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Higher-Degree Stochastic Integration Filtering

Syed Safwan Khalid, Naveed Ur Rehman, and Shafayat Abrar

Abstract

We obtain a class of higher-degree stochastic integration filters (SIF) for nonlinear filtering applications. SIF

are based on stochastic spherical-radial integration rules that achieve asymptotically exact evaluations of Gaussian

weighted multivariate integrals found in nonlinear Bayesian filtering. The superiority of the proposed scheme is

demonstrated by comparing the performance of the proposed fifth-degree SIF against a number of existing stochastic,

quasi-stochastic and cubature (Kalman) filters. The proposed filter is demonstrated to outperform existing filters in

all cases.

Index Terms

Nonlinear filtering, cubature Kalman filtering, stochasticintegration filtering, numerical integration.

I. INTRODUCTION

Bayesian filtering provides a theoretical framework for recursive estimation of unknown dynamic state

vectors in linear/nonlinear filtering applications. In Bayesian paradigm, the posterior probability of the

state vector given the noisy observations is recursively updated at each instant. However, in general, the

evaluation of the posterior probability is analytically intractable, and hence only approximate solutions are

available [1]. The approximation methods are generally divided broadly into two categories, i.e., the global

and the local methods [2]. In the global approach, no assumption is made regarding the distribution of the

posterior density and it is approximated using methods suchas particle filtering [3], Gaussian mixtures

[4] and point-mass filtering [5] etc. The filters in this category – despite being fairly accurate – are known

to suffer from enormous computational load.

On the other hand, methods based on the local approach are computationally less demanding. These

methods rely on the assumption that the required posterior probability is Gaussian; consequently, the

task of filtering is simplified to the recursive updates of thefirst- and the second-order moments only.

The moment update relations essentially require solution of Gaussian weighted integrals of nonlinear
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functions. One possible approach is to use approximations such as Taylor series [6], Stirling’s interpolation

[7], Fourier-Hermite series [8] etc., that would make Gaussian integral tractable. Another possibility is

to apply numerical integration methods to evaluate Gaussian weighted integrals [9] thus giving rise to a

large class of sigma-point Kalman filters e.g., the cubatureKalman filter (CKF) [2], the unscented Kalman

filter [10], the Gauss-Hermite quadrature filter [11] etc. Using Monte-Carlo based stochastic numerical

integration rules is another possibility resulting in Monte-Carlo Kalman filter (MCKF) [12]. Recently,

in [13] a stochastic integration filter (SIF) based on the third-degree stochastic spherical-radial rule was

presented that provided asymptotically exact integral evaluations with faster convergence as compared to

MCKF. The SIF can be considered as a stochastic counterpart of third-degree CKF. The inadequacy of

third-degree integration rules in problems involving highnonlinearities and large uncertainties has been

noted in the works of Jia et al. [14], [15]. Consequently, in the past few years, many researchers have

focused their efforts on the development of higher-degree cubature Kalman filters [16], [17], [18]. The

motivation behind our work is to discuss the development andperformance of higher-degree stochastic

counterparts of these cubature filters. We first describe stochastic integration rules for an arbitrary degree,

and then proceed to develop a fifth-degree SIF.

This paper is organized as follows: Section II describes Bayesian filtering briefly. Section III presents

stochastic spherical-radial (integration) rule of a generic degree. Section IV proposes a fifth-degree

stochastic integration rule for Bayesian filtering. Section V presents simulation results, and Section VI

draws conclusions.

II. BAYESIAN FILTERING FRAMEWORK

Consider a representative nonlinear system:

xk = f(xk−1) +wk, (1a)

yk = h(xk) + vk, (1b)

wherexk ∈ R
n and yk ∈ R

m are state and observation vectors, respectively. The system model f(·)
and the observation modelh(·) are nonlinear functions. The noise processeswk and vk represent the

uncertainties in the models and are zero mean Gaussian random processes, i.e.,wk ∼ N (0;Qk) and

vk ∼ N (0;Rk). Let Y k = {y0,y1, · · · ,yk} be the set of all available observations atkth instant.

