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Interleaving Optimization with Sampling-Based Motion Planning
(I0S-MP): Combining Local Optimization with Global Exploration

Alan Kuntz, Chris Bowen, and Ron Alterovitz

Abstract— Computing globally optimal motion plans for a
robot is challenging in part because it requires analyzing a
robot’s configuration space simultaneously from both a macro-
scopic viewpoint (i.e., considering paths in multiple homotopic
classes) and a microscopic viewpoint (i.e., locally optimizing
path quality). We introduce Interleaved Optimization with
Sampling-based Motion Planning (I0S-MP), a new method
that effectively combines global exploration and local opti-
mization to quickly compute high quality motion plans. Our
approach combines two paradigms: (1) asymptotically-optimal
sampling-based motion planning, which is effective at global
exploration but relatively slow at locally refining paths, and
(2) optimization-based motion planning, which locally optimizes
paths quickly but lacks a global view of the configuration space.
IOS-MP iteratively alternates between global exploration and
local optimization, sharing information between the two, to
improve motion planning efficiency. We evaluate I0OS-MP as
it scales with respect to dimensionality and complexity, as well
as demonstrate its effectiveness on a 7-DOF manipulator for
tasks specified using goal configurations and workspace goal
regions.

I. INTRODUCTION

Robots are increasingly entering domains such as trans-
portation, surgery, and home assistance where safe inter-
action with people is critical. This interaction motivates
robots which are capable of planning high quality motions
under short time horizons. Unfortunately, the landscape of
feasible motion plans in a robot’s configuration space can be
extremely complex, consisting of many local minima, with
paths spanning multiple homotopic classes. The complexity
of this landscape means that an ideal motion planning algo-
rithm must employ a macroscopic global view, considering
paths in multiple homotopic classes, while also taking a
microscopic local view, ensuring plans are as close to locally
optimal as possible. Our work focusses on unifying these
two perspectives by interleaving path refinement through
local optimization, with global exploration through sampling-
based motion planning. In this way, we compute high quality,
locally optimized plans while continuing to explore the
global landscape for as long as time allows.

Sampling-based motion planning methods typically take
the macroscopic view, drawing samples from the robot’s
entire configuration space to build a graph that progressively
covers more and more of the space. The global nature
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Fig. 1: Iterations of IOS-MP progress toward a globally op-
timal path. (a) The sampling-based motion planner finds the
first path (top), which is then locally optimized (bottom). (b,
¢) In each subsequent iteration, the sampling-based motion
planning step finds a path that is shorter than the previously
found best path (top), and this new path is then locally
optimized (bottom) before continuing to the next iteration.

of these algorithms allows them to explore every relevant
homotopic class eventually. Many of these methods will also
converge upon the globally optimal solution as the number
of samples approaches infinity [10][6]. Unfortunately, the
resulting paths may converge slowly, so in finite time, they
frequently return paths that are far from locally optimal,
especially in higher dimensional problems [8].

Optimization-based motion planning methods take a more
microscopic approach. These methods quickly compute high
quality paths by numerically optimizing an initial path, con-
verging toward a local minimum [18][19][16][9]. However,
the resulting path quality of such methods is directly tied
to the path initialization. Due to the inherently non-convex
nature of motion planning with obstacles, for some initializa-
tions the resulting paths may be far from globally optimal, or
the optimization may not find a solution at all. This limitation
can be partially circumvented through techniques such as
restarting the optimization with multiple different initial
paths (e.g., [19]), but such approaches are heuristically driven
and typically provide no global guarantees. Additionally,
by treating each restart as independent, they potentially
ignore useful pre-computed information (such as collision-
free configurations) that could be valuable if shared across
restarts.



