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A Convex Model of Humanoid Momentum Dynamics for
Multi-Contact Motion Generation
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Abstract— Linear models for control and motion generation
of humanoid robots have received significant attention in the
past years, not only due to their well known theoretical guar-
antees, but also because of practical computational advantages.
However, to tackle more challenging tasks and scenarios such
as locomotion on uneven terrain, a more expressive model is
required. In this paper, we are interested in contact interaction-
centered motion optimization based on the momentum dynam-
ics model. This model is non-linear and non-convex; however,
we find a relaxation of the problem that allows us to formulate it
as a single convex quadratically-constrained quadratic program
(QCQP) that can be very efficiently optimized. Furthermore,
experimental results suggest that this relaxation is tight and
therefore useful for multi-contact planning. This convex model
is then coupled to the optimization of end-effector contacts
location using a mixed integer program, which can be solved
in realtime. This becomes relevant e.g. to recover from external
pushes, where a predefined stepping plan is likely to fail and
an online adaptation of the contact location is needed. The
performance of our algorithm is demonstrated in several multi-
contact scenarios for a humanoid robot.

[. INTRODUCTION

One of the major challenges that a humanoid robot faces
when walking or running is keeping its balance. The diffi-
culty arises from the fact that to move its Center of Mass
(CoM) in a direction other than that of gravity, it needs
to generate external forces by dynamically interacting with
the environment through the creation of intermittent physical
contacts. However, these contact forces, that allow to gen-
erate and control locomotion, are limited by the mechanical
laws of unilateral contact [3]: feet can only push and not
pull on the ground. This means that arbitrary motions are
not possible, and therefore being able to continuously answer
questions such as: where to place the feet, how hard to push,
or in which direction to move the body? are important for
generating safe and stable motions, even more in the case of
uneven terrain or strong perturbations.

On one hand, simplified models (usually based on re-
searchers’ intuition about the simplified dynamics of hu-
manoid robots, such as the linear inverted pendulum model
(LIPM) [15], [21]) provide an answer to these questions by
formulating an optimal control problem, that exploits the
linearity of the model and can be repeatedly solved in a
receding horizon fashion as a quadratic program [9], [25].
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This model predictive control scheme endows robustness to
the control strategy by bringing viability as a side effect of
the optimization [18] and has made these approaches very
successful in controlling locomotion of bipedal robots [10],
[22]. However, simplified models have limitations, because
of its assumptions such as co-planar footsteps, constant CoM
height, zero angular momentum, among others, which might
be undesirable in more dynamic maneuvers.

On the other hand, the benefits of using a full dynamics
model have been demonstrated with the optimization of more
complex behaviors as in [19], [23]. While these approaches
generate sophisticated whole body behaviors by making
use of full rigid body dynamics models and simultaneous
optimization of contact forces and robot motion, they are
computationally expensive. Besides, in these formulations,
the optimization landscape is very high-dimensional, prone to
local-minima, non-convex and discontinuous due to contacts,
characteristics that make the problem very hard to optimize.

Between these two extremes, there is a full range of model
choices. An interesting approach is [13], [7], where a full
kinematics model and the centroidal momentum dynamics
model are combined. In this approach, the momentum gen-
erated kinematically and dynamically match, ensuring equiv-
alence to the full dynamics model, provided that there exists
enough torque authority. [13] further shows that only the
momentum equations are necessary to reason about dynam-
ics, which allows to solve the problem iteratively between
kinematics and dynamics optimization. It is also shown that
the optimal control problem using the centroidal momentum
dynamics can be solved very efficiently (by exploiting the
problem structure) as a sequence of convex QCQPs. [6], [11]
show experimentally the utility of controlling momentum to
stabilize and generate dynamic motion in a humanoid robot.

Other interesting line of research is the use of mixed-
integer programs to optimize not only continuous postural
adjustments and contact forces, but also discrete changes in
the contact state. [14] shows the benefits of simultaneous
adaptation of gait pattern and posture in a humanoid walking
on flat ground. This work considers a simplified dynamics
model (LIPM) to find footsteps that help the robot to main-
tain stability and locomote. [8] does not consider a dynamics
model, however it presents a method for footsteps planning
on uneven terrain with obstacles using a mixed-integer
quadratically-constrained quadratic program (MIQCQP). In-
teger decision variables are used to select out of a set of
safe regions, the region over which to step. Another unique
feature is the piecewise affine approximation of rotation,
which keeps the form of the problem as a MIQCQP and
makes it efficiently solvable to its global minimum.



