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Abstract
Spatial multi-agency has been receiving growing attention from researchers exploring many of the aspects and

modalities of this phenomenon. The aim is to develop the theoretical background needed for a multitude of

applications involving the sharing of resources by more than one agent. A traffic management system is one of

these applications.  Here, a large group of mobile robots that are operating in communication-limited, and

sensory-limited modes are required to cope with each others presence as well as the contents of their

environment while preserving their ability to reach their preset, independent goals.  This work explores the

construction of a decentralized traffic controller for a large group of agents sharing a workspace with stationary

forbidden regions. The suggested multi-agent motion controller is complete provided that a lenient condition

on the geometry of the workspace is upheld. It has a low computational effort that linearly increases with the

number of agents. The controller is also self-organizing; therefore, it is able to deal, on its own,  with incomplete

information and unexpected situations. In addition to the above, the controller has an open structure to enable

any agent to join or leave the group without the remaining agents having to adjust the manner in which they

function. To meet these requirements, a definition of decentralization is suggested. This definition equates

decentralization to self-organization in a group of agents operating in an artificial life mode. The definition is

used to provide guidelines for the construction of the multi-agent controller. The controller is realized using the

potential field approach.  Theoretical developments, as well as simulation results, are provided. 
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I. Introduction
The scarcity of resources in modern environments makes it necessary for the agents occupying that environment

to share available resources. Whether it is the congested airspace of international airports, roads and highways

at rush hours, or the busy downtown sidewalks of a metropolitan city, the agents must make intelligent use of

the resource of space for each to safely reach its target, hopefully, along the shortest path that the situation

permits. Multi-agent systems are the focus of intensive investigation by researchers and engineers [52,53]. The

main goal of research in this area is  to conserve resources via efficient utilization, and/or to tackle large tasks

 cooperatively. This goal is seriously hindered by problems that can arise as a result of two or more agents

attempting to utilize a resource in conflicting ways (e.g. trying to occupy the same space at the same time).

Designing social agents is a difficult task. This is due to the simple fact that coexisting in an environment

changes the nature of the agents from that of individuals into that of interconnected members of a group

affected by each other’s actions. An improper action on the  part of an agent can directly (by harming other

agents) or indirectly (by failing to fulfill a role that is vital to others) have an adverse effect on other agents. The

affected agents may not necessarily be in the immediate physical proximity of the offending agent (a chain

effect). To shed some light on the difficulties encountered by a multi-agent system, consider a daily act of

planning which people engage in with little, if any, attention to its complexity. The act is the simple trip from

home to work and back. In a metropolitan city such a process involves thousands if not millions of participants,

each of whom is only aware of his/her destination. The hard-to-acquire information about the constituents of

the environment and the intentions of the other agents is not expected to be of much help. Any attempt to use

this information to derive  a priori known, conflict-free, goal-oriented trajectories  will face serious difficulties.

In societies of individually  motivated agents, communication costs are prohibitive [56]. As for  the intellectual

labor needed to manage such a process in order to avoid conflict and guarantee that each agent will safely reach

its target, each path has to be checked, along with goal satisfaction, for possible conflict with the remaining N-1

paths of the other agents (N agents are assumed to be participating in the above process). This is highly  likely

to translate into an exponential complexity (NN) that is more than enough, on its own, to cripple any attempt of

a central controller to coordinate the behavior of such a large group. It is not difficult to extrapolate the actual

level of difficulty a realistic, large scale, multi-agent system faces. In such a situation no a priori considerations

are given, or, in the opinion of this author, can be given to whether a path selected by an agent conflicts with

the ones selected by others. The agents are highly unlikely to have a priori knowledge of  all or any of the agents

sharing their environment, let alone knowing their intentions. Amazingly, such a massive, purposive,

organizational system seems to almost always operate well in the face of incomplete information  and the

perceived need for  highly intensive  computational requirements. 

The above example is just one facet of multi-agent systems. Spatial multi-agency has been applied in air traffic

[1-3], and vehicular traffic [4] management systems, industrial assembly [5], computer game design [6],
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mapping [7], and automated reconnaissance systems [8]. Understandably, the literature abounds with work on

the theoretical foundation of individually motivated multi-agent systems, with coordination and conflict

management [9-12] being the central topic of investigation. Although an intuitive assessment of the

computational demands  such systems may require has been supplied at the beginning of this section, it has been

theoretically shown that the general multi-agent problem is PSPACE-complete [12,6]. This proves that the

complexity of searching for a solution may have a lower bound that is exponential in the number of agents. 

There are two main focal points in the study of mobile multi-agents:  the agents are either viewed as a collective

whose motion is motivated by a single group goal (group-motivated), or they are viewed as  individuals each

motivated by its own goal (individually-motivated).  In the first type motion of agents as a team or a flock is

studied with emphasis on deriving inter-agent coordination mechanisms for constructing adaptive spatial

formations. Several approaches were considered for such a task. McInnes [13] and Schnider et al. [14] used the

potential field approach for constructing a group navigator. Graph-theoretic techniques treating a flock as a

spatially-induced graph were examined in [15-17]. Distributed nonlinear control schemes that are able to

coordinate the behavior of the agents in a manner that would give rise to complex formation maneuvers by the

group were suggested in [18-20]. Other approaches to constructing formations using self-organization, heuristic-

reactive, and qualitative techniques may be found in [21-22] respectively. A method utilizing the motor schema

approach for such a purpose [65] may also be found in [23,66]. 

Purposive agents having independent goals may be divided into two main classes. The first class is that

concerned with planning motion for one agent only that is sharing its workspace with a non-cooperative group

of agents. In this scenario the rest of the agents do not reactively adjust their paths to accommodate the presence

of the agent concerned. Techniques dealing with such a situation may be found in [24- 28]. The second class

presents a cooperative scenario where all agents simultaneously participate in reaching an accommodating

arrangement that enables all of them to reach their respective destination. Cooperative planning techniques are,

in general, more difficult to design than non-cooperative ones. Examples of cooperative methods may be found

in [29-43]. Two main approaches for the construction of such planners are based on geometry or potential fields.

While provably-correct, geometry-based methods that can effectively handle up to a  medium size group do exist

[29-34], in general, the prevalently centralized nature of such techniques results in an exponential complexity

that makes their use with a large number of agents undesirable.  Potential field methods [35-39], on the other

hand, may be easily configured in a decentralized mode. The advantages of decentralization are numerous, some

of which are: low complexity, high reliability and adaptability. While many approaches were explored for

building decentralized planners [39-43], multi-agent, decentralized, planning is still a challenge. The main two

issues in these approaches seems to be: proving the correctness of the planning procedure and better control over

complexity growth and the process of factoring the influence of context and constraints in the behavior

generation process.  In the few cases where a provably-correct decentralized planner was suggested a restrictive
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view of decentralization  was adopted. For example, in [39] a provably-correct, potential field-based, multi-

agent planner was proposed. However, decentralization was considered only in the sense of each system having

no knowledge of the targets of the other systems. 

      Figuer-1: A partial taxonomy of multi-agent systems. 