Our new method, Interleaved Optimization with Sampling-
based Motion Planning (IOS-MP), alternates between local
optimization and global exploration, sharing information
between the two, effectively combining the best of both
of these paradigms (see Fig. [T). IOS-MP starts with global
exploration by building a graph using an asymptotically opti-
mal motion planner, such as k-nearest Probabilistic Roadmap
(PRM*) [10] or Batch Informed Trees (BIT*) [6], until it
finds a collision free path (Fig. [[{a) top). IOS-MP then
uses constrained local optimization based on an augmented
Lagrangian method [20] to refine the path found by the
sampling-based method (Fig. [T(a) bottom). The algorithm
then iterates between (1) resuming the sampling-based mo-
tion planner until a new better path is found and (2) running
constrained local optimization on this new path (see Fig.
[[[b),(c)). The sampling-based motion planning phase of
each iteration explores globally, discovering other homotopic
classes in configuration space, as well as escaping local
minima in the path cost landscape. The constrained local
optimization phase in turn allows the method to provide a
high quality local solution at the end of each iteration. For
efficiency, information is shared by both of the phases at
each iteration, with the sampling-based method seeding the
local optimization with improving initial solutions, and the
local optimization passing potentially valuable new vertices
and edges to the sampling-based method.

I0S-MP is an anytime motion planning algorithm, in that
the algorithm can be stopped at any time (after iteration
1) and return a locally optimized path, and running the
algorithm for more time will return locally optimized paths
that asymptotically approach a globally optimal path. The
framework we introduce is generalizable; while our im-
plementation uses augmented Lagrangian optimization and
PRM* or BIT*, other local optimization algorithms and
other sampling-based planning algorithms can be substituted
in as long as the formulations and constraints described in
this paper can be applied. The contribution of this paper is
in describing and evaluating a framework for constructing
a motion planning algorithm which leverages both local
path optimization and global exploration. This allows it
to provide higher quality paths earlier than asymptotically
optimal sampling-based motion planning algorithms alone
can provide, while providing the guarantees—namely com-
pleteness and asymptotic optimality—which are not provided
by most optimization-based motion planning algorithms.

In this paper we optimize trajectories with respect to
path length. We demonstrate IOS-MP’s efficacy in simulated
environments of varying dimensionality and complexity as
well as for a 7 degree of freedom (DOF) manipulator
performing tasks defined by both goal configurations and
workspace goal regions.

II. RELATED WORK

In sampling-based motion planning, a graph data structure
is constructed incrementally via random sampling providing
a collision-free tree or roadmap in the robot’s configuration

space. Early versions of these algorithms provide probabilis-
tic completeness, i.e., the probability of finding a path, if one
exists, approaches one as the number of samples approaches
infinity. Classic examples include the Rapidly-exploring Ran-
dom Tree (RRT) [13] and the Probabilistic Roadmap (PRM)
[11] methods. Adaptations of these algorithms can provide
asymptotic optimality guarantees, wherein the path cost (e.g.,
path length) will approach the global optimum as the number
of algorithm iterations increases. Examples include RRT*
and PRM* [10] where the underlying motion planning graph
is either rewired or has asymptotically changing connection
strategies. Other asymptotically optimal algorithms include
Batch Informed Trees (BIT*) [6] in which samples are
processed in batches and Fast Marching Trees (FMT*) [8]
which grows a tree in cost-to-arrive space. Other work
such as the cross-entropy method [12] has investigated the
distributions from which samples and trajectories are taken.
Optimization-based motion planning algorithms perform
numerical optimization in a high dimensional trajectory
space. Each trajectory is typically represented by a vector
of parameters representing a list of robot configurations
or controls. A cost can be computed for each trajectory,
and the motion planner’s goal is to compute a trajectory
that minimizes cost. In the presence of obstacles and other
constraints, the problem can be formulated and solved as
a numerical optimization problem. CHOMP [18] takes an
initial trajectory and performs gradient descent. Traj-Opt
[19] uses sequential quadratic programming with inequality
constraints to locally optimize trajectories. [ITOMP combines
optimization with re-planning to account for dynamic obsta-
cles [16]. These methods typically produce high quality paths
but are frequently unable to escape local minima, and as such
are subject to initialization concerns. To avoid local minima,
some methods inject randomness into the system [9], [3].
Several methods aim to bridge the gap between sampling-
based methods and optimization. Some methods use paths
generated by global planners and refine them using shortcut-
ting or smoothing methods in post processing or adaptively
[11][15][7]1[14][17]. Recent work has begun considering
ways to integrate ideas from optimization-based motion
planning with sampling-based motion planning. GradienT-
RRT moves vertices to lower cost regions using gradient
descent during the construction of an RRT [2]. More recently,
RABIT* uses CHOMP to locally optimize in-collision edges
during BIT* planning to bring them out of collision and
effectively find narrow passages [4]. In contrast, our method
is using the local optimizer not to find narrow passages, but
to improve the overall quality of the paths found by the
sampling-based planner, while relying on the sampling-based
planner’s completeness property to discover narrow passages.
IOS-MP aims to more thoroughly integrate optimization
with sampling-based motion planning by interleaving them
to achieve fast motion planning with asymptotic optimality.

