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Abstract—We consider a problem of robotic router placement between different flows, or bit error rates (BER). Another
and mobility control with the objective of formation and main- challenge is to improve the overall performance and quality
tenance of an optimal communication network between a set of a network in a distributed manner instead of a centralizeg wa

transmitter-receiver pairs. In this scenario, the communtation .
path between any transmitter-receiver pair contains a pree- All these problems are directly related to the proper plassm

termined set of mobile robotic routers nodes. The goal of t Of robotic routers. Therefore, we primarily focus on optiing
work is to design an algorithm to optimize the positions of te  the robotic router placements in order to optimize the diera
We define he optimization metrc 10 be the minimum of the oyor Performance.

e . . . .
Signal to Interferepnce plus Noise Ratios (SINR) over all thdinks. The goal of this work is to devise an algorlt.hm for proper
In this manuscript, we propose two optimization algorithms to placement and mO\_/ement control of the_ rqut'C .route_r nodes.
solve this problem in a centralized and a decentralized marer, e follow three main steps towards achieving this géabt,
respectively. We also demonstrate the performances of both we identify the advantages and disadvantages of differgnt o
algorithms based on a set of simulation experiments. timization metrics to achieve the goals. Some of the paénti
choices are the expected transmission count metric (ETx), t
bit error rate (BER) and the signal-to-interference-phosse

Distributed cooperation in mobile robotics is a very imporatio (SINR). However, we choose SINR as the optimization
tant domain of research that mainly focuses on motion angetric because it is directly related to the communication
position configurations of a group of robots to perform a seuality and because the rest of the metrics can be expressed a
of tasks. To this end, researchers have proposed a range @finction of SINR.Secondwe design a proper optimization
algorithms based on information exchanges between robfiiaction that is directly related to the optimization godlkird,
such as swarming [1], flocking[[2] and formation contiidl [3]Jwe propose two optimization techniques to efficiently solve
The applications of cooperative robotics range acrossrdifft the optimization problem. The first technique is a centealiz
domains such as search and rescue operations, undergralgdrithm which is based on a well known stochastic opti-
mining, remote explorations, fire-fighting and military opmization technique called Simulated Annealirid ([4], [SThe
erations. However, effective cooperation between robots second one is a distributed technique where each node makes
any such application depends on the capacity and relibilihovement control decisions in a distributed manner in order
of the wireless communication infrastructure. Conversaly to improve the overall quality of the network. This techrequ
group of cooperative robots can be utilized to improve the subdivided into two major parts which we refer to&bsIR
performance, capacity and reliability of a wireless communDaTa AccumulationTask (STAT) andMovementDirection
cation infrastructure and even to build a controllable Vess and GAnularity Contrd. (MODAL), respectively. We also
communication backbone. For example, a group of robots witihesent a simulation based performance and correctneks ana
wireless communication and routing capabilities can form yais of our proposed methods.
communication path between a sender and a receiver that are

I. INTRODUCTION

unable to directly communicate with each other. In summary, Il. PROBLEM FORMULATION
cooperative robotics and wireless networks are two synwiot In this section, we discuss our problem formulation in de-
fields of research. tails. First of all, for compactness, we summarize the sysbo

Till last decade, there was no significant research on theed for this formulation in Tablg I. We assume that each
applications of cooperative robotics towards the advameemnode of the network has a unique ID as well as proper lo-
and improvement of traditional communication infrasttues. calization techniques. The set of node locations is reptede
To this end, research on robotic routers and relay ageasX = {(z;,y;) : i is the node ID. We consider a network
in sensing and information routing is an emerging researalith n transmitter-receiver pairs, which we also refer to as
domain. An important and fundamental problem in this domathe communication endpoints to avoid ambiguity, denoted by
is to guarantee an optimal, efficient and fair flow of informaf X; = {T;, R;} whereT; andR; are the IDs ofith sender and
tion in the network. Note that the definitions of optimalityreceiver, respectively. For each transmitter-receiver, gay
and fairness themselves depend on the application scenarith pair, we associate a set of robofsf;. The total number
For example, optimality can be defined in terms of signal w@f robots in the system is, i.e.,Y ., |M;| = m. We define
interference and noise ratio (SINR), proper allocationotfats a ‘flow’ to be the set of links that form the communication
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TABLE I: Symbol Table