The focus in this work is on constructing a decentralized, potential field-based, cooperative, individually-

motivated, multi-agent motion planner (a partial taxonomy of multi-agent systems is shown in figure-1. Work

attempting to classify multi-agent systems may be found in [44,45]). The planning problem tackled here is a

practical, special case of the general spatial, multi-agent planning problem that imposes no constraints on the

environment. Special attention is paid to developing a definition for decentralization capable of supporting the

construction of a planner with the following properties: 

1-provably-correct and complete, provided that a lenient condition on the geometry of the workspace is upheld

(i.e. if a solution exists provided that the condition is upheld, the planner will find it; otherwise, it indicates that

the problem is insolvable);  

2-flexible (i.e. the event of agents joining or leaving the group will not necessitate that each member of the

collective accommodate this change in the method it uses to generate actions. Only the agents physically

proximate to where the change occurred have to carry out such an adjustment. To the rest of the collective, the

agents newly arriving or departing remain transparent) ;

3-fault tolerant (i.e. if during operation one or more agents unexpectedly fail, the remaining agents will still be

able, with a high probability, to continue unaffected to their targets); 

4-computationally feasible for a large group-the planner suggested here has linear complexity in the number of

agents; 

5-functional in informationaly-deprived situations where the static environment need not be a priori known; also

the agents need not a priori know each other. 
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    Figure-2: Layout of the suggested, multi-agent planner

The planner is divided into two stages (figure-2): 

1- a stage that consists of N single-agent planners each of which is acting independently of the others as if it

were the only active entity utilizing the workspace. Each one of these planners is referred to as the purpose field

controller (PRF). Their  task is to steer the corresponding agent, in a constrained manner, to it’s a priori

specified target. 

2- an aggregation module whose primary function is decentralized conflict management. This module intervenes

only when a conflict situation is in close proximity to an agent. It temporarily modifies the guidance actions

from the PRF so that the agent is steered along a conflict-free path during that period. The conditioning action

from this module quickly dissipates after the conflict is resolved, giving back full control over motion to the PRF

component. This module is called the conflict resolving field (CRF) control. 

The N single-agent planners (PRF controllers) used for building the multi-agent planner are constructed using

an existing approach which the author participated in developing. The approach employs evolutionary, hybrid,

pde-ode controllers (EHPCs) which are constructed using potential fields that are set in an artificial life (AL)

mode. The general framework for such a type of planners was presented in [46]. Different realizations of this

framework may be found in [47-50]. 

The main contribution of the paper lies in the construction of an evolutionary aggregation module that conforms

to the guidelines of AL [51]. The module operates in the manner described above,  is provably-correct, and, most

importantly, the effort it exerts for guidance and conflict mediation is linear in the number of agents. The module

is designed for working with EHPCs. The conflict resolving action modifier it employs is constructed from an

underlying vector potential field. As was demonstrated in [50], an action generated from an underlying vector

potential has superior motion steering capabilities compared to one generated from an underlying scalar

potential.  
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This paper is organized as follows: section II of the paper discusses centralized and decentralized control. It also

provides an interpretation of decentralization using the artificial life approach to behavior synthesis. The multi-

agent motion control problem is formulated in section III. A realization of the controller is suggested in section

IV. Section V provides an analysis of the controller’s ability to safely drive each agent to its target. The behavior

of the suggested controller is explored using simulation experiments in section VI, and conclusions are placed

in section VII. 

II. Centralized Versus Decentralized Control
In this section the general properties of centralized control systems are briefly  presented. A definition of

decentralization that is derived from self-organization in a collective of agents set to operate in an AL mode is

proposed for the multi-agent case. With the help of the potential field approach, the definition is used in section

IV to realize the CRF and PRF control components used in constructing the multi-agent controller. A general

discussion of multi-agent systems along with a comparison between centralized and decentralized control may

be found in [52,53] and [54,55] respectively. 

A: Centralized, multi-agent systems: 

Whether it involves one or more agents, successful, context-sensitive, purposive behavior requires the presence

of a process for generating a regulating control action . This process receives data from the environment, the

agent(s), the target(s), and the constraints on behavior, and converts them into a control action that should

successfully propel the agents, in a constrained manner, towards their goals. There are two ways for generating

such a regulating action: a centralized approach, and a decentralized approach. 

  

     
Figure-3: Centralized approach to control 

The centralized approach has a holistic-in-nature, top-down view of the behavior synthesis process. Here, a

central agent that has a duplex communication link to each member of the group simultaneously observes the
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states of the agents and the environment, and processes the database in a manner that is in accordance with the

aim of the group and the constraints on behavior. It then generates synchronized sequences of action instructions

for each member. The instructions are then communicated to the respective agents for them to progressively

modify their trajectories and safely reach their destinations (figure-3). In this mode of behavior, the generation

of the constraint-satisfying, goal-fulfilling, conflict-free solution (i.e. sequence of state-control pair) begins by

constructing the hyper action space  (HAS) of the group. HAS contains the space of all admissible point actions

which the agents may attempt to project. The HAS is then searched for a solution that is in turn communicated

to the agents. The agents reflexively execute the solution trusting that their actions will lead to the desired

conclusion. It is a well-known fact that, in  real  life, any solution generated by a centralized mechanism is short

lived. The dynamic nature of real environments will cause a mismatch between the conditions assumed at the

time  the controller begins generating the solution, and the actual conditions at the time the solution is handed

to the agents for execution. Despite the attempt to alleviate this problem by equipping the agents with local

sensory  and decision making capabilities, large scale, centralized systems  still suffer  serious problems, some

of which are stated below: 

< Almost all centralized planning and control problems are known to be PSPACE-complete with a worst case

complexity that grows exponentially with the number of agents. The large number of agents a traffic system

contains  will prevent a central controller from adapting to environmental changes in a timely manner, if not

crippling the control process altogether.

< Centralized systems are inflexible in the sense that any changes to the characteristics of one or more agents

may translate into a change in the whole HAS. This makes it necessary to repeat the expensive search for a

solution. In turn, the desirable property that the size of the effort needed to adjust the control be commensurate

with the size of changes in the setting is not satisfied. 

< Centralized systems are prone to problems in communication and action synchronization. This makes it

difficult to reliably operate a large scale system even if the central planner has the computational assets needed

to meet the demands of a realistic environment. 

< Centralized systems are not robust in the sense that the failure of one agent to fulfill its commitment towards

the group could lead to the failure of the whole group. 

B: Decentralized multi-agent systems: 

In real-life, no agent, no matter how sophisticated it is, has omniscient awareness of its surroundings, let alone

infinite resources to instantly store and process data. Sometimes, even reliable communication links between

the central agent  and the others are difficult to establish. Communication may even be impossible due to the

lack of a universally accepted technical language, even vocabularies. The above are a  few reasons why central

planning strategies may not succeed with  real-life, large scale systems. Ruling out the feasibility of a central
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planner leaves only the option of the regulating control action arising from the agents themselves. The fact that

the agents possess only local sensing, reasoning, and action capabilities  makes it impossible to capture a

complete spatial and/or temporal representation of the process. This, in turn, makes it impossible to build an

HAS.

Obviously, it is not feasible for agents in a large group with distinct goals to be a priori aware of each other’s

presence, to communicate with each other  or with a central agent regarding advice about what action to take.

The only remaining option is for each agent to make its own decision on how to act based on the sensory data

which the agent dynamically extracts from its  local  surroundings (Figure-4). Knowing  that  there  is  more than

one interpretation of  decentralization, the  author considers a multi-agent system  decentralized if each agent

in the group is independent from the others in sensory data acquisition, data processing, and action projection.