III. PROBLEM DEFINITION

Let C be the configuration space of the robot. Let
q € C represent a single robot configuration and p =



{qo,q1,-..,qn} be a continuous path in configuration space
represented in a piecewise manner by a sequence of config-
urations. In this paper, we minimize the path with respect to
the length, where we define length(p) to be the sum of
Euclidean distances in configuration space along the path. We
use the sum of Euclidean distances because it is a commonly
used metric for path length and because it satisfies the tri-
angle inequality property required by asymptotically optimal
sampling-based motion planners (unlike other metrics such
as sum of squared distances). While we use path length for
our optimization objective, certain other cost functions that
are continuous, differentiable, and do not violate the triangle
inequality could be used instead.

In the robot’s workspace are obstacles that must be
avoided. Each obstacle may be composed of a set of ob-
stacle primitives, and let the set of primitives composing
all obstacles be O. Let Cyee € C be the collision free
subspace and Cy,s € C' be the in-collision subspace of
C based on obstacle primitives O. In the context of this
work, we are considering static environments, such that Cpg
is unchanging as a function of time. A path is collision-
free if each edge (q;,qi+1),4 = 0,...,|p| — 1, does not
intersect an obstacle primitive o € O. Formally, we define
clearance(q;,q;+1,0) as the signed squared distance
between the path edge (q;,q;+1) and obstacle primitive o
(where negative values correspond to obstacle penetration
distance); a collision-free path is a path for which each edge
has non-negative clearance. This requires that the obstacle
and robot representations allow for the computation, either
analytically or numerically, of the signed distance between
the robot and the obstacle primitive. This property holds
for robots and obstacles represented using collections of
bounding spheres or bounding capsules (volumes defined by
a sphere swept along a straight line segment) as well as
point clouds and other representations, which are common
representations used in the literature and useful in practice.

The optimal motion planning problem then becomes find-
ing a collision-free path from Qgur t0 Qgoat € Cgoa that
minimizes cost, where Cgoq is the (possibly singleton) set of
goal configurations. This optimal motion planning problem
can be formulated as a nonlinear, constrained optimization
problem:

p* = argmin length(p)

P
Subject to:
clearance(q;,q;+1,0) >0, 0<i<|p|,VoeO
g(p) >0, VgelJ
qo = Ystart
q|p| = Ygoal Qgoal € C’goal

(D
where J is a set of generalized inequality constraints that
are specific to the problem and robot (e.g., to represent joint
angle limits for a manipulator), and where p* is the optimal
motion plan. Let K be the set of inequality constraints
implied by O for obstacle avoidance. The set of all inequality
constraints then becomes I = J | J K. IOS-MP is an iterative
algorithm for efficiently solving this problem such that the

solution asymptotically approaches p*.

IV. METHOD

IOS-MP integrates ideas from both sampling-based and
optimization-based motion planning. The method interleaves
path optimization steps with graph expansion steps to achieve
fast convergence.

A. Overview

The top level algorithm for IOS-MP, Alg. [T] runs in an
anytime manner, iterating as time allows and storing the best
path found up to any time.