a proof of concept of robotic router placement with the goal

Symbol Description of SINR optimization. Thus, we further simplify the model
X Set of Node locations by ignoring the fading effect i.e. takingas = 0,¢%; = 0
X Set of Robots’ ocations to deal with only the mean power value. Including the fadin
T; Transmitter of Flow: . y p ' g g
R; Receiver of Flowi effect will only delay the convergence of the process. Our
TX; Communication{TEn%inintS for flow algorithms work for any value of. However, all the experi-
Le., iy 10 . . .
M; Set of robots allocated to flow ments presented in this paper are p(_arfo_rmed vy|th_2. Note
Lij jth link of flow 4, numbered fronfr; that we do not assume the communication endpoints to be
P (L;j) Transmission Power for link;; static i.e., the endpoint can be mobile.
d(Lij) Length of link L;;
n Path loss exponent A. Sample Problem:
Pinter,ic (Lij) Transmission power of the link;;'s ) ) ) ) ]
kt" interference source Let’s consider a very simple configuration with only two
dinter,k (Liz) | Distance b?tWii“_ the link;;'s receiver end pairs of transmitter-receiver. We deploy four robotic nede
. and itsk”" interference source which facilitate communication between them, with two rtsbo
bap,vkg Log normal fading effectv A(0, 02) A . .
Py (Li}) Noise power for the linkL;; for each flow as in Figurlgl 1. There are total 8 nodes with IDs:

to 8 respectively. In this exampl&, X; = {T1, R, } = {1, 4},

TX2 = {TQ,RQ} = {5,8}, Ml = {2,3} and./\/l2 = {6,7}
The transmitters and the receivers are assumed to be stttic w
example,L; = {L;; : j =1,---,|M;|+ 1} represents th¢" coordinategz;,y;} fori = 1,4,5,8 and the robotic nodes are
flow. mobile with coordinategz;,y;} for i =2,3,6,7.

We select SINR as the optimizing quantity. The overall
performance of a network depends on the SINR quality of each T2 @ (x50
of the links. The link with the minimum SINR restricts the
overall performance of a network and acts as the bottleneck.
Therefore, an important step towards optimizing a netwerk i
to try to improve the SINRs of each and every link. However,
SINRs of most of the links are not independent, thereby
making the optimization task complex. Ideally, we need an
optimization function that improves the overall perforroan
of a network while considering the link dependencies. I thi
context, our optimization goal is to maximize the minimum
SINR of a network. We define the cost function for each flow,
say {i}, to be as follows.

path between a transmitter and its corresponding recéieer.

R2 .. (Xg,ya)
Fig. 1: A Simple Example Scenario

Ci(Xm) = min SINR (Lij, Xm) @ In Table[dl, we present a list of interfering nodes for each

) link, which is essential to calculate the SINRs.
where X,y C X is the set of all robots’ locations and
SINR(L;;,Xpr) denotes the SINR of linkL;; for the

conﬁguratlonXM Therefore, the overall cost furiction for the TABLE II: Interference Table

entire network is Link ID | Interfering || Link ID | Interfering
. Node IDs Node IDs
C(Xpm) = Ci(X 2
(Xar) = min Ci(Xar) @ T [ 3567 Im | L237
Now, the optimization goal is as follows. Los 1,567 Ler 1235
L34 1,2,5,6,7 L7s 1,2,3,56

mazximize{C(Xnm)} 3
XM

. . . The SINRs at node 2, 3 and 4 are represented as:
Using simple path loss model and log-normal fadlngINR(le), SINR(Las), SINR(Lsy), respectively.
model [6], the SINR of a link,L;;, can be mathematically

—n
represented as follows. Prd,

Prdgs + Par (dgg! + dg3! +dz) + Px

SINR(Li2) = ®)
_ Ydap
P (Lij) d(Li;)~"10 10

Z'P’i7Lt€T',k (LLJ)

P d;37’
Pr (dig) +dgg") + Par (dgg! + o) + Py

@ SINR(Lss) = (6)

k
o nLdB
dinter',k (LZJ) 710710 + Pn (LLJ)

where the meaning of each symbol is illustrated in Table I. ngN Pyrds,!