In a decentralized system, these faculties are configured in a mode that would give rise to coordination in the

group without a coordinator. In other words, the group is capable of self-organization. Unlike centralized, top-

down approaches, self-organization is a bottom-up approach to behavior synthesis where the system designer

is only required to supply the individual agents with basic, “self-control” capabilities. The overall control action

that shapes the behavior of the agents evolves in space and time as a result of the interaction of the agents

between themselves and with their environment. Some properties of decentralized systems that conform to the

above definition are: 

<No need to search or, for that matter, construct the HAS of the group in order to generate a solution. For a

decentralized system, the solution emerges as a result of the agents interacting among themselves and with their

environment. 

<No inter-agent communication, or communication with a supervisory agent. All that an agent is required to do

is to observe (not communicate with) other agents in its local neighborhood. No preexisting awareness of the

whole group, or the whole environment is required. 

<Synchronous behavior being an emergent phenomenon (instead of an imposed one) that results from

asynchronous interaction. 

<The cost of computing the control in the group grows linearly with the number of agents. 

<Decentralized agents form open systems that enable any agent to join or leave the group without the others

having to adjust the manner in which they process information or project action.  This is a consequence of each

member of the group being able to  independently sense its environment,  process data, and actuate motion. 

< Unlike centralized systems which are informationally-closed, and organizationally-open, decentralized

systems are informationally-open and organizationally-closed. 
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     Figure-4: Decentralized approach to control

The difference between centralized and decentralized systems goes far beyond the manner in which the behavior

generation faculties are related to the agents. It reaches as deep as the process enabling the system to generate

the information needed for behavior synthesis. Centralized systems use reasoning coupled with search as the

driver of the action selection process (it ought to be mentioned that function(al) minimization is a form of

search). The search of the system’s space of possible actions for a feasible solution may be carried out in a brute

force manner, or in an intelligent manner that utilizes heuristics and side information for speed.  No matter what

form  the search assumes or how it is applied, systems relying on search have problems (some of which are

mentioned above)  if they operate in a dynamic environment. On the other hand, the action selection driver in

decentralized  systems that satisfies the above requirements is a synergy-driven evolution. In this mode of

behavior information synthesis is the result of the synergetic interaction of the agents among themselves under

the influence of their environment. The information that is  a priori encoded into each agent in the form of self-

capabilities to project actions is usually simple and not adequate, on its own, to handle the usually complex

planning task which faces the group. It is synergetic interaction within the context of the environment that

augments the level of information of the group to a level that is sufficient for the members to carry out the task

at hand (an act of knowledge amplification). 

Artificial life (AL) [51] seems to provide a powerful paradigm for explaining the behavior of decentralized

systems. It also provides constructive guidelines for their synthesis. In an AL system, the members of the group

are equipped with the proper elementary, a priori known  capabilities for self-control which are called the Geno-

type of behavior (G-type). On the other hand, the overall control action that actually  governs the behavior of

the whole group evolves in space and time as a result of the interpretation of the G-type in the context of a

particular environment (a process of morphogenesis [64]). The whole control action is called the Pheno-type

(P-type) of  behavior. This  behavior cannot be exactly,  a priori, predicted; only certain  aspects of it  can be
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a priori known. It is very flexible, highly  adaptive, and far exceeds in complexity and informational content

the G-type control. There are two requirements for constructing a proper G-type control action: 

< Each agent must individually develop a control action to drive it toward its goal. Such a control need not take

into consideration the control actions generated by the other agents of the group.

< Each agent must have the ability to generate a control that can resolve conflict with other agents through

bilateral interaction. 

III. Formulation
In this section the problem of decentralized, multi-agent motion planning in the face of incomplete information

is formulated. Here, an agent (Di) is assumed to be massless, and occupy a set of points that forms a multi-

dimensional, hyper sphere (x0RM) with a radius Di and a center xi :     

                                                i=1,..,L,        (1)D (x , ) {x: x x }i i i iρ ρι = − ≤

                                                               

                                                     Figure-5: Zones related to the agent 

where L is the number of agents occupying the  workspace (figure-5).  An enlarged circular region (D`
i) with

radius D`
i ( D`

i > Di ) and center xi  is assumed to be surrounding Di: 

                                                                                          i=1,..,L,         (2)D (x , ) {x: x x }i
`

i i
'

i i
'ρ ρ= − ≤

                                                                                  D D .i i
`⊂

here and in the rest of the paper Di and Di` are used to refer to Di(xi, Di) and Di`(xi, Di`) respectively. The ring

Si (Si = D`
i - Di)  surrounding Di marks the region illuminated by the sensors of the i’th agent. The time between

an agent sensing an event and releasing a control action (data processing and action release delay)  is assumed

small enough to be neglected. Therefore, this region is a dual sensory and action zone. Besides the agents, the

environment is assumed to contain static, forbidden regions (O) which the agents must not occupy at any time

(O1Di/N, œt, i=1,..,L). The agents are  only allowed to  exist in the workspace S (S=RM -O). The boundary of

the forbidden regions is referred to as ' ('=MO). The destination of  the i’th  agent is  surrounded by the

spherical region Ti  with a center Ci  (figure-6).  Ti`s are chosen so that: 
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  xi   = Ci                                                    (3)D Ti i
` ⊂

                  i…jT Ti j∩ ≡ φ

i=1,....,L. O Ti∩ ≡ φ
The last two conditions, respectively, mean that the goals of the different agents should not be conflicting, and
should be attainable (i.e. lie inside S). The partial knowledge the i’th agent has about its stationary environment
is represented by '`

i ( ' g '`
i g N, i=1,..,L). The discrete-in-time, binary variable Qi (Qi 0 {0,1}) marks the event

of a novel discovery of parts of a forbidden region, i.e. 

                                                   (4)S ,i ∩ ≠Γ φ
and    ((Si1')  -  (Si1') 1'`i ) … N            i=1,...,L. 
If at any instant in time (tn), this condition becomes true, the content of  '`

i is adjusted so that: 

                                          (5)Γ Γ Γi
`

n i
`

n-1 i(t ) (t ) (S ).= ∪ ∩

If such a situation transpires, Qi(tn) is set to 1, otherwise, its value is set to zero. The i’th agent also actively
monitors  its immediate  neighborhood for  the presence  of other agents.  It forms the set:

             ,              (6)χ φi
j

i j i(t) {x = D :S D , j 1,..,  K i j}(t),= ∩ ≠ = ≠∪ j

where Ki(t) is the number of agents lying in the proximity of the i’th agent at time t.   Designing the multi-agent
controller requires the synthesis of the dynamical systems:

                    i=1,..,L,              (7)x x C Qi i i i i i i

•
= h ( , , , , )`χ Γ

such that for the overall system:    ,                           (8)X (X, C, Q, , )`•
= H Ψ Γ

                      i=1,...,LLimx (t) C
t i i→∞

→

                 œt, i…jD Di j∩ ≡ φ

        O D ,i∩ ≡ φ

where xi 0 RM, X=[x1 ... xL]T, C= [C1 ... CL]T, Q=[Q1 ... QL]T, '`=['`
1...'`

L ]T, H=[h1 ... hL]T, Q=[P1 ... PL]T  .