Algorithm 1: TOS-MP
Input: start configuration qstart, Obstacle set O, time
limit ¢
Output: motion plan p*
1 G — ({qstart}; @)
2 Best cost ¢ <— oo
3pr 0
4 while time elapsed < ¢ do
5 p < graphExpansionStep(O,G,c,t)
6 ¢ + cost(p)
7 p < optimizationStep(p)
8
9

¢+ cost(P)
G+ GUp
10 p < p

In the first step of each iteration, IOS-MP executes a
sampling-based motion planner to expand the graph G until
a new path is found that has cost lower than c. The sampling-
based motion planner returns the new path p and updates c.
In the second step of each iteration, IOS-MP executes a local
optimization method to locally optimize p. The method saves
the optimized path p as the best new motion plan found.
It also adds the configurations and segments defining p as
new vertices in GG. The algorithm then iterates, returning to
global exploration with the sampling-based motion planner,
but seeded with vertices and edges generated by both the
prior random sampling and the local optimization.

B. Global Exploration using Sampling-based Motion Plan-
ning

The global exploration step uses a sampling-based motion
planner to expand a graph until a new path—spanning from
the start configuration to any goal configuration—is found
that is of lower cost than any previously found path. The
sampling-based motion planner maintains a graph G =
(V, E), where V is a set of vertices which represent collision-
free configurations of the robot and E is a set of edges,
where an edge represents a collision-free transition between
two robot configurations.

To expand the graph G, our method is designed to use an
asymptotically optimal sampling based motion planner such
as k-nearest Probabilistic Roadmap (PRM*) [10]. PRM*
samples random configurations in the robot’s configuration



space, locates their £ nearest neighbors (where k& changes
as a function of the number of vertices in the graph), and
attempts to connect the configurations to each of its neigh-
bors (connection step). In each graph expansion step, PRM*
executes until a path better than the current best is found,
at which point the optimization step begins. We require that
the algorithm randomly samples and attempts to connect at
least one vertex in between consecutive optimization steps, to
ensure that the global exploration continues. We refer to IOS-
MP with k-nearest PRM* for its sampling-based planning
step as IOS-MP (PRM¥).

IOS-MP can alternatively be used with other asymptoti-
cally optimal motion planners, such as Batch Informed Trees
(BIT*) [6]. BIT* operates by processing samples in batches.
From a batch of samples it builds a tree using a graph search
heuristic during tree construction until a solution is found or
the tree can no longer be expanded. For the next batch, it
limits its sampling to the subspace in which a solution of
higher quality could be found. For IOS-MP with BIT¥*, the
usual BIT* algorithm executes for a short amount of time
without interruption (< 0.2 seconds) to take advantage of
its batching properties. After the short execution, the best
path found by BIT* is evaluated against the previous best,
and if it has improved, it is optimized. We refer to I0S-MP
with BIT* for its sampling-based planning step as I0S-MP
(BIT*). In Sec. |Vl we show results for both when PRM* and
when BIT* are used within IOS-MP.

C. Local Optimization using an Augmented Lagrangian
Method

For the local optimization step, we use a nonlinear
constrained optimization method called the augmented La-
grangian (AL) method to locally optimize the path. AL is
similar to standard Lagrangian methods, in that it utilizes
Lagrangian multipliers, but differs in that it adds additional
quadratic constraint terms. AL is also similar to penalty-
based optimization methods, but by introducing explicit La-
grange multiplier estimates at each step of the optimization,
in practice it is able to reduce ill conditioning [20].

We apply AL to the nonlinear constrained optimization
problem in (TJ), where the initial value for p is the most recent
path found by the sampling-based method. The AL method
iteratively minimizes the augmented Lagrangian function,
L 4 defined in (Z) and (3), based on each constraint g; in
the set of constraints I, and an iterative approximation of
the Lagrangian multipliers .

La, N k) = F(P) + Y 0(g:(P), My k) - ()
el

—oy+ 977 Y= ko <0

(v, 00m) = {_,502

At the k" step of the AL algorithm, outlined in Alg.
L 4 is minimized with respect to the trajectory py. In our
implementation we use gradient descent with line search for
this minimization.