In this paper, we are interested in planning: CoM mo-
tion and momentum, contact interaction forces, and a short
sequence of contacts consistent with the desired dynamic
motion (Fig. [I). Specifically our contributions are:

1) We use the result presented in [13] (namely, that the
torque contribution of each end-effector to the angular
momentum rate can be analytically decomposed into a
convex and a concave part) to find a convex relaxation
of the angular momentum dynamics. This allows us
to formulate the problem as a single convex QCQP.
Our approach significantly improves computational
complexity and can solve the momentum optimization
problem in realtime. Moreover, experimental results
suggest that the relaxation is tight: solutions of the
relaxed convex problem correspond to the global opti-
mum of the original, non-convex, problem.

2) Using our convex model, we extend [8] by including
a dynamic model and hand contacts. It allows to plan
together contact locations, contact forces and momen-
tum dynamics. Therefore, the contact plan is not blind
to the dynamic evolution of the robot. Furthermore, it
is fast enough to be used online for a short preview
sequence of contacts.

The remainder of this paper is structured as follows. In Sec.
we present the problem formulation. Then, in Sec.
we show how to obtain a convex model of the momentum
dynamics and present the extension of the contact planner to
incorporate a dynamics model. We show experimental results
in Sec. [[V] and conclude the paper in Sec. [V]

II. PROBLEM FORMULATION

The dynamic model of a floating-base rigid body system is
H(q)gq+C(q,q) =S"7;+J{2

where q = [¢} xT]T denotes the robot state. x € SE(3) is
the position and orientation of the floating base frame of the
robot with respect to the inertial frame and ¢g; € R"/ are joints
positions. H(q) € R"+*7%6 is the inertia matrix; C(q,q) €
R0 the vector of Coriolis, centrifugal, gravity forces; S =
[I"J'X”.f O] € R%*"+6 the selection matrix and represents
the under-actuation of the system. 7; € R" is the vector
of joint torques; J. the Jacobian of the contact constraints
and A = [ - £y T ] the vector of generalized forces,
composed of forces f. and torques 7. acting at contact e.

The equations of motion can be decomposed into an
actuated a and an un-actuated u part as follows:

H,(q){+ Ca(q,q) = 7;+ I A
Hu(q)qJ" C, (qaq) = Jg.ul

Equation (IB) can be interpreted as the Newton-Euler
equations of the system. It expresses the change of momen-
tum of a robot as a function of external forces. Under the
assumption of enough torque authority, any combination of
forces A and accelerations { can be realized, as shown by
the actuated part of the equations of motion (Ta), if they are
consistent with the underactuated dynamics [24], [11]. This
suggests a natural decomposition for planning dynamically
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Fig. 1: Capabilities of the proposed algorithm.

consistent multi-contact motions for legged robots: the mo-
mentum equations are sufficient to ensure dynamic feasibility
and Equation (Ta) is only necessary to ensure kinematic
feasibility and torque limits [12]. The centroidal dynamics
equations, when expressed at the robot CoM, are:

1

il
1 Mg+Y. fe 2
k Ye(Pet+2e—1) xfe+ T

where r, I and k denote the CoM position, linear and angular
momenta, respectively. M is the robot total mass and g the
gravity vector. z. is the center of pressure (CoP) position
within the end-effector support region with respect to the
point pe, denoting the position of the e end-effector. Addi-
tionally, these dynamics are subject to physical constraints
such as friction cones, CoPs within its support region in order
to avoid tilting and torque limits.

In this paper, we concentrate on finding a convex formu-
lation of the centroidal momentum dynamics (@), to plan
optimal dynamic motions and contact locations in realtime,
which could then be realized by a low-level controller such
as an inverse dynamics one [12]. Formally, we would like to
find a solution that

N-1
min ¢N(hN)+ Z Zt(hapmzeafmTC)At (3)
Pe Ze fe, e =

minimizes the sum of a terminal cost ¢y (hy) and a running
cost 4, (h, pe,Ze,fe, T ), as will be defined later, over the avail-
able controls (namely contact locations pe, CoP locations z.,
and contact wrenches f.,7.), under the discretized centroidal
momentum dynamics:

Iy e+ _j%}lt

I 1 + 1A,

ki| = | kot +kA )
!t Mg + Ze fe,t

k¢ Yo Kot

where the variable k. (end-effector contribution to angular



momentum rate k) has been defined as

Ket = (Pe,g(t) T Zet —Tt) X fer + Tey
=Ley X fep+ Tey
0 _gez,t ge},’t fe)ft
=| & 0 —£ fey,t + Tet &)
SO | <