R L34) =
simplify this problem by assuming that all robot’s transsios Pr (dif’ + d;{i) + Py (d;4’7 gl + d;ﬁ) + Py
power are identical, sayy,, all sender’s transmission power @)
are identical, sayPr, and the noise powers are constant, sayhered;; denotes the euclidean distance between node i and
Py . In this work, we are mainly interested in demonstratingode j. Similarly, we can write the SINR at nodes 6, 7 and




8 are represented & N R(Lsg), SINR(Lg7), SINR(Lrs), 1. A CENTRALIZED SOLUTION

respectively. We assume that there exists no collisiondavoi . . . .
. L . In this section, we present a centralized method of solving
ance mechanism([7] to avoid interferencé/hile we acknowl- , . . . ;
this problem. While centralized ways are much easier and

edge that th|s.assumpt|o.n is unreasonable for real SySt.erlrs]ﬁ’aightforward, they are less practical than decengdlip-
we argue that if our algorithm can handle the worst possib eroaches

case of interference (i.e., without any collision avoidand’
mechanism), it will also be able to work well in CSMA baseg

. N . Simulated Annealing based approach
systems or equivalent systerh®w, the optimization goal is

to maximize the minimum of these six SINR values. In this method, we assume that there exists either a central
server or a leader node that can communicate with all nodes
B. Properties of the Optimization Function: in the system. The central server has online knowledge of the

Similar to any optimization problem, it is important to{)hoesIrt1|(ca)tr\]/\:/$o(rjllc ?L;h(?eg?ri?i;vzriailZi?hser? ];::Iltl:l}g?e“tzgsl?N
understand the behavior of our optimization function inesrd . C ; :
. : ) L : f all links using proper signal strength model or directly
to identify suitable optimization tools and techniques. To S
. . collect the SINR measurements from each individual nodes.
analyze the optimization function proposed [d (3), we ta . . .
However, in this paper, we use simple path loss model [6]

a scenario with two flows, where only one mobile node i o . LT .
- . or simplicity, while more realistic signal strength moiief
allocated to each flow as in Figurk 2. In this process, we move L
left as a future work. For the optimization purpose, we

the robotic routers along the straight line between the send X S !
and the receiver of the respective flow. We plot the minimut. 2 well-known stochastic global optimization algorithm
. lled Simulated Annealing[([4]]5]) which can be used to

SINR in the network as a function of the coordinates of theggl . )

two mobile nodes in Figur€] 3. From the figure, it is cle rInOI out the global optimum of complex problems with a
Lo S, ' 6‘large search space. At each step of this algorithm, a new set

that the optimization function is neither convex nor com:avX, is generated. However, each new pofat, ) should

It has two peaks wittdifferent performance, corresponding ;| M 9 ' ' point, ')

. . , " he in the neighborhood of the original poirt,y), i.e.,
to two unique sets of robotic nodes’ positions. From th%x,’y,) € N (z.y), whereN(- - ) refers to the neighborhood

of a location. If the setX',,, has a higher cost function than

T '.(w“) X, the new setX’,, is accepted unconditionally. In other
: words, if C(X,) > C(Xm), new Xp = X',. However,
A (o) if C(X) <C(Xm), X is accepted probabilistically using
- : a1 the Metropolis criterion. According to the Metropolis eriion,
QA R ) the probability of X', , being selected is
(x1,31) (x5, ¥2) H (%454
b= min (Lm {_WD -
R2 ‘ (X3 ¥s)

Initially, when T" is high, there is a greater probability of
making downhill moves, which allows the algorithm to fully
explore the space. We choose the proper annealing schedule
and the number of iterations based on a number of simulations
and by taking into account the percentage of uphill moves
versus the temperature.