   

Figure-6: Goal oriented agents in a cluttered environment
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IV. Controller Design
As  discussed earlier  in the paper, adopting an AL approach to behavior synthesis reduces the job of the

designer to the construction of only the self-controllers (G-type control) of the agents as individuals. The overall

control action that regulates the behavior of the agents as a group operating in the context of some environment

(P-type control) evolves as a result of the constrained synergetic interaction among the agents. The designer is

required to synthesize controls for the systems: 

      i=1,..,L .              (9)x h (x ,C ,Q , , )i i i i i i
`

•

= =i ui χ Γ

The i’th self-control is divided into the following three components: 

               (10)u ug uc uoi i i i= + +(x ,C ,Q , ) (x , ) (x , ),i i i i
`

i i i i
`Γ χ Γ

where ugi is the PRF component of the i’th self-control, uci is the CRF component, and uoi is an optional control

component that is included as an extra precaution against collision with stationary obstacles. uoi is taken as the

positive gradient of a potential field constructed as the inverse distance to the obstacle closest to a robot. In

practice the potential is substituted for by a signal derived from a proximity range sensor. Details about how to

construct uoi may be found in [57]. It ought to be mentioned that ugi includes, among other things, the ability

to avoid collision.

A. The PRF Control 

The PRF controllers (self-controllers) are constructed using an evolutionary, hybrid, pde-ode control framework.

This section provides only a brief overview of EHPCs. For a detailed discussion of EHPC, and a proof of

correctness the reader is referred to [46], [47-50], and [49] respectively. 

An EHPC (figure-7) consists of two parts: 

1- a discrete time-continuous time system to couple the discrete-in-nature data acquisition process to the

continuous-in-nature control action release process;

2- a hybrid, PDE-ODE controller to convert the acquired data into in-formation that is encoded in the structure

of the micro-control action group.

The EHPC representing the i’th PRF control component is: 

           (11)ugi = −∇V (x ,C ,Q (t ), (t ))i i i i n i
`

nΓ

so that for the gradient dynamical system: 

 ,            (12)x V (x ,C ,Q (t ), (t ))i i i i i n i
`

n

•
= −∇ Γ

           i=1,..,L,  n=1,...,ZLimx (t) C
n Z
t

i i→
→∞

→

and: œt, D Oi ∩ ≡ φ
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where n represents the n’th instant at which condition (4) becomes valid (tn ) , Z is a finite, positive  integer,  and

L is the gradient operator.  At tn , which marks the  transition of  Qi(tn)  from 0 to 1, first the contents of  '`
i are

adjusted according to (5). The structure of the guidance field of the EHPC is then adjusted to incorporate the

newly acquired data.

    Figure-7: The structure of  an EHPC

An EHPC assumes a specific form depending on the boundary value problem (BVP) used for synthesizing the

potential Vi . The Dirichlet BVP, shown in equation 13, is used here for generating the PRF control components:

x0RN- '`
i-Ci                    (13)∇ ≡2

iV (x) 0

subject to:           .V 0| & V 1|i X C i Xi i
`= == ∈Γ

A sample of the behavior generated by an EHPC using such a BVP [47] is shown in figure-8. For a proof of

correctness, the reader is referred to [49].

         

                Figure-8: Three successive attempts of a point agent to navigate an unknown environment

B. The CRF Control 

There are only two ways conflict could arise in a workspace occupied by more than one purposive, mobile

agent, each of which is capable of safely reaching its target in the absence of the others:  
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1- Two or more agents may attempt to occupy the same space at the same time. 

2- Two or more agents may block each other’s way preventing movement towards the targets. 

A conflict resolving control (uci) that can prevent the above two events from happening will enable the utilizing

agent to reach its target. It is obvious that an agent can prevent another from moving towards it, hence occupying

the same space it is using, by exerting a force that is radial (ucri) to its boundary (i.e. pushing the other agent

away from it, figure-9a). On the other hand, an agent can prevent others from blocking its path by exerting a

force that is tangential (ucti) to its boundary (i.e. moving out of the way, figure-9b)

                

 Figure-9a: Radial component of the CRF        Figure-9b: Tangential component of the CRF

The CRF component is the sum of the above two actions: 

                                                      uci =  ucri + ucti .             (14)

The radial component of the control (ucri) may be constructed as: 

       , (15)ucri i
i i

i i

( x x )
Vr ( x x )
Vr ( x x )

= −
∇ −

∇ −
σ

where both the weighting function F, and the scalar potentials Vr’s are positive, spherically symmetric,

monotonically decreasing  functions whose values  are zero for *x-xi*$D
`
i . As  for ucti , it is constructed as:

               L@Ai/0,             (16)uct
A
Ai

i

i

= −
∇ × −
∇ × −

σ( x x )
(x x )
(x x )i

i

i

where L@ is the divergence operator, and Ai is a vector potential field [50] selected so that its gauge is zero, 

      .                         (17)∇ − ∇ × − ≡Vr ( x x ) (x x ) 0i i
T

i iA

This means that a vector potential field ( Ai ) can only generate a tangent circulating field. 

For the local tangent fields to form a continuous, global tangential action that has the potential to push the

interacting agents out of each other’s way and prevent deadlock, all the individual tangent fields must circulate

along the same direction (figure-10). 



15

    

   Figure-10: Same local circulations guarantee same global circulation
                     

The overall controller governing the i’th agent is described by the dynamical system: 

                                                        (18)x [ ]i i

•
= + + +ug ucr uct uoi i i

      = −∇ +V (x ,C ,Q (t ), (t ))i i i i n i
`

nΓ

σ( x x )
Vr ( x x )

Vr ( x x )

(x x )

(x x )
i j

i i j

i i j

i j

i jj 1
j i

K (t)i
−

∇ −
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+
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∇ × −
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⎣
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⎢

⎤

⎦
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=
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∑
A

A
i

i

∇Vo (x , ),i i i
`Γ

where uoi = LVoi(xi, '`
i), and Voi is a scalar, repelling potential field  that is strictly localized to the vicinity of

the obstacles. The dynamical equation governing the behavior of the collective is: 

                                (19)

x

x

x
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  V. Motion Analysis
A detailed proof of the ability of the agents, individually, to reach their respective destinations in an unknown

cluttered environment may be found in [49]. While it is not hard to guarantee that  the robots avoid collision

with each other and with the obstacles by making the barrier controls (uoi , ucri) excessively strong (some

techniques set the strength of the control to infinity at the inner boundary of the robots [57]), their ability to

converge to their respective destinations,  as a group,  needs careful examination.  In the following it is shown

that the first order dynamical systems in (18) are capable of driving the robots from anywhere in the workspace

to their respective destinations provided that the narrowest passage in the workspace is wide enough to allow

the largest two robots to pass at all times (i.e. no tight passages are allowed). 

A. Proof of Convergence: 

Here, it is shown that under certain conditions the solution of the system in (19) is globally, asymptotically

stable. The proof is dependent on a theorem by LaSalle (Theorem-3, [58], pp. 524]. The theorem is restated

below with minor changes to the notations. 
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Theorem: Let  =(X) be a scalar function with continuous first partials with respect to X.  Assume that :
1-    œ X … C,                        (20)Ξ( )X > 0

2-  œ X .Ξ
•

≤( )X 0

Let E be the set of all points where , and M be the largest invariant set in E. Then every solution of theΞ
•

= 0

system:                          (21)
X (X, C, Q, , )`•
= H Ψ Γ

bounded for t $0 approaches M as t 64 .