For notational simplicity we used the change of variable
lex = (Pe,() T Zet —r¢). The variable ¢(t) has been intro-
duced to denote that the end-effector position p 4(;) remains
fixed during a phase or sequence of predefined time steps.
Physical constraints such as friction cone, CoP within region
of support and torque limits are given by

||Lfe)ft +Lfe,},/tH S :quer,U Lfez,t Z 07 (63)
Lze)ft € [Zéinvzrgax] ) LZe},,t € [Z[i’]inﬁzrﬁax] ’ (6b)
HLTétH < /JTLer,t (6¢)

where the left super-script L, denotes that the variables
are expressed in local coordinate frames. (6a) expresses
that forces belong to a friction cone with coefficient .
(6B) expresses that the CoP should be within a conservative
region with respect to the real physical available region. (6c)
constraints the torque to a cone with torsional coefficient i,
[5]. Torques L7}, and L’L'ey’ . in local coordinate frames are zero.
Local variables are mapped to the inertial frame through an
appropriate rotation matrix R, . We use right super-script on
the rotation matrix to denote a particular set of its columns.

fe,t = Re,the,t

Tet = RE 78, @)
_ RXYL XY
Zey = Re,t ze,t

Friction cones are usually approximated by a set of hy-
perplanes in pyramid shape. However, as we will write
the dynamics as a convex QCQP, we do not require this
approximation and keep the friction cone as a second order
cone constraint on the contact forces. The only non-convexity
in the described dynamics model comes from the variable
Ke.t» which will be our focus in the next section.

III. APPROACH
A. Reformulation of the dynamics

Due to the practical and theoretical efficiency of solving a
linear (LP) or a quadratic program, they have been exploited
in many previous works, such as those where the angular
momentum dynamics are neglected or the CoM height is
kept constant ([1], [9], [10], [14], [15] to name a few).
With few exceptions, the usual approach when the model
complexity increases is to directly resort to general nonlinear
solvers such as sequential quadratic programming or interior
point methods, which might or might not find a solution for
the non-convex problem [6], [19], and also importantly, if
they find one, the required time is not comparable to our
formulation. In this paper, we find a convex approximation
of the angular momentum dynamics, that allows to find
solutions very efficiently. We will start by using the result
presented in [13] that formulates the angular momentum
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Fig. 2: Difference of convex functions decomposition.

dynamics as a difference of convex functions, and then we
will analyze different alternatives to cope with the non-
convex term.

Difference of Convex Functions Decomposition: The set
of difference of convex functions €+ can be defined as:

%iz{%ww—%’wnxeRm

€1, € :R" = R, are convex functions}

This set is dense in the space of continuous functions [4],

which means that it can approximate with arbitrary accuracy
any continuous function. Of particular interest are functions
€ ¢* that can be analytically decomposed, as is the case
of scalar and cross products. Figure 2] shows an example
decomposition of a scalar product x’y = Q" — Q~, where

1 1
ot = I |x+y[*, and 0~ = 1 lx—y|*

Using the example decomposition, it is easy to express
each element of a cross product as an element of &+, First,
each element is defined as a scalar product

! ! / T
dcvx €cvx f CVX
N I A H A
aly' BLy '
(8)

and then each scalar product is defined as an element of €.

o ‘!acvx+dcvx"2_Hacvx_dcvaz
€Xf:Z Hbcvx‘f'ecvaZ*||17(:vx_ecva2 )
Hccvx +fcva2 - Hccvx *fcvaz

Remark: When performing the decomposition, it is impor-
tant not to forget the underlying physics of the system at
hand. While the decomposition is mathematically correct and
exploits the structure of the problem, the units of each of
the terms of the decomposition do not match. Therefore,
normalizing its variables is not only aesthetically pleasing,
but also improves the conditioning of the problem, on which
rate and region of quadratic convergence of Newton’s method
depend. Remember that the decomposition squares forces
and lengths, which further increases Fheir rati(,).

In this problem, e.g. the variables a,, and d,, are defined
in terms of lengths and forces, respectively. However, the
variables acyx and d.yx are defined in terms of normalized
lengths and forces, respectively. The numerical constant ¢
encodes the normalization of lengths by the nominal length
of end-effectors (shoulder to hand distance for hands, and
CoM to foot distance for feet) and forces by gravity.