3)

otherwise

Algorithm 2: The Augmented Lagrangian method
Input: py, 1o >0, 7> 0, Ao
Output: optimized path p

1 k+0

2 while || 7, L4|| > 7 do

3 Pk+1 :=minimize w.r.t. pg, LA (Pr, A\, 1) ;
4 Update A;

5 W= - fhup, Where pi,, € (0,1);

6 k+—k+1;

7 end

8 Return p,_;

After the minimization, for each inequality constraint i €
I, its associated Lagrangian multiplier A; is then updated
using the following formula.

)\fﬂ = max ()\f — gl(pk),O) 4)
e

Penalty multiplier p is then updated by multiplying it by
a parameter fi,, : 0 < p,, < 1. The algorithm then updates
the augmented Lagrangian function and iteration continues
until convergence of p.

For IOS-MP, f(p) is path length, and the set of inequality
constraints [ in is the union of the problem-specific in-
equality constraints J and the obstacle avoidance constraints.
For obstacle avoidance, the set of inequality constraints K
consists of a constraint per obstacle primitive per pair of
adjacent configurations in p. For a path p consisting of k
configurations, there will be (k—1)-|O| inequality constraints
related to obstacle avoidance, as we require the edge between
configurations to be collision free. So for constraint g;,
associated with obstacle primitive o and configurations qy
and qx11, 9i(P) = clearance(qk,qk+1,0)-

In the case of motion planning from one configuration to
another configuration, the AL method does not update these
two configurations but rather updates only the configurations
between the start and goal. In this way, the equality con-
straints qo = Qswar and q)p| = Qgoal are trivially enforced. In
the case of goal regions, an additional inequality constraint is
added to guarantee that the goal configuration remains within
the goal region. Also in practice, to guarantee timely exit,
we enforce maximum iteration counts for both the internal
minimization and the outside AL loop.

D. Analysis

We show that IOS-MP (PRM*), a variant of 10S-MP
that uses k-nearest PRM* for its sampling-based planning
step, is asymptotically optimal. To ensure that paths com-
puted asymptotically approach the globally optimal path, we
must ensure that adding vertices to the graph based on the
optimization step does not affect the asymptotic optimality
properties of the sampling-based motion planner. We do
this by making a distinction between vertices added by the
sampling-based method and vertices added by the optimiza-
tion. We only count vertices added by the sampling-based



method toward the k-nearest neighbor count when adding
edges. Because of this distinction, we can show that IOS-MP
(PRM*) produces a valid supergraph of what PRM* would
have produced, were the optimization steps of I0S-MP
(PRM*) not performed. The behavior, as time progresses,
of IOS-MP (PRM*) can be conceptualized as the behavior
of PRM* with finite time interruptions occurring periodically
during which the optimization steps are performed. To ensure
that the asymptotic optimality of PRM* is retained by 10S-
MP (PRM*), the following assumptions must hold:

Assumption 1: The optimization step is guaranteed to exit
in finite time.

Assumption 2: The order and configurations randomly
sampled by the graph construction algorithm are unchanged
from what they would be were there no optimization steps
occurring.

Theorem 1: For any finite running time 7, by which
an unmodified k-nearest PRM* motion planning algorithm
would have produced graph G, there exists a finite running
time 7, by which I0OS-MP (PRM*) produces a graph G
which is a valid supergraph of G,,.

Proof: Consider the ordered list V;, = {vg,v1,..., v}
where V,, represents the order in which vertices are sampled
during the construction of graph G, = (V,,E,) up to
time 7. Also consider the ordered list V,! as the sub list
of V,, at iteration ¢. Additionally, consider the set of edges
E! as the subset of E, at iteration i. As we are only
considering static environments, E? is dependent only on
the order and presence of each vertex v € V! at the time
of connection. That is to say that the edges are not affected
by the specific time at which a vertex was added, but rather
only on the existence of the set of vertices in the graph when
the connection is attempted.