Proposition-1: For the system in (19), there exists a set of uct’s that can guarantee

                     (22)limX(t) C,
t→∞

→

provided that: 1- for the gradient dynamical systems: 

      ,             (23)x V (x ,C ,Q (t ), (t ))i i i i i n i
`

n

•
= −∇ Γ

                     i=1,...,Llimx (t) C
t i i→∞

→

2- Di 1 Dj /N,       i…j
Di 1O / N, 

3-       œ x` 0S     there-exists xc , such than 
  x`  0 { x : * x - xc* # > }   d S , 

where > = D`1 +  D`2 , where D`1 and  D`2 are the expanded radii of the two largest robots in the group. 

The third condition guarantees that nowhere in S will the geometry of the environment prevent the agents from

resolving a conflict. The inability to resolve a conflict is the result of an agent being forced  to project motion

along environmentally-determined degrees of freedom (Figure-11). The forced pattern of motion may not lend

itself to the resolution of the conflict. 

  Figure-11: Restrictive environments force a priori determined spatial patterns on movement

Its is important to guarantee that there always exists a local, simply-connected region that is large enough to

enable any two robots to interact. This ensures the realization of conflict resolution no mater what pattern of

motion the agents arrive at. 

Proof: consider the following Lyapunov function candidate: 

        ,  (24)Ξ(X) V (x )i i
i 1

L
= ∑

=

where Vi (xi) is used to refer to , and  Voi (xi) refers to Voi (xi , '`
i). It was shown in [49]V (x ,C ,Q (t ), (t ))i i i i n i

`
nΓ
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that harmonic potential fields are Lyapunov function candidates, i.e.   for   xi= Ci, and   forV (x ) 0i i = V (x ) 0i i >

xi…Ci. Therefore the above sum is a valid Lyapunov function candidate, i.e.   for   X= C, and  Ξ( )X = 0 Ξ(X) 0>

for X…C . The time derivative of = may be computed as: 

                       (25)d
dt

V (x ) d
dt xi i

t
i

i 1

L
Ξ = ∇∑

=

         
= ∇∑ − ∇ +

=
V (x ) [ V (x )i i

t

i 1

L

i i

            σ( x x )
Vr ( x x )

Vr ( x x )

(x x )

(x x )i j
i i j

i i j

i j

i jj 1
i j

K (t)i

−
∇ −

∇ −
+
∇ × −

∇ × −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∑ +
=
≠

A

A
i

i

∇Vo (x )].i i

The above expression is examined term by term to determine the nature of the time derivative of  =.  It is

obvious that the term: 

           (26)− ∇∑ ∇
=

V (x ) V (x )i i
t

i 1

L

i i

is negative definite with a zero value (stable global equilibrium) at and only at xi = Ci , i=1,..,L, (X=C). As for

the term: ,             (27)∇∑ ∇
=

V (x ) Vo (x )i i
t

i 1

L

i i

One must first notice that LVo is a local field that is strictly limited to a thin narrow region surrounding '. Its

value is zero everywhere else in S. By construction, the field lines of LVoi emanate normal to ' (in order to

drive the robot away from the obstacles): 

                (28)
∇ =

∈⎡

⎣
⎢Vo(x )

(x )
0

x
elsewherei

i i i
`α Γn

where n is a unit vector that is normal to 'i`, and " is a smooth, positive, monotonically decreasing  scalar

function with a value set to zero a small distance (,) away from the boundary of the obstacles (xi
tn), i.e. "(xi)=0

for xi
tn > ,. The BVPs used for constructing the potential field associated with the PRF control (Vi) admits only

two types of basic boundary conditions (BCs): 

1- homogeneous Neumann BCs:

xi = '`
i                    (29)

∂
∂n

ni i i i
tV (x ) V (x ) 0,= ∇ ≡

2-homogeneous Dirichlet BCs:      i iV (x ) 1,=

which in turn makes:              (30)
∂
∂n

ni i i i
tV (x ) V (x ) 0,= ∇ <

(i.e. the maximum of Vi is achieved at xi = '`
i and  its value decreases with motion away  from 

xi = '`
i ).  As a result the above term is either: 

            (31)∇∑ ∇ ≡
=

i i
i 1

L t
i iV (x ) Vo (x ) 0,
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or:  xi = '`
i .∇∑ ∇ <

=
i i

i 1

L t
i iV (x ) Vo (x ) 0,

As for the second term of (25), it ought to be mentioned that forces surrounding the mobile agents (CRFs) have

a local, reactive, passive nature. In view of the above, this guarantees that no unbounded growth in the

magnitude of the xi’s can occur. The worst case is for those forces to cause a deadlock in motion (i.e, X - C =

constant, t64).  Since in the worst case scenario, motion will be brought to a halt (i.e, = 0), also taking intoΞ
•

consideration the  negative definiteness  of the other  terms, the  time derivative of  = is always less than or

equal to zero:             (32)Ξ
•

≤ 0.

If the i’th robot enters a static equilibrium before the target is reached, the following identity must hold:

         . (33)σ( x x )
Vr ( x x )

Vr ( x x )

(x x )

(x x )i j
i i j

i i j

i j

i jj 1

K (t)i

−
∇ −

∇ −
+
∇ × −

∇ × −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∑ =
=

A

A
i

i

∇ − ∇Vo (x ) V (x )i i i i

Therefore, the set E is equal to:             (34)E E1 E2 {x : d
dt

0},i= ∪ = =Ξ

where:          i=1,...,LE E1 , E1 {x :x C}
i

i i i i i1 = ∪ = =

and where E2 E2 ,
i

i= ∪

              (35)i i i i i i i j
i i j

i i j

i j

i jj 1
i j

K (t)

i iE2 {x : Vo (x ) V (x ) ( x x )
V ( x x )

V ( x x )

(x x )

(x x )
0, x C }.

i

= ∇ − ∇ + −
∇ −

∇ −
+
∇ × −

∇ × −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∑ = ≠
=
≠

σ
A

A
i

i

The largest invariant set MdE is the subset of E that satisfies the equilibrium condition on (21). Before

computing M, let us first examine  if  E2 is an equilibrium set of system (21). For this case the system forces

may be computed using the equation: 

     i=1,..,L.           (36)i i i i i i j
i i j

i i j

i j

i jj 1
i j

K (t)

h Vo (x ) V (x ) ( x x )
Vr ( x x )

Vr ( x x )

(x x )

(x x )
.

i

= ∇ − ∇ + −
∇ −

∇ −
+
∇ × −

∇ × −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

∑
=
≠

σ
A

A
i

i

It should be noticed that if the second condition of (23) holds, the magnitude of the radial reaction forces (LVoi

, and LVri) is determined by the self-forces ( LVi) and the geometric configuration the robots assume during

deadlock. On the other hand, the magnitude of the circulating forces (L×Ai) is totally independent of the self-

forces. Since the individual circulating forces are made to rotate in the same direction, such fields contain no

singularities (Figure-12). In other words, the circulating forces never vanish, always guaranteeing that relative

motion among the agents can be actuated. The strength of these fields can be independently set by the designer

anywhere in the workspace. Since the goal is to eliminate E2 from M, this freedom is used to guarantee that hi

†0 œ xi …Ci , i=1,..L. In other words, the robots will always be moving whenever they are in close proximity to

each other (i.e., no deadlock). 