Fig. 2: Simplified Problem
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observation, we conclude that the original generalizetlera . . . . )
is non-convex. Henceforth, we can not use traditional cenvEig- 4: Simulation plots for Simulated Annealing (a) Initia

optimization algorithms. Note that, the optimization pesh  Configuration (b) Configuration after 100 Iterations
may be convex under some special circumstances.



B. Simulation based on past movement history in order to increase the speed

We performed a set of simulations on MATLAB 8.1, orPf convergence. However, in this paper, we use a constant
a machine with 3.40 GHz Intel i7 processor and 12GHalue ofd for simplicity. Therefore, at each step, a roljetf
RAM to check the convergence of the algorithm for differerff@? move to any point of the circumference of a circle with
initial configurations. For this experiment, we considetiee ra@usﬁ centered at the robot's current Iocgtlon. We denote
topology introduced in Figurll 1 with the transmitters fixed &S circle asBs{x,}, wherex, = (x,,4,) is the current
co-ordinateg—10, 0) and (0, 10) and the respective receiverdocation of the robo{v}. To determine the best direction of
fixed at(10,0) and (0, —10). We observed that the Simulategnovement, ea(_:h robot needs |_nf0rmat|0n about link qualitie
Annealing algorithm converges to the same final configunati@t €very possible future locations. Now, assume that each
irrespective of different initial configurations of the tb. robot have necessary SINR information about all potential
Table[Tl illustrates the final SINR values of different lisk future locations. Then, a robgt} simply employs a potential
of the network for different initial configurations and neis based controller for the movements by setting the potential
values. The initial and final configurations of the roboticles Of €ach future location, say’, = (z7,y,), to be negative
for one of the simulation instances is presented in Figuire @f, the cost of the flow for the new configuratiod;(X'y)

It is clear from the simulation results that the SINR values §'here Xy = {Xx \ x,} Ux’, andi is the flow that
all the links are equal after the optimization process, whidhe robot is part of. Therefore, the gradient of the poténtia
is quite intuitive from the symmetry in the network struur will determine the best direction. To gather informatiormab

The network cannot be further improved in terms of overafi/NR in future locations, we propose two different stragsgi
performance. First, we select a finite set of uniformly d_|str|buted points
sayx/, from the set of possible future locations. In our case,
IV. DISTRIBUTED OPTIMIZATION the set of possible future locations is the circumference of
In this section, we propose a new distributed approach fitve circle B;{x,}. Thus we choose a set of points, say 36
solving the optimization problem. In this distributed apgch, points, over the circumference that are equidistant. Now, i
each mobile node makes local decisions based on SIN#R first proposed strategy, a robot simply moves to each of
measurements and moves according to those decisions in otlese pointsx € x{ and calculates the SINR, assuming that
to improve the overall quality of the network. the rest of the network is unchanged. Although this method
o .. is straightforward, the convergence time of this method is
Step 1. Each _node calculates the SINRs of its incoming I'nK/S%ry long as each iteration needs a significant amount of time
and communicates these locally calculated SINR values with | .. . L .
and it is not efficient in terms of energy consumption. In the
all the other nodes that belongs to the same flow, whenever. a o :
SINR is undated second method, each robot maintains a SINR belief model
P ' of the network and updates it after every movement. Based
We assume that every node have the necessary hardwarehat model, a robot estimates the SINRs for each of the
and techniques to calculate the SINRs. potential locations. However, this SINR belief model istpzr

Step 2. Each node utilizes the gathered SINR information t%ur ongoing work. Both parts of our algorithm i.e., STAT and

determine whether it is a part of the link that has the lowest
SINR (which we refer to as the bottleneck link) or the second [— g 100
lowest SINR (which we refer to as the pseudo-bottleneck link . . H
for the respective flow. ‘ “m