The aim of filtering process is to provide an estimate of the state vector givenY k. We know that the
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State prediction step:

x̂k|k−1= E
[

xk|Yk−1

]

=

∫

f(xk−1)Nxk−1
(x̂k−1|k−1, P

xx
k−1|k−1)dxk−1

(2)

P xx
k|k−1 = E

[(

xk − x̂k|k−1

)(

xk − x̂k|k−1

)T |Y k−1

]

= Qk − x̂k|k−1x̂
T
k|k−1+

∫

f(xk−1)f(xk−1)
TNxk−1

(x̂k−1|k−1, P
xx
k−1|k−1)dxk−1,

(3)

Observation prediction step:

ŷk|k−1 = E
[

yk|xk,Y k−1

]

=

∫

h(xk)Nxk
(x̂k|k−1, P

xx
k|k−1)dxk,

(4)

P xy
k|k−1 = E

[(

xk − x̂k|k−1

)(

yk − ŷk|k−1

)T ∣
∣xk,Y k−1

]

=

∫

xkh(xk)
TNxk

(x̂k|k−1, P
xx
k|k−1)dxk − x̂k|k−1ŷ

T
k|k−1,

(5)

P yy
k|k−1 = E

[(

yk − ŷk|k−1

)(

yk − ŷk|k−1

)T |xk,Y k−1

]

=

∫

h(xk)h(xk)
TNxk

(x̂k|k−1, P
xx
k|k−1)dxk − ŷk|k−1ŷ

T
k|k−1 +Rk

(6)

Bayesian filter correction step:

x̂k|k = x̂k|k−1 + P xy
k|k−1[P

yy
k|k−1]

−1
(

yk − ŷk|k−1

)

,

(7)

P xx
k|k = P xx

k|k−1 − P xy
k|k−1[P

yy
k|k−1]

−1
[

P xy
k|k−1

]T
. (8)

optimal estimate in terms of minimum mean square error (MSE)is given by x̂k|k = E[xk|Y k], i.e.,

x̂k|k =
∫

xkp(xk|Y k)dxk. Using Bayes theorem, we getp(xk|Y k) = 1
c
p(yk|xk)p(xk|Y k−1), where

p(xk|Y k−1) =
∫

p(xk|xk−1)p(xk−1|Y k−1)dxk−1, and c := p(yk|Y k−1). Hence we have a recursive

relation to evaluatep(xk|Y k) and consequentlŷxk|k. Assuming thatp(xk|Y k) = Nxk
(x̂k|k, P

xx
k|k) and

p(xk|Y k−1) = Nxk
(x̂k|k−1, P

xx
k|k−1), the optimal estimatêxk|k admits a solution [1], see (2)-(8).

Note that the Bayesian filtering process essentially breaksdown to the evaluation of Gaussian weighted

integrals of the formI(s) =
∫

s(x)Nx(x̂, P )dx. The integralI(s), in general, does not admit a closed-

form solution, and thus, numerical integration is employed[2], [9], [11], [13].
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III. STOCHASTIC INTEGRATION METHOD

Here, we describe stochastic integration method of arbitrary accuracy to approximate the Gaussian

weighted integralI(s), and consequently develop a fifth-degree stochastic integration (Bayesian) filter.

We introduce a transformationx = x̂ +
√
Pc, whereP =

√
P
√
P

T
[1]; accordingly, the Gaussian

weighted integral is written as
∫

s(x̂ +
√
Pc)Nc(0, I)dc =

∫

g(c)Nc(0, I)dc =: I(g), whereg(c) :=

s(x̂+
√
Pc). Secondly, we introduce a change of variable to convert the integral into the radial-spherical

coordinate system, i.e., we letc = rz, with zzT = 1, w(||c||) := (2π)−
n
2 exp(−1

2
cTc), and r2 = cTc

[19],

I(g) =

∫

z
T
z

∫ ∞

0

w(r)rn−1g(rz)drdz, (9)

wherew(r) = (2π)−
n
2 exp(−1

2
r2). We approximate the radial integral using a stochastic radial rule of the

form

Ir(g) =

∫ ∞

0

w(r)r(n−1)g(r)dr (10a)