Now consider IOS-MP (PRM*)’s construction of graph
Gs = (Vs, Es), and specifically the ordered construction of
Vi and E?, as above. By assumption [2} each vertex v will
be identical in order and value, up to its counterpart vertex
v! in V.. Also, as a result of the connection strategy detailed
above that treats optimization-added vertices as distinct when
computing k-nearest neighbors, E¢ will contain all of the
edges present in E.

Next, consider the sequence of steps taken by the
sampling-based algorithm alone during construction up to
iteration 7. An example of such a sequence could be: sample
vertex 0, sample vertex 1, connection step 0, sample vertex
2, sample vertex 3, connection step 1, ..., sample vertex i.
Note that the frequency of a connection step is dependent
on the specifics of the implementation but happens no more
than once per sample.

The corresponding sequence of steps taken by IOS-MP
(PRM*) will look very similar, for example: sample vertex
0, sample vertex 1, connection step 0, optimization step
0, sample vertex 2, sample vertex 3, connection step 1,
optimization step 1, ..., sample vertex i. Note also that we
require there to be at most one optimization step present
between consecutive connection steps (see Sect. [[V-B). Also,
by the connection strategies detailed above, the set of vertices

and edges after an optimization step is a superset of the set of
vertices and edges prior to the optimization step, and because
we only add the vertices and edges back if they compose a
valid path, it is a valid graph.

Let the time required to sample vertex k be 7%, and the
time required for connection step j be 7J. The time required
to construct the graph up to ¢ sampled vertices, 7'; is then:

i J
T;:ZTS"+ZT£"Wherej§i. (5)

n=0 m=0

Now consider the time required to complete the k"
optimization step, 7. This time will be finite by assumption
[I] The aggregate time then, to perform I0S-MP (PRM*) up
to sampled vertex ¢ then becomes:

% J k

= T+ > T+ Y P where k< j<i. (6)
n=0 m=0 p=0

As such, the aggregate time required of IOS-MP (PRM*) up

to sampling iteration ¢ will be a finite sum of finite times,

and subsequently finite itself.

Therefore, there exists a finite time 7, where 10S-MP
(PRM*)’s underlying sampling of vertices during construc-
tion of V; as a superset of V,, where the vertices which are
present in V,, were added to V; in the same order as in V,,,
and the connections Fs were constructed as a superset of
the edges FE,. This results in a graph G, which is a valid
supergraph of GG, produced in finite time. [ ]

For any finite time, IOS-MP (PRM*) will produce, in a
longer finite time, a supergraph of the planner which would
have been produced by PRM* alone, by Thm. |1} As such,
any path that would have been present in PRM*’s graph will
also eventually be present in IOS-MP (PRM*)’s graph in
finite time.IOS-MP (PRM*) will therefore produce, in finite
time, a path that is equal or better than any path that would
be produced by the PRM* alone in finite time. It then follows
naturally that as PRM* is both probabilistically complete and
asymptotically optimal [10], IOS-MP (PRM*) will also be
probabilistically complete and asymptotically optimal.

It should be noted that the supergraph assumption does not
necessarily hold for IOS-MP (BIT#*) in our implementation,
and as such we cannot claim that IOS-MP (BIT*) is asymp-
totically optimal as a result of this proof, but we note that
in most cases it works comparably or better than I0S-MP
(PRM*) as shown in the next section.

V. RESULTS

We evaluate the performance of I0S-MP with respect
to configuration space dimensionality and varying environ-
mental complexity, as well as demonstrate performance on
simulated 7-DOF manipulation tasks based on the Fetch
robot [1]. We evaluated two versions of I0S-MP: (1) I0S-
MP (PRM#*), which uses PRM* as the underlying sampling-
based planner, and (2) IOS-MP (BIT#*), which uses BIT* as
the underlying sampling-based planner. We used implemen-
tations of PRM* and BIT* from the Open Motion Planning
Library (OMPL) [5] for the sampling-based motion planning
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step of IOS-MP. We compared our two variants of I0S-
MP with methods based solely on sampling-based motion
planning (PRM* and BIT* as implemented in OMPL) or
based solely on optimization (an augmented Lagrangian
constrained optimization). All experiments were performed
on a system with an 8 core 3.2GHz Intel Xeon E5-2667
processor.