Since the self-forces are generated from the gradient flow of a harmonic potential, their magnitude in  S is

bounded: i=1,..,L, (37)∇ ≤ ≠i i i i iV (x ) B , x C
where Bi is a positive, and finite constant. Also notice that it is not possible for the magnitude of the passive



19

reaction forces to exceed that of the self-forces. Therefore, a simple and conservative choice of the magnitude

of the circulating field that would guarantee that E2 is not an equilibrium set of (21) is:

              (38)∇ × − ≥ ∑
=

iA ( ) .i i i
i 1

L
x x B

       

           Figure-12: Tangent fields with same circulation are  free of singularities

It should also be noticed that if the third condition of (23) is not satisfied (i.e. there is not enough free space for

the largest two robots to move at all times) and the circulating fields have to push against a static obstacle (a

static obstacle can exert infinite reaction force), no realizable choice of Bi’s  would exist to satisfy condition

(38).  The above treatment amounts  to the simple physical fact that whenever the radial reaction forces  of one

or more robots are in equilibrium the circulating forces intervene to pull the system out of deadlock. If the above

condition is satisfied,  E2 is eliminated from M. Also,  since the robots  have convex geometry, no equilibrium

paths can form, trapping one or more robots in a limit  cycle. This means that continuous motion along the

tangent of a robot will eventually lead to a move away from that robot, hence resolving the conflict. 

As for E1, the fact that the Ti’s are taken so that D`
i d Ti , guarantees that once the robots reach their  respective

destinations, no interactions among their fields can occur (i.e uci = 0 , and  LVoi = 0, i=1,..,L). Also since: 

                 (39)∇ = =i i i iV (x ) 0, x C ,

system (21) reduces to:                  (40)•
= =x 0, x Ci i i

making the largest invariant set equal to:          i=1,..,L. (41)M {x :x C}
i

i i i= ∪ =

Therefore, according to LaSalle’s theorem, the robots will globally, asymptotically converge to their respective

destinations, i.e. :                 i=1,..,L (42)Limx C
t

i i
→∞

→

B. A Note on Completeness: 

As mentioned earlier, the suggested planner is conditionally-complete provided that conditions (23) and (38)
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hold. To examine why imposing the third condition of (23) is necessary  for the suggested planner to guarantee

completeness, note that behavior, in general, has two components: a spatial one that consists of a vector field

that assigns to each point in the workspace a direction along which motion should proceed. It also has a temporal

component which consists of a scalar field that assigns a speed to each point in the workspace. Therefore,

completeness for a general class of workspaces implies the existence of a spatio-temporal pattern of behavior

which, if executed by the agents, leads to the satisfaction of the goal. In general environments, where a solution

exists provided that behavior be spatially and temporally manipulated, the environment may, at any one stage,

deprive the planner of the ability to fully manipulate spatial behavior. This could happen by forcing one agent

or more to follow predetermined spatial behavioral patterns that are set by the geometry of the workspace

(figure-11). If such a situation occurs, the conflict can only be resolved by manipulating the temporal component

of behavior  (i.e speed up or slow down the movements of the agents, as well as halt motion or reverse it). Since

the suggested planner is totally reliant on manipulating spatial behavior only, it may fail if it encounters

situations where both spatial and temporal behavior have to be manipulated. The third condition of (23)

guarantees that the environment will never be able to prevent the planner from spatially manipulated behavior

in order to resolve a conflict. In a recent study by the author [49], a method for synthesizing a PRF control

component that can jointly enforce regional avoidance, and directional constraints, may be used to guarantee

that deadlock will not happen in environments with tight passages. Unfortunately, this approach for avoiding

deadlock may reduce the set of potential solutions to the non-directionally constrained, multi-agent planning

problem.

VI. Results
Several simulation experiments were conducted to explore the behavior of the suggested method. Each case is

presented as a sequence of frames with each frame depicting the state of the robots at different instants of the

solution. The notation used is the same as that in the theoretical development (i.e. Di represents the i’th robot,

xi its center, and Ci the center of the target zone). The experiments focus on the unique capabilities of the

planner, namely: 

1. its ability to plan in highly congested spaces using online, sensory data only, 
2. its ability to deal with unexpected events in an organizationally-closed manner, 
3. its ability to tackle workspaces with dimensions higher than two as well as demonstrate the strong

potential the planner has to generate dynamics-friendly trajectories. 

Attempts to extend an earlier version of the work in this paper [59] were carried out in [60-63]. The primary

focus of the work was on two issues: the conditioning of the differential properties of the trajectories of the

agents so that they become dynamically suitable for traversal (the resulting trajectories were referred to as

flyable paths), and extending the method to three-dimensional spaces. Cases 1, 2, and 3 in the following

examples show that the method, in its original form, is fully capable of handling these issues. 
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Case-1: A basic example: 
In figure-13 two robots sharing the same obstacle-free workspace are required to exchange positions. In doing

so, each robot makes the simple, but naive, decision of moving along a straight line to the target. Despite the

apparent conflict which each is heading towards, each robot proceeds with its plan as if the selected action is

conflict-free. Once the conflict is in a phase that is detectable by the robot’s local sensors, corrective actions are

taken by each to modify their behavior in order to resolve the conflict (i.e. the CRF control component is

activated). As mentioned before, the “seed”  CRF activities consist of a component to prevent collision, and

another to move the agents out of each other’s way. Once the conflict is resolved, the behavior modification

activities  dissipate and guidance is fully restored to the PRFs (figure-14). 

The robots are circular discs with equal radii D1 =  D2 = D=1. The local field region surrounding the robots is the

same , *1=*2=*=1.5. The motion of the robots is described by the motions of their centers: x1=[x1 y1]t, and x2=[x2

y2]t .  The centers are driven by the self-controllers u1=[ux1 uy1]t, and u2=[ux2 uy2]t respectively. The self

controllers have the forms: 

u1 r t g= ⋅ ⋅
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where Kg=0.4, Kr=2, Kt=1, M(x)  is the unit step function, xr1=[xr1 yr1]t=[4 0]t, and xr2=[xr2 yr2]t=[-4 0]t, [x1(0)

y1(0)]t=[-4 0]t, and [x2(0) y2(0)]t=[4 0]t. The overall differential system governing the behavior of the robots is:
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Figure-13: Two robots exchanging positions      Figure-14: CRF activities dissipate after conflict
         is resolved  (trajectory of D2)
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Case-2: Conditioning paths’ curvature: 

It is highly desirable that the generated trajectories contain as few fluctuations as possible. This is measured

using the curvature  6i = dJi /ds, where Ji is a unit vector tangent to xi, and ds is an infinitesimal component of

the arc. It is necessary to keep the curvature of a trajectory as small as possible if the trajectory is to be

dynamically suitable for traversal. Although the focus of this paper is on generating safe trajectories for the

agents to traverse to their destinations, the method has been built with dynamics in mind. There are several

parameters and components of the planner that may be used to condition the differential properties of the

trajectories:  the weighting function F is one of them. The following example shows that the choice of the weight

profile has a pronounced effect on curvature. Three profiles are used: 

linear ,             (45)σ ρ
δ

ρ ρ δ( ) ( )( ( ) ( ))r r r r=
−

+ − − − −1 u u

 sinusoidal , andσ π
δ

ρ ρ ρ δ( ) (cos( ( ) )( ( ) ( ))r r r r= − + − − − −
1
2

1 u u

exponential , σ α ρ ρ( ) ( ( ))( ( ))r r r= − −exp u

where "=ln($)/*, $ is the magnitude of  F at D+* (F(D+* )=$<< 1), and u is the unit step function. It ought to

be mentioned that unlike the linear and sinusoidal profiles, which strictly localize that value of F to the interval

(D, D+*), the exponential profile only effectively localizes the weighting function to this period. 