We refer to the Steds] 1 amdl 2 together as $1¢R DaTa

. ] B Heeeeeeeees e ; ..... Pheerennnnnn E]
AccumulationTask (STAT). H
Step 3. If a robotic nodewv is a part of the bottleneck link q} ............... s
(or the pseudo-bottleneck link) of a floivit makes a local | &-=="""* |1 .
control decision about its movement and moves accordimgly, @ ®)
order to improve the link's SINR, if an improvement is pdssib ) ) N ) ) _
without worsening the flow cost i.&%;(X ). Fig. 5: Simulation plots (a) Initial Configuration (b) Contig

) ) ration after 100 Iterations
We consider the second lowest SINR link to add some
diversity in our algorithm so that it doesn't get stuck whelMODAL, are repeated until further improvement is possible
no improvement is possible by just moving the bottlenegir neither the link with lowest SINR nor the link with second

link’s mobile endpoints. We refer to this step as Mevement |owest SINR. The process will restart if any robot senses a
Direction and GAnularity Contrd. (MODAL). In this step, change in the configuration.

each node decides the movement direction and granularity as )
follows. A. Simulation

We discretize the movements into stepsdof> 0, which To check the performance and determine the properties
needs to be carefully chosen. The valuesafan be adapted of this algorithm, we performed a set of simulation exper-



TABLE l1I: SINR values of the different links after SimulateAnnealing

Initial Configuration of Robots Final SINR on each link
(z2,y2) | (z3,y3) | (ws,y6) | (x7,y7) | Noise || Link 12 | Link 23 | Link 34 | Link 56 | Link 67 | Link 78
0, 0) ©, 2) 0, 0) (0.5, 0) 0.6 0.0327 | 0.0327 | 0.0327 | 0.0327 | 0.0327 | 0.0327
0, 0) (2, 0) 0, 0) 0, 0) 1.0 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200 | 0.0200
(O, -1) 0,1) 0, 0) 0, 0) 2.0 0.0108 | 0.0108 | 0.0108 | 0.0108 | 0.0108 | 0.0108
0, 0) (3.0 ©, 1) (-1, 0 3.0 0.0073 | 0.0073 | 0.0073 | 0.0073 | 0.0073 | 0.0073
0, 2) 0, 0) 0, 0) (-1, 0 4.0 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055 | 0.0055
0, 0) 0, 0) 0, 0) 0, 0) 10.0 0.0022 | 0.0022 | 0.0022 | 0.0022 | 0.0022 | 0.0022

iments with the same initial configuration as described ®similar flows, i.e., Flow 1 and Flow 2, or Flow 3 and Flow 4,

sectionIII-B. One instance of such experiments is illusmia converges to the same values when the flow endpoints are
in Figure[®. As the figure suggests, the result is strikinglstatic. Once the mobility is introduced, the SINRs change
similar to the one obtained from the centralized approadhased on the new positions of the communication endpoints.
Also, with the different initial configuration as in Tallellll We have also tested our algorithm for networks that are

the final SINRs are exactly same as in Tdblé IIl. asymmetric and our algorithm performs equally well in those
cases. However, we do not present those results in this paper
20 Iteration= 1 2 lteration= 75 to conform with the space limitation.
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20 0 ( ;’ 0k 20 A0 (d; oo In this section, we provide a brief overview of the existing
C