A. Dimensionality and Complexity Scaling

To evaluate how the method scales with respect to both
configuration space dimensionality and environmental com-
plexity, we evaluate IOS-MP for a point robot in a unit box
of dimension d. We varied d from 2 to 8 and varied the
number of obstacle primitives from as few as 25 to as many
as 100. In each environment of dimension d we randomly
placed obstacles in the form of hyperspheres of dimension
d, i.e., circles for 2D, spheres for 3D, and hyperspheres for
4D and 8D. The radii of each obstacle was a random number
sampled from a uniform distribution in the range [0.05,0.2].
We defined the start and goal configurations for the point
robot as points at the centers of opposite faces of the box.
In the optimization formulation for (I), we used inequality
constraints for clearance from the hypersphere obstacles. An
example environment for 2D is shown in Fig. [I]

We show the relative performance of IOS-MP (PRM*),
I0S-MP (BIT*), PRM*, BIT*, and Optimization (based on
a local augmented Lagrangian method) for scenarios of dif-
ferent dimensionality and environment complexity in Fig. [2]
In each plot, we ran the IOS-MP variants and the sampling-
based methods in an anytime manner for 25 seconds, consid-
ering the best solution found over time and averaging over

runs in 15 environments. For Optimization, we initialized
the algorithm with a straight line path in configuration space
from start to goal and a fixed number of trajectory points
(20) and ran the algorithm until convergence for each of
the 15 environments. Optimization does not always succeed
in finding a solution (it was successful in 86% of the
point robot scenarios represented here); because of this, we
computed averages only across runs for which a collision-
free solution was found and plot a * for this average. To
display meaningful averages across the 15 environments for
each graph, we defined the “best solution” for a particular
environment as the shortest path found by any method at any
time for that environment, and then averaged over ratios with
respect to the best solution in each environment.

In Fig. both I0OS-MP (BIT*) and I0S-MP (PRM¥*)
outperform their sampling only counterparts in every case,
and outperform optimization-based motion planning in most
cases, with [OS-MP (BIT#*) being the best all around method.
The results show that the sampling-based methods PRM*
and BIT* perform relatively well in the lower dimensionality
cases, especially where the environment is complex (i.e.
many obstacle primitives), while local optimization performs
increasingly well as the dimensionality increases. By in-
terleaving sampling-based methods and local optimization,
IOS-MP gains the speed of both of these methods on these
different types of problems. When looking at the trend
from left to right of Fig. Pl dimensionality increases, and
the percent of configuration space that is free also rises
because the number and average radius of the obstacles
is held constant. Because local optimization is relatively
more efficient at reducing the length of a path in higher
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methods for the Fetch task.

dimensional configuration spaces that are more sparse, [OS-
MP is particularly effective for these higher dimensional
problems compared to the motion planners that only use
sampling-based methods.

B. 7-DOF Manipulation Tasks

We demonstrate I0S-MP’s efficacy in various 7-DOF
manipulation tasks with the arm of a Fetch robot.

1) Motion Planning to a Goal Configuration: In the first
scenario (Fig. [3), the Fetch robot must plan a motion from
its start configuration, where its arm is beneath a ladder to
grasp a tool, to a goal configuration, where its arm is above
the ladder, as if handing off the tool to a person above.
The ladder and robot links were represented by 8 capsule
primitives. In the optimization formulation for (T)), we used
inequality constraints for obstacles avoidance, to represent
joint limits, and to guarantee the robot does not self-collide.

Fig. [3c| shows the results of applying PRM*, BIT*, 10S-
MP (PRM*), and 10S-MP (BIT*) to this motion planning
problem. The methods were run for 120 seconds, recording
the path length based on Euclidean distance in configuration
space of the best path found up to that time. Additionally,
we evaluated augmented Lagrangian local optimization, ini-
tialized with a 20-point straight line path in configuration
space, but this method did not converge to a valid collision-
free solution.