Figure-15: Effect of different CRF strength profiles on curvature



23

The  example in case-1, which was conducted for the linear profile, is repeated for all the three profiles. The

curvature of the trajectories is monitored (Figure-15).  The parameters of F are D=1, *=1.5, and $=0.05. The

maximum curvature observed for the linear profile is 6max= 0.0363. The maximum curvature decreased almost

threefold  when the smoother sinusoidal weight function was used. The maximum curvature for this case is 6max=

0.01434. However, the best results were obtained for the exponential profile with a 6max= 0.00144 (almost a

thirty times reduction compared to the linear profile case). The above should not be considered more than a

simple demonstration of the method’s ability to generate dynamics-friendly trajectories. Formal investigation

of this feature is left for future work. 

An important parameter of the planner  is the width of the action zone (*). This width must not be too small to

have sharp turns. Nor should it be too large to preclude unnecessary wide deviation from the initial paths

planned by the PRF fields. For all the above weight profiles, the maximum curvature is plotted as a function of

* (Figure-16). As expected, the maximum curvature is inversely proportional to *. As can be seen, a certain

region for * is reached where any increase in its value does not produce a commensurate reduction in the value

of the maximum curvature. Therefore, a cutoff value for * can be established to strike a compromise between

the above two conflicting requirements. 

     

      Figure-16: Maximum curvature as a function of action zone width

Case-3: The 3-D case: 

In the sequel, all the simulation experiments are given for the 2-D case. As mentioned before, the suggested

method can be applied to multi-dimensional spaces. The only reason that simulation experiments are restricted

to the  2-D case has to do with the clarity of  presenting the results. This  is important for a qualitative

understanding of the nature of the planning action the method generates. To demonstrate the applicability of the

method to dimensions higher than two, the two-robot example above is repeated for the 3-D case (figure-17).

Only the trajectories are plotted. 
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Figure-17: Two robots exchanging positions in a 3-D space

Case-4: Fault tolerance: 

In figure-18, three robots operating in an obstacle-free space, and initially positioned on the vertices of an
equilateral triangle are required to proceed towards their symmetric targets. Each robot chooses to proceed along
a straight line to its target ignoring the apparent conflict to which this choice leads. For this case the response
of the robots, once a conflict is detected, exhibits an interesting emergent nature. By reducing the degrees of
freedom of the system from six to one, the three robots act as one rotating body to position themselves where
each can proceed unimpeded towards its target. It is interesting to note that without being a priori programmed
to do so, the robots choose to cooperate in order to resolve the conflict. This cooperation is manifested as a
reduction in the degrees of freedom of the system during the period of the conflict. In a centralized system the
supervisory control assigns each agent the duties it has to fulfill for the whole group to avoid conflict. If one
agent fails to fulfill its obligation towards the group, the whole group may be affected. In decentralized systems,
conflict evasion has a lucid nature where conflict evasion activities dynamically shift from the unable, or
unwilling agents, to the remaining functional agents. Here, an agent’s role keeps adapting to the situation in a
manner that would, to the best of the agent’s ability, enable all the agents (this includes the offending agents)
to reach their targets. The following example examines this interesting property of decentralized systems. In
Figure-19, a setting similar to the one in Figure-18 is used. The only difference is that D2 refuses to participate
in conflict resolution and, instead, follows the plan encoded by its PRF requiring it to move along a straight line
to its target. As can be seen, the remaining two agents adjust their behavior to compensate for the intransigence
of D2 in such a manner that allows all the agents to reach their destinations. 
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            Figure-18: Three robots moving to their               Figure-19: Three robots moving to their 
      goals, all functioning       goals, D2 malfunction

Case-5: Self-Organization: 

In the following two examples the evolutionary, cooperative, self-organizing nature of the controller is clearly

demonstrated. In Figure-20 two groups of four robots each are moving in opposite directions along a road with

side rails blocking each other’s way. The goal is for the left group to move to the right side, and the right group

to move to the left side. The groups collectively solve the problem by forming right and left lanes and confining

the motion of each group to one of the lanes. It should be noted that lane formation is a high-level, holistic

organizational activity that fundamentally differs from the local capabilities with which each robot is originally

equipped. All eight agents are assumed to be identical with radius D=1 and local field region width *=0.2. The

motion of an agent is described by the motion of its center: xi=[xi yi]t, i=1,..,8. The centers are directly driven

by the self-controllers: ui=[uxi uyi]t , i=1,..,8. A self-controller has the form: 
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where F has a form similar to the one in (43), uo(xi,yi)=30A[ 0   (-yi-2)AM (-yi-2)-(yi-2)AM (yi-2)]t, ugi(xi,yi)=[ -1

 0]t, i=1,..,4,  ugi(xi,yi)=[ 1   0]t, i=5,..,8, Kr=20, Kt=10, and [x1(0) y1(0)  x2(0) y2(0)  x3(0) y3(0)  x4(0) y4(0)  x5(0)

y5(0)  x6(0) y6(0)  x7(0) y7(0)  x8(0) y8(0)]t = [2  1.3  5 1.3  2  -1.3  5  -1.3  -2  1.3  -5   1.3   -2   -1.3   -5   -1.3]t. 
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Figure-20: Two groups of robots passing   Figure-21: A group of robots self-organizing
      each other in a confined space            to allow D1 to reach C9

In Figure-21 eight robots are confined in a box with very little room to move. The goal is for D1 to move to C9.

The robots collectively reach a solution that efficiently utilizes free space. The robots solve the problem by

keeping the center robot stationary, with the remaining robots rotating around it until D1 reaches its target. 

Case-6: CRF field strength and deadlock prevention: 
In the following example the importance of the circulating fields for conflict resolution is demonstrated. Here

a group of eight agents is required to hold its position, except for D8 which is required to move to C8. No

circulating fields are used in figure-22. As can be seen, while D8 managed to pass the first group of agents, it

became trapped in a deadlock formation when it attempted to pass the second group. In figure-23 circulating

fields are  added. As can be seen D8 is able to reach  its target, and the remaining agents maintain their original

positions. 

Case-7: Planning in unknown environments: 

In Figure-24 two robots are required to exchange positions. The robots are not a priori aware of each other or

of their surroundings. The only information they have prior to initiating action is their target locations. While

the PRF fields in the previous examples are built using simple behavioral primitives, here EHPCs are used to

build the PRFs. As can be seen, despite each agent’s total lack  of knowledge about its environment or the other

member sharing the space with it, each manages to successfully reach its target from the first attempt in a

conflict-free manner. 
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   Figure-22: D1-D7 hold positions, D8 moves         Figure-23: D1-D7 hold positions, D8 moves               
                      to C8, no Circulating fields                     to C8, Circulating fields present.

                 Figure-24: Two robots exchanging positions in a cluttered, unknown environment
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Case-8: Failure with tight passages: 

While the third condition of (23) is by no means stringent, there are environments with tight passages that have

only room for one robot at a time. In such a situation there are no guarantees that the multi-agent planner will

function properly. Below is an example demonstrating such a situation. 

                                               

                                               Figure-25: A workspace with tight passages

Consider the workspace in figure-25. Two robots D1 and D2 are required to exchange positions. As can be seen,

the passages in S are not wide enough for the two robots to pass at the same time. 

