. Voss, M. Moll, and L. Kavraki, “A heuristic approaclo finding
diverse short paths,” ilRobotics and Automation (ICRA), 2015 IEEE
International Conference qrMay 2015, pp. 4173-4179.

[13] M. Kneebone and R. Dearden, “Navigation planning inhbadalistic
roadmaps with uncertainty,” in International Conference on
Automated Planning and Schedulin@2009. [Online]. Available:
http://aaal.org/ocs/index.php/ICAPS/ICAPSO09/papewy717/1113

[14] P. Missiuro and N. Roy, “Adapting probabilistic roadpsato handle
uncertain maps,” irRobotics and Automation, 2006. ICRA 2006. Pro-
ceedings 2006 IEEE International Conference 2006, pp. 1261-1267.

[15] V. Desaraju and J. How, “Decentralized path planning rfaulti-agent
teams with complex constraintsAutonomous Robatsol. 32, no. 4,
pp. 385-403, 2012.

[16] R. Luna and K. Bekris, “Efficient and complete centratizmulti-robot
path planning,” inInternational Conference on Intelligent Robots and
Systems, IROS 2012011, pp. 3268-3275.

[17] B. Marthi, “Robust navigation execution by planninghglief space,” in
Proceedings of Robotics: Science and Syste3gsney, Australia, July
2012.

[18] S. Loibl, D. Meyer-Delius, and P. Pfaff, “Probabilistiime-dependent
models for mobile robot path planning in changing environtag
in 2013 IEEE International Conference on Robotics and Aut@nat
Karlsruhe, Germany, May 6-10, 2013013, pp. 5545-5550.

http://dx.doi.org/10.1016/j.artint.2014.11.001
http://dx.doi.org/10.1109/IROS.2014.6942976
http://aaai.org/ocs/index.php/ICAPS/ICAPS09/paper/view/717/1113
http://ijr.sagepub.com/content/23/9/939.abstract
http://eng.hagisonic.kr/cnt/prod/prod010102?uid=11$&$cateID=2$&$fieldName=$&$orderBy=

	I Introduction
	II Related Work
	III Task Ordering with Path Uncertainty
	III-A Dynamically Updating Edge Cost and Availability
	III-B TOP-U Solution using Markov Decision Process
	III-C Robot Navigation and Multi-robot Path Coordination Algorithms
	III-D Coordinating paths between robots to avoid collisions

	IV Theoretical Results
	IV-A Task Selection Algorithm Properties
	IV-B Completeness of Coordination Algorithm

	V Experimental Results
	VI Conclusions and Future work
	References