Now that the cross product has been decomposed, we will
analyze alternatives to cope with its non-convexity ¢ ~. We
will first introduce the standard method and then show how
it can be improved for our purposes.

1) Iterative Linearization: This is the standard method to
solve problems with constraints € €%, and the one used in
[13]. It reformulates the non-convex constraint as a convex
one, by using a first-order Taylor expansion of the concave
term evaluated at the current guess of the optimal vector. In
the case of equality constraints, a slack variable is used to
relax it to an inequality constraint, and also a penalty term
over the slack variable is added to the cost. This procedure
is performed iteratively until convergence to a solution. In a
simple example, this procedure would look as follows:

min  f(x)
x€R"
st gx) <0, h(x)=0, x€Q

where f(x) is the objective to be minimized, g(x) is an in-
equality constraint, i(x) € €+ = h*(x) —h~(x) is an equality
constraint, and Q is the feasible set, including upper and
lower bounds on variables. Then, the problem to be solved
iteratively would take the form:

;rel]%r% f)+u) s
st. gx) <0, x€Q, s5>0
I () — (1~ () + B (x—4)) <,

where U is a penalty over the slack variables s; (if more than
one constraint needed to be relaxed), and H, =V h™ (x) is
the gradient of the concave term. To sum up, this method
approximates at each iteration the concave term %~ by a
locally valid hyperplane, and neglects its second-order infor-
mation (source of non-convexity). It is important to note that
it does not neglect the entire concave part, because this would
drastically change the constraint, instead it approximates it
locally by a convex form. In the following, we present a
new alternative procedure, that does not require to solve a
sequence of convex programs, but a single one.

2) Semidefinite Programming (SDP) Approach: In this
section, we present our first idea at trying to reformulate
the non-convexity of the problem. The main idea is to upper
bound the positive and negative definite components of the
angular momentum dynamics. These upper bounds would
then linearly define the angular momentum rate k and would
belong to a convex set. It is well known that, under some mild
assumptions, convex problems can be solved efficiently in
theory. However, convexity alone is not enough to guarantee
the existence of efficient solution algorithms in practice. One
type of convex set, namely the positive semidefinite cone S" ,
is amenable for efficient optimization and commonly used to
compute lower bounds of integer problems.

In our setting, we will use SDP to compute every time
step upper bounds for the positive and negative definite
components of the angular momentum dynamics. In this way,
the dynamics would be linear, and the upper bounds would
be elements of the cone S'}. For simplicity of presentation,
we denote p = dcyx +devx and q = dcyx — devx (P, q € R29
see (9)) . Using this notation the x component of the torque

contribution of an end-effector to the angular momentum rate
dynamics (B) becomes

ﬂ:%@%ffﬂ+ﬂ,
which is equivalent to the following formulation
K= % [Tr (pp”) — Tr(qq")] + 7* ,
using the invariance of the trace under cyclic permutations:
Tr(pp") =Tr (p"p) =p'p -

At this point, we introduce the variables P, Q € Si (they are
2 x 2 positive semidefinite matrices, which means that e.g.
xTPx > 0) and perform the following change of variables

= 2 [T (P)-Tr(Q)] + 7
Q=qq’

Now, we can point out exactly to the non-convexity and know
its shape. Equation (I0b) means that the feasible set is a cone
surface (which is non-convex). The convex relaxation consist
in using as feasible set the convex hull of this cone surface.
This means that (TOb) becomes:

(10a)

where: P= ppT7 (10b)

pp’ < P, aq’ <5 Q , (11)

In our specific problem, we can interpret the convex relax-
ation as follows: We have introduced new variables P and
Q, whose traces are upper bounds of p’p and q”q (that
represent the positive and negative definite components of the
contribution of each end-effector to the angular momentum
rate). Then our work is to find conditions under which the
gap (value difference between Tr (P) and Tr (Q) and the
scalar products p’p and q”q, respectively) is as small as
possible. Making the gap between the upper bounds and the
actual quantities zero means that the constraints in the non-
convex problem are also satisfied exactly. In our problem,
this would mean that the values of the torque contribution
of each end-effector x.; computed using the difference of
upper bounds and using cross products of lengths and forces
match. We defer this for the next section and will concentrate
now on analyzing the current formulation.