    

     Figure-26: PRF components, HPF-based EHPC         Figure-27: Deadlock caused by a tight passage

                                

Figure-26  shows the HPF-based PRFs for both D1 and D2. Figure-27 shows, using snapshots, the locations of

the robots that are generated by the multi-agent controller at different instants of the solution. As can be seen,

an unresolvable conflict arises between D1 and D2.  One way to remedy this situation is to mark a tight passage

as a one-way street (i.e. constrain motion in such passages to become unidirectional). This may be accomplished

by using the NAHPF-based EHPC  scheme. The solution, its advantages and drawbacks are discussed in [49].

A note on complexity: 

Analysis of provably-correct, geometric, multi-agent planning methods shows that the problem has a complexity

that exponentially grows in the number of agents. On the other hand, the complexity of the AL-based method

suggested in this paper is linear in the number of agents enabling the method to handle planning for large groups
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in  real-time. The reason for such a dramatic difference in complexity has to do with the action selection

mechanism used by each approach. Geometric planning methods rely on search as the basis of action selection;

the AL approach uses evolution instead. To construct a multi-agent AL-based controller, one has to construct

a self-controller (G-type controller) for each agent individually in a manner that conforms to the AL guidelines.

The multi-agent controller that is steering the group (P-type controller) evolves as a result of the interpretation

of the G-type control in the context of the environment. In other words, the multi-agent controller is computed

in a soft, costless manner by the process of morphogenesis. It is obvious from the above that the computational

effort that has to be dispensed in constructing the multi-agent controller is equal to the sum of the effort needed

for constructing the G-type controller for each agent. 

VII. Conclusions 
This work has described the construction of a conditionally-complete, decentralized motion planner for agents

sharing a workspace with unknown, stationary, forbidden regions. A definition for decentralization that

emphasizes the autonomy of the individual agents in terms of data acquisition, information processing, and

motion actuation is used as the guide for the development of the controller. The suggested multi-agent controller

is found to have several attractive properties such as its ability to generate online the additional information

needed to execute a successful action. It is also noted that the controller exhibits intelligent dispatching

capabilities that enables it to redistribute the task of conflict evasion on the properly functioning agents. This

property provides significant robustness in the case of sensor, or actuator failure. The controller employs an idea

from the artificial life approach to behavior synthesis that is of central importance for the controller to achieve

the above capabilities: i.e. the ability to project global useful activities through simple, local interacting activities

without the agents, necessarily, being aware of the generated global behavior. The artificial life G-type and P-

type control modes do support such a behavior synthesis paradigm and may be considered as the backbone for

building effective decentralized controllers. The work has  also presented  the potential field  approach as a

powerful tool for  generating control fields that are particularly suited to constructing intelligent, decentralized

controllers. 

It is important to notice that completeness of an algorithm does not exist in an absolute sense. A complete

algorithm or procedure is only correct provided that certain assumptions are upheld. For example, a planner that

is guaranteed to find a trajectory for a robot to a target zone may no longer be provably-correct if the implicit

assumption on the path being only continuous is no longer enough (e.g., path differentiability is required). What

makes a complete algorithm useful is the practicality of the conditions under which completeness is obtained.

In this paper completeness is achieved provided that the linear, isotropic workspace the agents are sharing

supports bidirectional movements (i.e., two-way streets). This author believes that this assumption is  practical

and does yield a demonstrably-useful planner. 
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It ought to be kept in mind that the main motive for adopting a decentralized planning strategy is to meet the

stringent requirements a large-scale mobile robotics system has to satisfy in order to have a reasonable chance

of success operating in a realistic environment. As the simulation results clearly reveal, a decentralized planner

constructed in accordance with the AL guidelines, possesses several important properties needed, among other

things, for combating the adverse effect of hardware and/or software failure likely to occur in a large scale

system. They are also important in bringing the complexity of the planning task under control. In attaining these

properties fundamental assumptions were made. One of these assumptions has to do with the restriction of the

amount of data available for the agents to base their decision on. While this assumption is needed for operation

in a decentralized mode, it may have some drawbacks. It is a well-known fact that the more information used

to project an action the better is the quality of the resulting trajectory and the lower is the probability of

encountering conflict situations. Moreover, in a decentralized mode, resources have to be duplicated. Each agent

has to be equipped with data acquisition, data processing, decision making, and motor action modules in order

to be able to operate in a decentralized mode. Compared to centralized systems where only the supervisory agent

has all these faculties while the remaining agents have only relatively inexpensive motor units for executing the

supervisor’s commands, decentralized systems are more expensive to implement. While decentralized control

is an attractive choice, in small and medium scale systems one may want to consider the centralized control

option. With reliable technology, the chance of component failure is low. Moreover, with advances in computer

technology, data processing and decision making algorithms, data acquisition and processing as well as planning

can be done in a reliable and fast manner. 

The author believes that the multi-agent controller prototype suggested in this paper will serve as a good basis

for developing other multi-agent controllers. Future work will focus on conditioning the differential properties

of the generated trajectories, incorporating dynamics, and generalizing the shape of the agents from that of a

simple sphere to more general shapes. 
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Nomenclature
AL : artificial life

G-Type : geno-type of behavior

P-Type : pheno-type of behavior

EHPC : evolutionary, hybrid, pde-ode controller 

PRF : purpose field component of the multi-agent controller

CRF : conflict resolving field component of the multi-agent controller

HAS : hyper action space

Vi : self-component of the potential field whose gradient is used to guide the i’th  

  agent to  its target

Vri : a potential field whose gradient forms a force field that fences the i’th agent 

  in order to prevent collision with other agents

Voi : a potential field whose gradient field enhances the i’th agent’s ability to

   prevent collision with stationary obstacles

Ai : a vector potential field assigned to the i’th agent in order to generate the

   circulating tangent field 

L : gradient operator

L2 : laplace operator

LA : divergence operator

L× : curl operator

ui : self-control of the i’th agent

uoi : stationary, obstacle avoidance component of ui

ugi : PRF component of ui

uci : CRF component of ui

ucri : agent collision prevention radial component of uci

ucti : deadlock prevention tangent component of uci

O : stationary obstacles

S : workspace

' : boundary of the obstacles ('=MO)

'`
i(t) : boundary of the obstacles known to the i’th agent at time t

Di : the i’th agent

D`
i : the expanded boundary of the i’th agent 

Si : sensory region surrounding the i’th agent

Ti : parking (target) region of the i’th agent

Di : radius of Di



32

D`
i : radius of  D`

i

*i : width of the Si region ( Di - D`
i)

F : positive, scalar, monotonically decreasing, weighting function 

N : null set

L : number of agents in the workspace

Ki(t) : number for agents in the vicinity of the i’th agent at time t

Pi(t) : set of agents in the vicinity of the i’th agent at time t

Qi : a binary variable indicating the presence of a previously unknown part of the 

  stationary environment in the vicinity of the i’th agent 

tn : the time instant with discrete time index n at which the value of Qi changes from 0 to 1

xi : center point of the i’th agent at time t

Ci : center point of the target zone Ti of the i’th agent

= : a scalar, lyapunov function candidate

: the time derivative of =Ξ
⋅

E : the set of all points where Ξ
⋅

= 0

M : the largest invariant set in E 

n : a unit vector normal to ' 

6 : curvature (6=dJ/ds)

J : a unit vector tangent to a trajectory 
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