≈
Nr
∑

i=0

̟r,i

[

g(ρi) + g(−ρi)

2

]

(10b)

where weights{̟r,i} with a set of random points{ρi} are selected such that (10b) becomes adth-degree

integration rule for (10a). Similarly, we have a spherical rule

Iz(g) =

∫

z
T
z

g(z)dz ≈
Ns
∑

j=0

̟s,jg(Qzj). (11)

Combining (10b) and (11), a product stochastic spherical-radial rule is defined to approximateI(g), i.e.,

I(g) ≈
Ns
∑

j=0

̟s,j

Nr
∑

i=0

̟r,i

[

g(ρiQzj) + g(−ρiQzj)

2

]

. (12)

where{̟s,j} are weights, andQ is an orthogonal matrix.

Remark 1: The spherical-radial rule described above is adth-degree rule if 1) it is exact for ag(x) that

can be described by a linear combination of monomials up to degreed, 2) It is not exact for at least one

monomial of degreed + 1. Moreover, if the radial rule in (10b) and the spherical rulein (11) are both

dth-degree, then the resulting spherical-radial rule in (12) is dth-degree as well [16].
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A. Stochastic Radial Rule

To realize the radial rule (10b), we have a proposition:

Proposition 1 [19]: If weights̟r,i in (10b) are defined by

̟r,i = Ir





Nr
∏

k=0,k 6=i

r2 − ρ2k
ρ2i − ρ2k



 , (13)

where ρ0 = 0 and ρi is chosen from a distribution proportional top(ρ1, ρ2, · · · , ρNr
) =

∏Nr

i=1 ρ
n+1
i w(ρi)

∏i−1
k=1(ρi − ρk)

2(ρi + ρk), then (10b) is an unbiased degree2Nr + 1 integration rule

for Ir(g).

Remark 2: Note that, it is not straightforward to sample the distribution p(ρ1, ρ2, · · · , ρNr
) for an

arbitraryNr. For Nr = 1, the required probability isp(ρ1) ∝ (ρ1)
n+1 exp(−ρ21/2), i.e., a chi-distribution

with n+2 degrees of freedom. ForNr = 2, p(ρ1, ρ2) ∝ (ρ1ρ2)
n+1 exp(−1

2
(ρ21 + ρ22))(ρ2−ρ1)

2(ρ2+ρ1). The

probability p(ρ1, ρ2) is not a standard distribution; however, if we choose someη1 from chi-distribution

with 2n + 7 degrees of freedom, and someη2 from beta-distribution withα = n + 2 and β = 3
2
, then

ρ1 = η1 sin(
1
2
sin−1(η2)) andρ2 = η1 cos(

1
2
sin−1(η2)) will be distributed proportional top(ρ1, ρ2) [19]. For

Nr ≥ 3, the resulting joint distributions are either not standardor not easily factored into standard forms,

and hence methods like Monte-Carlo sampling, such as rejection sampling [20], may be employed.

B. Stochastic Spherical Rule

A large variety of deterministic integration rules are available in literature to approximate the spherical

integralIz(g). For instance, [16] describes a method to develop sphericalrules of arbitrary degrees based

on the work of Genz [21]. More efficient fifth- and seventh-degree rules can be found in [22] and [23],

respectively. Here, however, we are interested in converting a given deterministic rule into a stochastic

one. To do so, we exploit the following proposition:

Proposition 2 [19]: Let S(g) =
∑Ns

j=0̟s,jg(zj) be an integration rule of degreed for the integral

Iz(g). If Q is a uniformly chosenn × n orthogonal matrix, thenSQ(g) =
∑Ns

j=0̟s,jg(Qzj) is also an

unbiased integration rule of degreed for Iz(g).