In summary, we have relaxed the equality constraints to
(pp” =51 P, qq” <g: Q), or equivalently P—pp” €S} &
x'(P—pp’)x>0 and Q—qq" €S} & x (Q—qq")x >
0. If we were to actually solve the problem using this
formulation, the convex approximation of the end-effector
torque contribution to the angular momentum rate dynamics
using linear matrix inequalities (LMI) would be

= 2 [T (P)-Tr(Q)] + 7'
b =0 [3 1]

The transformation of inequalities (TT) to (I2b) is per-
formed using Schur’s complement. What we can notice under
the current formulation is that we have introduced new
optimization variables P and Q, which happen to be matrices,
and it seems that we have only inflated the problem. This is
true indeed; however, we have learned that

(12a)

(12b)



e A convex approximation of the angular momentum
rate dynamics can be found using upper bounds of its
positive and negative definite components.

o We are approximating a scalar quantity (either p’p or
q” q), therefore using a matrix for it is unnecessary. A
scalar quantity would suffice our purposes.

« Positive semidefinite cones are too general, there are
other cones, special cases of S". for example, that we
could use and more amenable to faster optimization.

3) Quadratically-Constrained Quadratic Program Ap-
proach: As mentioned in the last subsection, SDP includes
e.g. as special cases LP (when the symmetric matrices in-
volved are diagonal) or SOCP (when the symmetric matrices
have an arrow form) [2]. In this subsection, we simplify the
formulation of the previous subsection to a convex quadratic
inequality constraint. By applying the linear trace operator
on the previously defined inequalities (TT)), we would get

Tr(qq”) < Tr(Q)
q"q<Tr(Q)
q’q<q

Tr(pp") < Tr(P) ,
P'P<Ti(P) ,
P'P<Ph .

where we have introduced the scalar variables p, q € Ry

as the upper bounds of the positive and negative definite
components of our dynamics constraint, which becomes

K== [p q)+1°

where C PP=r. D 4'q=r. q

Using this idea, the angular momentum dynamics of our
problem can be reformulated as convex quadratic constraints:

Keyp = lou X fo i+ Tey

o |B U a
= Z u; *lly +Te,[ = Z IZU;':I*U;I] +Te,t (13)
+ —
u, —u, et
where:
||acvx+dcvx||ezl_ u;e,p Hacvx_dcvaztj Uer
Hbcvx + ecvx Hz,t =R, u;’_e,t’ ||bCVX — €evx HZ,t =Ry uy et’

2 _
Jeews = o2y <, 5 o

(14)

Hccvx ‘|‘fcvx||62,t jR+ u;e,ta

where U;t and U, are upper bounds for each end-effector
e and time-step ¢ of the positive and negative definite
components of the end-effector torque contribution k.; to
the angular momentum rate dynamics k,. Notice that, in
this formulation, differently from the iterative linearization,
the concave part is not limited to take values within a
hyperplane, but on the exact quadratic function, which is
then upper bounded using a convex quadratic inequality
constraint, instead of a LMI as in the SDP case.

B. Cost function and summary

In this subsection, we define the cost function to be
optimized and summarize the optimization problem. The

running cost £¢ of the dynamics optimization is given by:
DM L I, + ||Ut8||,2k

zufe,tu% e,
€

were a cost of the form ||x||f% represents a quadratic cost
xT 2x, with 2, a positive semi-deﬁnite matrix. This cost
penalizes high forces fe( and torques -7, deviations of the
CoP “Z.7 from the end-effector position p, () (such that it
stays close to the center of the support region). This cost also
includes a capturability penalty by penalizing a derivative of
the CoM position [18], namely, the linear momentum 1.

The terminal cost ¢y(hy) is usually defined as the point
where we would like to be at the end of the time horizon or
a velocity we would like to track.

) 2 (15)

Remark In (13), we did not 1nclude directly a cost over the
angular momentum k, (e.g. ||k/|> '9,)> because this variable is
defined in terms of its rate k,; which in turn is defined as
a sum of per end-effector upper bounds of positive U;f . and
negative U, definite components (13); therefore, if we were

to penalize either Kk, or k; directly (e.g. ||k|’, 2

be made trivially zero by the upper bounds (Ue v Ugy) taking
any value higher than the scalar product they upper bound.
In this case, there would be a gap between upper bounds
and the actual positive and negative definite components
defined by the scalar products (I4). Therefore, in practice
we penalize angular momentum indirectly by adding a cost
over the upper bounds (U; . and Ug,), which is a penalization
over the contribution to angular momentum rate per end-
effector, separately for its positive and negative definite part.
In this case, we have empirically found that the gap is, up
to numerical precision, zero. Intuitively, you can think of
the upper bounds as free variables that can take any value
higher than the quantity they upper bound. However, as they
are penalized, they will not be higher than needed by the
angular momentum and will actually be on the cone surface,
making the approximation tight.