In this scenario, both IOS-MP (PRM*) and I0S-MP
(BIT*) drastically outperform their sampling-only counter-
parts. In just a couple of iterations, the loop of sampling-
based methods and local optimization produces better plans
than other methods produce in 120 seconds. The high dimen-
sionality of the problem means that the optimization step of
IOS-MP can provide a large benefit in a short time. Fig. 3]
illustrates (a) a path found during the graph expansion step
of I0S-MP (PRM*), and (b) the path after the optimization
step of the same iteration of IOS-MP. The optimization
step of IOS-MP significantly reduces extraneous motion, and
iterating with both a sampling-based step and optimization
step allows for fast improvement toward a globally optimal
solution.

2) Motion Planning to a Workspace Goal Region: In
the second scenario, the Fetch robot is placed in a more
cluttered scene (see Fig[d) and must plan a path starting
from a start configuration, in which it is reaching up as if to
grab a tool from a person on the ladder, and moving such
that its end-effector enters a goal region in the workspace
under the ladder. We randomly perturb the location of the
workspace goal region under the ladder and average the
results of 80 runs. The ladder, robot, and other obstacle
geometries are being represented in this scene using 16
capsule obstacle primitives. In this scenario, the goal is not
a specific configuration, but a potentially infinite number of
configurations, all configurations in which the end effector is
within a workspace region. In fact, in configuration space the
goal region may be both non-convex and disconnected. To
solve this motion planning problem, the robot must consider
many possible paths across multiple homotopic classes that
may pass between different rungs or around the side of the
ladder.

During execution, IOS-MP (PRM*) incrementally discov-
ers and explores the goal region as the PRM* graph is con-
structed. As configurations which lay within the goal region
are sampled, they are added to the set of goal configurations
to which the planner is attempting to connect to from the
start configuration. In the optimization formulation for this
scenario, we add an additional inequality constraint, the end
effector’s proximity to the workspace goal region, which
requires the end effector to remain within the workspace goal
region during optimization, however the goal configuration
is allowed to vary during the optimization as long as the
constraint is respected at convergence. Due to goal region
restrictions in the OMPL 1.2.1 BIT* implementation, we
only evaluate IOS-MP (PRM*) and PRM* for this scenario.
To evaluate the efficacy of sharing information from the
optimizer with the roadmap we show results for which
the optimized paths from IOS-MP are added back into the
roadmap and results for which they are not. To average
multiple runs we show results beginning at the instant the
first path was found.

Fig.[](a-b) depicts paths which exist in two separate homo-
topic classes, demonstrating the effectiveness of the global
nature of the sampling-based planning while still benefiting
from the optimization of the paths found. Fig. fc) also
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Fig. 4: (a-b) A task in which the Fetch robot must move its
end effector from above its head to a region underneath the
ladder. (a) A path found during an early iteration of 10S-
MP in a non-ideal homotopic class between ladder rungs.
(b) A path in a better homotopic class found in a later
iteration of IOS-MP. (c) A comparison of the performance of
IOS-MP (PRM*), with and without optimized path sharing,
and PRM*. We average results over 80 runs in which the
workspace goal region was randomly perturbed under the
ladder.

shows that IOS-MP (PRM*) performs very well compared
to the sampling-based planner alone, and demonstrates the
substantial benefit of adding the optimized path back into the
roadmap.

VI. CONCLUSION

In this paper, we present a method designed to achieve the
best of both local optimization and global sampling-based
motion planning. Through interleaving local optimization
with global exploration, and sharing valuable information
between the two, our method works in an anytime fashion,
providing locally optimized solutions as of the most recent
optimization step, while still providing global asymptotic
optimality. We demonstrate that our method, integrated with
both PRM* and BIT*, performs well compared to local op-
timization or sampling-based methods alone in experiments
of varying environmental complexity and dimensionality. In
the future, we plan to investigate integrating IOS-MP with
other optimization methods, such as sequential quadratic
programming, using cost functions other than path length,
and using different obstacle primitives.
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