Remark 3: We can develop a stochastic spherical rule of an arbitrary degree usingProposition 2and

any of the various rules available in the literature [21], [22], [23]. The standard method for generatingQ
is to set it equal to theQ matrix of theQR-factorization of ann×n random matrixX, where each entry

of X is independent and distributed inN (0, 1). More efficient methods can be found in [24].
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C. Fifth-degree Stochastic Spherical Radial Rule

To develop a fifth-degree stochastic radial rule (Nr = 2), we note fromProposition 1 that the

corresponding weights̟ r,0, ̟r,1 and̟r,2 are evaluated as follows:

̟r,0 = Ir

(

(r2 − ρ21)(r
2 − ρ22)

ρ21ρ
2
2

)

= T

[

1− n(ρ21 + ρ22 − (n+ 2))

ρ21ρ
2
2

]

(14a)

̟r,1 = Ir

(

r2(r2 − ρ22)

ρ21(ρ
2
1 − ρ22)

)

= T
n(n+ 2− ρ22)

ρ21(ρ
2
1 − ρ22)

(14b)

̟r,2 = Ir

(

r2(r2 − ρ21)

ρ22(ρ
2
2 − ρ21)

)

= T
n(n+ 2− ρ21)

ρ22(ρ
2
2 − ρ21)

(14c)

whereT = π−n/2Γ(n/2). The method for generatingρ1, ρ2 has been discussed inRemark 2.

For the fifth-degree stochastic spherical rule, we first employ the deterministic spherical-simplex method

[17], [22] and then make use ofProposition 2to convert it into a stochastic rule. The spherical-simplex

rule is given as:

Iz(g) ≈
2̟s,1

T

n+1
∑

j=1

[

g(aj) + g(−aj)
]

+
2̟s,2

T

n(n+1)/2
∑

j=1

[

g(bj) + g(−bj)
]

, (15)

where2/T is the surface area of unit sphere, the weights are given as̟s,1 = (7−n)n
2(n+1)2(n+2)

and̟s,2 =

2(n−1)2

n(n+1)2(n+2)
. The vector pointsaj = [aj,1, aj,1, · · · , aj,n]T are the vertices of ann-simplex and are given

as

aj,k =























−
√

n+1
n(n−k+2)(n−k+1)

, k < j

+
√

(n+1)(n−j+1)
n(n−j+2)

, k = j

0, k > j

(16)

Whereas,bj are the midpoints ofaj projected onto the spherical surface, i.e.,bj =
√

n/(2(n− 1))(ak +

al) : k < l, and l = 1, 2, · · · , n + 1. Finally, using (12)-(15), the integralI(g) in (9) can be

approximated using the stochastic spherical-radial rule as expressed in (17)-(18), where̟0 = 1 −
n(ρ21 + ρ22 − (n+ 2))/(ρ21ρ

2
2) and ḡ(x) = 1

2
(g(x) + g(−x)).

Remark 4: To achieve global convergence, the stochastic integration is evaluatedNm times and averaged.

In each evaluation, independent realizations of random entities ρ1, ρ2 andQ are considered. From (18),

we note that each iteration operates forn2+3n+3 points. Hence, the total number of function evaluations

required isNm(n
2 + 3n+ 3).

IV. STOCHASTIC INTEGRATION FILTERING

Here, we describe the procedure to recursively estimatex̂k|k using the stochastic integration rule

described in Section III-C. The filter is initialized witĥx0|0 = E[x0] andP0|0 = E[(x0−x̂0|0)(x0−x̂0|0)
T ].
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I(g) ≈ ̟s,1

n+1
∑

j=1

[

̟r,0g(0) +̟r,1
g(−ρ1Qaj) + g(ρ1Qaj)

2
+̟r,2

g(−ρ2Qaj) + g(ρ2Qaj)

2

]

+̟s,2

n(n+1)/2
∑

j=1

[

̟r,0g(0) +̟r,1
g(−ρ1Qbj) + g(ρ1Qbj)

2
+̟r,2

g(−ρ2Qbj) + g(ρ2Qbj)

2

]

(17)

≈ ̟0g(0) +̟s,1

n+1
∑

j=1

[

̟r,1ḡ(ρ1Qaj) +̟r,2ḡ(ρ2Qaj)

]

+̟s,2

n(n+1)/2
∑

j=1

[

̟r,1ḡ(ρ1Qbj) +̟r,2ḡ(ρ2Qbj)

]

(18)

The filtering procedure is carried out by repeating the following steps for each instancek.