To ensure physical consistency at execution time, we also
include the constraint

[Pep) —ref| <€, (16)

that constraints the distance from the CoM to the end-
effector position by the maximum end-effector length /"
(previously called nominal length, used for normalization).
This constraint holds as is for feet, but in the next section,
we will show how it is adapted for hands.

The following convex QCQP program summarizes the
optimization problem assuming a fixed set of contacts:

o (hy) + Zﬁ A
@7@’.7@’@7@7@ Ve .

The optimization variables are: CoM ry, linear momentum
and its rate 1, I, angular momentum and its rate kK, K,
wrenches in local and inertial coordinate frames fe;, ey,
Lfe(, Lt%,, CoP in local and inertial coordinate frames z,

minimize

subject to (a7

et’



"z, upper bounds U, U, and per time-step and per end-

effector auxiliary variables dacyx, Devxs Cevxs devxs €cvxs Jfevx-
From (8), we only use the definition of auxiliary variables
devxs Devx, and ceyy in terms of lengths e, and deyx, ecvx, and
fevx 1n terms of forces in world coordinate frame. They are
appropriately normalized, therefore, the/ primed variables can

be replaced by non-primed ones (e.g a.,, — acvx). Equation
defines the running cost /9.

C. Contacts planning

Up to this point, we have described an optimization
problem able to efficiently plan CoM motion and interaction
forces of the robot with the environment given a plan of
non-coplanar contacts. This optimization problem, formally
described as a convex QCQP, can be easily embedded in the
footstep planner algorithm [8]. The main adaptation would be
in the definition of the cost, where the goal would no longer
be finding a possibly large sequence of footsteps such that a
desired final feet configuration (position and orientation) is
achieved, but instead finding a short sequence of contacts
that support the achievement of a dynamic motion. The
optimization problem would be to minimize the cost given by
E;i (T3) plus a regularization of the distance between footsteps
under the constraints imposed by the dynamics model
and the contacts planner [8]. Of course, a simplification of
the contacts planner constraints is possible, given that its
purpose differs from the original formulation. Exploiting the
fact that, in this formulation the CoM of the robot is a
decision variable, we make an extension of the algorithm, by
including in the optimization, the search for contacts using
hands. In the following, we briefly introduce algorithm [8]
and its extension.

1) Original formulation: In [8], the terrain description
consists of a set of convex, obstacle free regions r € {1,R},
and the optimization considers a sequence of j = ¢(¢) €
{1,n} footsteps. For each footstep j, a piecewise affine
(PWA) approximation of sine and cosine is used in order
to handle footstep rotation (see Fig[3).

¢u < 6j < ¢u+l

Suj = u=1,...,.U
sj:gu6j+th
<0; <
Cj = (P =0 =hn =1,..,V
Cj:gv9j+hv

ue{1,U} and v € {1,V} are the number of linear functions
used in the approximation. S, ; and C,,; are integer decision
variables that define the active sine and cosine linear function
for footstep j. The intersection of 6; € [¢y,¢,+1] and 6; €
[y, @y11] is the region of validity of the approximation and,
s;=gubj+h, and c; = g,0;+h, are the linear approxima-
tions. Another set of integer decision variables H,.; defines
the region r € {1,R}, whose domain contains footstep j

Hr7j - Arijbr r=1,...R ,

where the inequality constraint A,p; < b,, constraints the
footstep position p; to not only belong to the epigraph
defined by region r, but also to be lying on it, because
all footsteps in the plan are active. Additionally, integrality

Cos()
sin(6)
- - -PWA

. . . 0 . . . .
Fig. 3: Piecewise affine approximation of sine and cosine.

constraints are imposed over the integer decision variables,
which renders the optimization efficient:

Y, Hej=%y Suj=Ly Cj=1
Hyj, Suj» Cvj € {01}

This constraints each footstep to belong only to one region
and to use only one linear model to approximate the rotation.
Finally, another remarkable feature of [8], is the expression
of reachability constraints between footstep positions as the
intersection of SOCP constraints:

P (1 ])lse e

where r; € R? for i = 1,2 are distances in opposite direction
from the last end-effector position p;_; and can also be
rotated by 6. They define new points, whose distance to the
next footstep position p; cannot exceed d;.