research works related to our field of interest. Most of the
Fig. 6: Simulation plots: Configuration after (a) 1 Iteratib) significant research on robotic wireless router relatedctop
75 Iterations (c) 150 Iterations (d) 200 Iterations are very recent. Yan and Mostofi([8[.][9]) are among the few
researchers to work on the robotic router related problems.
So far, we have dealt with only two flow optimization probThey focused on robotic router placement optimization in
lems with static endpoints, which are very simple compaoed ¢order to maintain connectivity between an user and a base
problems with higher complexity and multiple flows. In ordestation. This optimization problem is mainly focused on min
to test the performance of our algorithm in a more complémization of bit-error rate for two scenarios of multi-hopda
framework, we increased the complexity of the network bgiversity. They also demonstrated that optimizations thase
adding two extra flows with two robots assigned to eadhe Fiedler eigenvalue, instead of bit-error rate, resolai
of the flow. The sender-receiver pair for flow 3 are initiallyperformance loss. In these works, they used an extension of
located at(10, 10) and(—10, —10), and for flow 4 are located the channel modeling technique introduced in([10],1 [11]).
at (—10,10) and (10,—10). We introduce random mobility However, they ignored the effect of interference in theirdeio
pattern to Flow 1's transmitter, Flow 2's receiver and Flowmnd focused on a single flow between a single receiver-
3's receiver. The results of a simulation instance with thisansmitter pair. Unlike these works, our proposed metisod i
configuration is presented in Figure 6. The figure demorestrabased on SINR, which is more generalized than bit-error rate
that our algorithm works well for a network with four flowsapproach. Also, we optimize multiple flows simultaneously,
with total 16 node and mobile endpoints. Figlie 7 illustsatenstead of focusing on a single flow. Tekdesal]12], also
the convergences of the flow-wise minimum SINR values ovéacused on similar problem and proposed two motion planning
time. It is clear from Figuré]7 that the minimum SINR ofalgorithms based on known user motion and unknown-random



adversarial user motion, respectively. Among other stfte- and optimality analysis of our algorithm. Therefore, outufe
the-arts, the decentralized algorithm based on supeiiegrad direction will be to flesh out the details of an adaptive SINR
and decentralized computation of Feidler eigenvector by Dmodel as well a thorough analysis of our algorithm. This
Gennaro and Jadbabaie[13] is mentionable. Stump, Jadbalairk is also a foundation of our future goal to develop an
and Kumar [[14] also developed a framework to control algorithm for adaptive node allocation and placement among
team of robots based on two metrics: the Fiedler value different flows in order to handle various dynamic situation
the weighted Laplacian matrix and the k-connectivity matri the network such as flow addition or deletion and increase or
However, Yan and Mostofi[8] showed that Fiedler eigenvalidecrease in flow demands. Another future direction would be

does not reflect the true reception quality, which is crugial a practical implementation of our algorithms on a real rabot

wireless networks.

Among other works, the DARPA LANdroids program [15]
is mentionable. Tactical communication enhancement iamurb
environments is the main goal of this program. Towards thig!
goal, they tried to develop pocket-sized intelligent aotoous [
robotic radio relay nodes, LANdroids, that are inexpensive
LANdroids are used to mitigate the communications problem
in urban settings, such as multipath effect, by acting like
relay node into shadows, using autonomous movement and
intelligent control algorithms. Dixon and Frew[16] propgols (41
a decentralized mobility controller based on maximizing th [
capacity of a local 3-node network in order to maximize the
end to end capacity of the entire communication chain. The
used measurements of the local signal to noise ratio for this
purpose. A Disjunctive Programming Approach is presenteff]
in [17]. Among other works, the work of Vieira, Govindan
and Sukhatme [18] is mentionable. In contrast, our proposeg
method is based on signal to interference and noise ratids an
focuses on multiple flow optimization, which is more praatic [9]
and generalized.

In [19], Williams, Gasparri and Krishnamachari presented a
hybrid architecture called INSPIRE, with two separate pfan 10
called Physical Control Plane (PCP) and Information Cdntro
Plane (ICP). Their goal was to improve and optimize the
network between multiple pair of senders and receiversgusi
a group of robots and using ETX as a metric. They used ETX
to determine the allocation of nodes among different flowE2]
while the mobility framework is simply to place the robots
evenly along the line segments joining the flow endpointgg
Although our application contexts are the same, our mghbilit
formulation as well as problem formulation are completel
different. In our proposed model, the movement of the robots
are directly controlled by the link qualities (more spedifig,

SINR) and, thus, is much practical. [15]

VI. CONCLUSION [16]
In this paper, we have considered a problem of proper
placement and control of mobile robotic nodes in order g7
optimize the performance of a wireless network. We have
devised an optimization function and based on that fungction
we have proposed a centralized and a distributed methag}
of robotic node placement and control that maximizes our
objective function. Through a set of simulation experinsent

network testbed.
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