For thestate prediction step, we setµ = x̂k−1|k−1, Σ = P xx
k−1|k−1 and generate independent realizations

of ρl1, ρ
l
2 andQl for l = 1, 2, · · · , Nm. Then, for eachl, we generate the following set of sigma-points

for j = 1, 2:

X l
i,a,ρj

= µ+
√
ΣρljQlai 0 < i ≤ n+ 1, (19a)

X l
i,b,ρj

= µ+
√
ΣρljQlbi 0 < i ≤ n(n + 1)/2. (19b)

Let f1(x) = f(x), f2(x) = f(x)f(x)T , and f̄i(x) = 1
2
(fi(x) + fi(−x)), for i = 1, 2. Then, using (18),

the integrals in (2) and (3) are approximated as

x̂k|k−1 =
1

Nm

Nm
∑

l=1

[

f(µ)̟l
0 +̟s,1

n+1
∑

i=1

2
∑

j=1

f̄1(X
l
i,a,ρj

)̟l
r,j

+̟s,2

n(n+1)/2
∑

i=1

2
∑

j=1

f̄1(X
l
i,b,ρj

)̟l
r,j

]

, (20a)

P xx
k|k−1 =

1

Nm

Nm
∑

l=1

[

f(µ)f(µ)T̟l
0 +̟s,1

n+1
∑

i=1

2
∑

j=1

f̄2(X
l
i,a,ρj

)̟l
r,j

+̟s,2

n(n+1)/2
∑

i=1

2
∑

j=1

f̄2(X
l
i,b,ρj

)̟l
r,j

]

+Qk−x̂k|k−1x̂
T
k|k−1. (20b)

For theobservation prediction step, we setµ = x̂k|k−1, Σ = P xx
k|k−1 and generate a new set of sigma-points

using (19). Leth1(x) = h(x), h2(x) = xh(x)T , h3(x) = h(x)h(x)T and h̄i(x) =
1
2
(hi(x) + hi(−x)),
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i = 1, 2, 3. Now using (18), the integrals in (4), (5) and (6) are approximated as

ŷk|k−1 =
1

Nm

Nm
∑

l=1

[

h(µ)̟l
0 +̟s,1

n+1
∑

i=1

2
∑

j=1

h̄1(X
l
i,a,ρj

)̟l
r,j

+̟s,2

n(n+1)/2
∑

i=1

2
∑

j=1

h̄1(X
l
i,b,ρj

)̟l
r,j

]

, (21a)

P̂ xy
k|k−1 =

1

Nm

Nm
∑

l=1

[

µh(µ)T̟l
0 +̟s,1

n+1
∑

i=1

2
∑

j=1

h̄2(X
l
i,a,ρj

)T̟l
r,j

+̟s,2

n(n+1)/2
∑

i=1

2
∑

j=1

h̄2(X
l
i,b,ρj

)T̟l
r,j

]

− x̂k|k−1ŷ
T
k|k−1, (21b)

P̂ yy
k|k−1 =

1

Nm

Nm
∑

l=1

[

h(µ)h(µ)T̟l
0 +̟s,1

n+1
∑

i=1

2
∑

j=1

h̄3(X
l
i,a,ρj

)̟l
r,j

+̟s,2

n(n+1)/2
∑

i=1

2
∑

j=1

h̄3(X
l
i,b,ρj

)̟l
r,j

]

− ŷk|k−1ŷ
T
k|k−1 +Rk. (21c)

Finally, the correction step follows (7)-(8).

V. SIMULATION RESULTS

In this Section, we compare the performance of the proposed SIF with the third-degree SIF, third- and

fifth-degree CKF, and fifth-degree quasi-stochastic filter [25]. The first example considers approximating

a nonlinear integral; whereas, the second example considers a filtering scenario.