2) Extension to hand end-effectors: In the following,
we present the extension of the algorithm, consisting in
defining reachability and safe region constraints for hands,
and including an additional set of integer decision variables
that define the activation of hand end-effectors.

Hands, in the same way as feet, are also constrained to
belong to a unique safe region r at each phase j; however,
as they cannot always be in contact, for them belonging to
a safe region has the meaning of being in the epigraph of
the region. Let’s denote by n, the outward-pointing normal
of the surface of a region, by s, any point on the surface,
and by A”, b" the hyperplanes that define the borders of the
region. For a hand the safe region constraint is defined as:

Arp] S br
A | A _[ b
where: A, = {_nr] ,and b, = {—H,TSr ,

while for a foot, it also contains the constraint n,Tp i < ansr,
that constraints the contact to be lying on the surface.

To define reachability constraints for hands, we introduce
an additional vector r;., defined as the difference between
the position of the upper torso and the CoM. This vector has
constant length, but encodes the current orientation of the
torso. This vector is updated every time we re-optimize the
contact plan, but is kept constant during the optimization.
With this in mind, the reachability constraint becomes:

Cj *Sj 0
pi—|ritratsi ¢ Ofrg || <Ly -
0 0 1

p; is the position of a hand, rg is a constant vector
pointing from the upper torso to the shoulder of the corre-
sponding hand, and £3% is the maximum distance between

shoulder and hand. Therefore, the term within the norm is



the relative position of a hand with respect to its shoulder. In
the objective function, we include regularization of this term
from a default relative position. A set of integer decision
variables J € R?*" per hand is also used to define contact

activations.
Lf.,=0
J2,j — et
Pej 7 Pej-1

B = {pc;,j = pe.,j;l
n,p;<ms,

valid Vr € ¢(r) = j. The columns of J are constrained to
sum one: Y,;J; ; = 1,V. Either the end-effector is in contact
or not. The problem lies on the fact that, it is not possible to
determine how many hand activations are necessary during a
task. Therefore, the sum of the first row of J has to be left free
Y.;J1,j < nmax. This is the fact that limits the planner to only
a short sequence of contacts, usually n = e = (3 or 4), in
order to obtain results in a reasonable time.

Finally, the decision variables on safe regions, also affect
the mapping of quantities from local to world frame, by the
selection of the appropriate rotation matrix in (7).

fe,t = Re,te(p(z) Lfe,t

_pXy  Loxy
Hyj = {Zet =R, Zel
J— z LA+Z

Tet = Re,led)(t) Tet

The mapping of discrete quantities j to continuous time is
fixed by predefining the mapping j = ¢(¢), that defines the
timing of each discrete phase in terms of the time z.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental evaluations of our
algorithm (Figure [I) on several multi-contact scenarios for
a simulated humanoid robot: climbing on an uneven terrain
using only feet, walking on an uneven terrain, walking on
the same terrain with an external disturbance, climbing using
hands and feet, traversing monkey bars and avoiding an
obstacle using hands and feet. The results of the experiments
are visible in the accompanying video [1_1

All the tasks have a time duration of around 10 seconds.
The contact planner first finds a sequence of dynamically
consistent contact locations. We use 5 timesteps between
each contact change (timestep duration between 200 and
400ms). In a second stage the CoM, momentum and contact
forces are optimized using the contact sequence. The time
discretization in this case is finer (100ms). The whole plan
is computed without any initial guess (only the final desired
CoM location is specified). For all the tasks the complete
plan is found at once, except for the push recovery task where
the complete plan for the next two contacts is computed using
a receding horizon of 200ms. Both optimization problems
were solved using the parallel barrier algorithm implemented
in Gurobi which is particularly efficient for second order

Tt can also be found under https:/youtu.be/qLrftO0wW5g4

4?}, &;f\\. 4:?1\. «”‘;@ ~"§&
do U= &b

Fig. 4: Climbing an uneven terrain using hands

cone constraints and MIQCQPEI We use inverse kinematics
(tracking both momentum and end-effector positions) to
visualize the whole-body motion of the robot following the
dynamic plan.

Examples of the linear and momentum trajectories for
a walking motion are shown in Fig. [ Green lines de-
pict trajectories optimized using the dynamic formulation
presented in this paper. Blue lines show the momentum
trajectories optimized kinematically to track the desired
dynamic trajectories (used for videos). As can be seen, in
this figure and in the videos, momentum trajectories are non-
trivial. In this particular case, we show the linear momentum
in the direction responsible for moving the CoM laterally
between footsteps, and the angular momentum in the forward
direction of walking, responsible for the motion of arms.

A. Solution Time and Computational Complexity

The computational complexity ¢ of solving a dense but
convex QCQP using a primal-dual interior point method with
an m-self-concordant function is polynomial and of the order
ﬁ(m%[m+n]n2) [17], where m is the number of convex
quadratic inequalities and n the size of the optimization
vector. However, in the case of a sparse problem (which
is our case) we can expect to have a better computational
complexity. Our formulation requires 9 quadratic inequalities
per end-effector and time-step (6 to upper and lower bound
the end-effector contribution to the angular momentum rate
(T4), 1 to constraint the distance from the CoM (I6)), 2 for
friction and torque constraints (6a), (6c)). Note that they are
part of the optimization, only if end-effector e is active at
timestep ¢.

All the tasks were optimized in around 1 sec (including
both contact and momentum optimization). This is, to the
best of our knowledge, much faster (at least one order
of magnitude and much more in other cases) than other
approaches to optimize motion for a humanoid robot under
non-trivial conditions [6], [7], [13], [16], [19].

For the contact planner (MIQCQP), as mentioned previ-
ously, we look ahead for 2 to 4 contacts and use a rough
granularity for the dynamics. Depending on the number of
terrain regions, the time required to find a contact plan
varies between 200 and 500 milliseconds (See Fig. [I). The
quadratic inequality constraint helped to quickly discard
infeasible stepping regions.

Table [5|reports average time required in our formulation to
build and solve the dynamics optimization problem (convex
QCQP) given a fixed set of contacts for different horizon
lengths. We used the ”Climbing an uneven terrain using
hands” tasks because it is the task with the highest com-
putational complexity. As can be seen in the table and the

2We found the same solutions using Snopt and Ipopt but the required
time was orders of magnitude larger.
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Fig. 6: Example momentum trajectories for a walking motion.n
graph, thanks to the problem sparsity, the complexity does
not deteriorate too quickly and for the operating conditions
that we use, complexity increases close to linearly. If we
use a dynamics granularity of 200ms (40 timesteps), it takes
142ms to find a 8 second long plan involving 4 contact
changes. If we increase the dynamics granularity to 100ms
(80 timesteps), it takes us around 421ms to solve the problem
and we could solve it 2 times in a second. Another way to
interpret this result is as follows: if we were to plan for a time
horizon of 2 sec (maybe 2 footsteps), using a discretization
step of 100ms (20 timesteps) we could solve the problem in
around 85ms using the same granularity of 100ms, we could
plan for an horizon of half a minute (320 timesteps) in 3 sec.

[ Timesteps Time[ms] || 400
10 40 ano
20 85 g’m
40 142 £
80 421 20 40 60 80
Timesteps [n]

Fig. 5: Average time required to construct and solve the dynamics
optimization problem given a fixed set of footsteps.

B. Tightness of the solution

As mentioned earlier, using the cost as defined in section
I1I-B| all our numerical experiments found that the constraint
relaxation is tight: the gap between upper, lower bounds and
their corresponding true values is zero. It means that in these
cases we found solutions that are also an optimal solution to
the original (non-convex) problem.

This result is potentially very interesting because if the
relaxation was always tight, it would mean that it is always
possible to find the global solution of the non-convex mo-
mentum optimization problem by solving a convex QCQP.
In the optimization literature, there are a few results about
strong duality in non-convex quadratic optimization such as
[20]. There is for example one strong result in the case when
the Hessian of the objective has a null-space where it is
shown for a simple case with a quadratic objective and a
quadratic equality constraint, that because of the presence
of this nullspace, the relaxation is tight (zero gap) and
optimal. Since our objective function does not minimize for
the angular momentum, there is also a nullspace, it might be
possible that similar arguments could be used. However, a
formal proof remains for future work.

V. CONCLUSION

We have proposed a convex relaxation of the momentum
dynamics for leg robots that can be used to efficiently plan
contact forces, CoM motion and momentum trajectories.
Moreover, we have proposed an extension of a contact
planning algorithm including our convex model to find dy-
namically consistent contact sequences. Computation times

of the algorithm are small enough to be used in a receding
horizon fashion, moreover, numerical experiments suggest
that the convex relaxation is tight. While a formal proof
is missing, our result suggests that momentum and contact
forces optimization, a non-convex problem, could be solved
exactly using our convex relaxation, therefore removing the
need for further model simplification.
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