A. Approximating a Nonlinear Integral

Let x = [x1, x2, · · · , xn]
T be a random vector consisting of zero-mean independent Gaussian variables,

i.e., x ∼ Nx(0, I). We consider a Gaussian weighted integral of the formI(g) =
∫

g(x)Nx(0, I)dx,

whereg(x) =
∑n

i=1 x
i
i. The true value of the integral isIT =

∑n
p=1(p−1)!!Ii(p), where!! denotes double

factorial andIi(p) is an indicator function that returns0 if p is odd and1 if p is even.

For n = 6 and consequentlyIT = 19, the relative error, defined asRe = |IT − IA|/IT , for various

approximation methods is tabulated in Table I, whereIA is the approximate value obtained by the various

integration rules. We provide the maximum and the average error values for the stochastic methods obtained

after 1000 runs. The deterministic methods, i.e., the third- and fifth-degree CKF, have the same value of

the maximum and average error, hence only average values areshown. The value ofNm is adjusted such

that all stochastic integration methods utilize approximately the same number of points. We observe that,
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for the given scenario, both third- and fifth-degree CKF giveunreliable approximations and have very large

values of relative errors. The stochastic methods, on the other hand, provide superior average performances

and the proposed fifth-degree SIF outperforms all other filters. Furthermore, the third-degree SIF is found

to have a very large value of maximum relative error, and hence, may occasionally give large errors in

filtering applications. Moreover, we employed Monte-Carlointegration, whereI(g) is approximated using

the average of600 random realizations ofg(x); note that it performed far inferior to proposed scheme.

TABLE I
RELATIVE ERRORS OF ADDRESSED INTEGRAL RULES

Rule Re,max % Re,mean % Nm Points
Third-degree CKF — 104.0521 — 12
Fifth-degree CKF — 57.89 — 56
Third-degree SIF 83.11 13.92 50 600
Fifth-degree SIF 24.98 6.43 10 570

Fifth-degree QSIF 23.68 15.89 10 560
Monte-Carlo Integration 99.25 18.33 — 600

B. Nonlinear Filtering

We consider the following state-space model [18]

xk = 0.9xk−1 +wk, (22a)

yk = zqk + vk, (22b)

wherezk = (1 + xT
kxk)

2, wk ∼ N (0, Q) with Q = 100In andn = 10, andvk ∼ N (0, R) with R = 10.

The filter is initialized withx̂0|0 = E[x0], wherex0 ∼ N (1n×1, P
xx
0|0) andP xx

0|0 = 10In. The parameter

q can be tuned to adjust the degree of nonlinearity in the state-space model. We have carried out the

simulation experiments for various values ofq. We compare the performance of various filters using

root-mean-square-error (RMSE) as the performance metric,the RMSE is obtained using the following

relation:

RMSEk =

√

√

√

√

1

NMC

NMC
∑

m=1

||x̂k|k,m − xk||22, (23)

whereNMC = 500. The parameterNm is set equal to10 for both fifth-degree SIF and QSIF; while, it is

50 for the third-degree SIF. In Fig. 1 (above) forq = 2, we observe that the fifth-degree CKF and QSIF

have similar performances, and they perform better than thethird-degree CKF; the third- and fifth-degree

SIFs, however, outperform the fifth-degree CKF and QSIF. In Fig. 1 (below) forq = 4, we observe that, all
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filters exhibit large peaks in their respective RMSE values,but that of proposed fifth-degree SIF remains

stable and smaller.
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Fig. 1. Comparison of RMSE of the proposed fifth-degree SIF (SIF5) with third-degree SIF (SIF3), third-degree CKF (CKF3), fifth-degree
CKF (CKF5), and fifth-degree QSIF (QSIF5) forq = 2 (above), andq = 4 (below).

VI. CONCLUSION

In this letter, we discussed the utilization of higher-degree spherical-radial stochastic integration rules

for nonlinear Bayesian filtering. We specifically developeda fifth-degree stochastic integration filter (SIF).

The performance of the proposed filter was compared with the third- and fifth-degree cubature Kalman

filter, the third-degree SIF, and the fifth-degree quasi-SIFfor a nonlinear filtering scenario. It was observed

that the proposed fifth-degree SIF can perform better than existing ones.
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