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Higher-Degree Stochastic Integration Filtering

Syed Safwan Khalid, Naveed Ur Rehman, and Shafayat Abrar

Abstract

We obtain a class of higher-degree stochastic integratitandi(SIF) for nonlinear filtering applications. SIF
are based on stochastic spherical-radial integratiors rthlat achieve asymptotically exact evaluations of Gaassia
weighted multivariate integrals found in nonlinear Bagesfiltering. The superiority of the proposed scheme is
demonstrated by comparing the performance of the propdsediéigree SIF against a number of existing stochastic,
quasi-stochastic and cubature (Kalman) filters. The pregditer is demonstrated to outperform existing filters in

all cases.

Index Terms

Nonlinear filtering, cubature Kalman filtering, stochastitegration filtering, numerical integration.

. INTRODUCTION

Bayesian filtering provides a theoretical framework forursive estimation of unknown dynamic state
vectors in linear/nonlinear filtering applications. In Bajan paradigm, the posterior probability of the
state vector given the noisy observations is recursiveljatgd at each instant. However, in general, the
evaluation of the posterior probability is analyticallyraxctable, and hence only approximate solutions are
available[[1]. The approximation methods are generallydei broadly into two categories, i.e., the global
and the local methodsl[2]. In the global approach, no assomg made regarding the distribution of the
posterior density and it is approximated using methods sscparticle filtering([3], Gaussian mixtures
[4] and point-mass filtering [5] etc. The filters in this categ— despite being fairly accurate — are known
to suffer from enormous computational load.

On the other hand, methods based on the local approach angutationally less demanding. These
methods rely on the assumption that the required postermbability is Gaussian; consequently, the
task of filtering is simplified to the recursive updates of flist- and the second-order moments only.

The moment update relations essentially require solutioGaussian weighted integrals of nonlinear

SSK and NUR are affiliated with COMSATS Institute of Inforrieet Technology, Dept. of Electrical Engineering, Islamabéd4000,
Pakistan (Email{safwan khalid,naveed.rehma@comsats.edu.pk, shafayat1972@yahoo.com).


http://arxiv.org/abs/1608.00337v1

functions. One possible approach is to use approximatiocis as Taylor serie§|[6], Stirling’s interpolation
[7], Fourier-Hermite series [8] etc., that would make Gaarssntegral tractable. Another possibility is
to apply numerical integration methods to evaluate Ganssigighted integrals [9] thus giving rise to a
large class of sigma-point Kalman filters e.g., the cubakiaenan filter (CKF) [2], the unscented Kalman
filter [10], the Gauss-Hermite quadrature filter [[11] etc.ingsMonte-Carlo based stochastic numerical
integration rules is another possibility resulting in Met/€arlo Kalman filter (MCKF) [[12]. Recently,
in [13] a stochastic integration filter (SIF) based on theditegree stochastic spherical-radial rule was
presented that provided asymptotically exact integraluatens with faster convergence as compared to
MCKF. The SIF can be considered as a stochastic counterp#nird-degree CKF. The inadequacy of
third-degree integration rules in problems involving higbnlinearities and large uncertainties has been
noted in the works of Jia et al. [14], [15]. Consequently, lie past few years, many researchers have
focused their efforts on the development of higher-degrgsture Kalman filters [16], [17]/ [18]. The
motivation behind our work is to discuss the development p@dormance of higher-degree stochastic
counterparts of these cubature filters. We first describehagiic integration rules for an arbitrary degree,
and then proceed to develop a fifth-degree SIF.

This paper is organized as follows: Sectloh Il describeseBan filtering briefly. Section_lll presents
stochastic spherical-radial (integration) rule of a genelegree. Sectiofi IV proposes a fifth-degree
stochastic integration rule for Bayesian filtering. SetfM presents simulation results, and Section VI

draws conclusions.

II. BAYESIAN FILTERING FRAMEWORK

Consider a representative nonlinear system:

xr = f(xp_1) + wy, (1a)

Y = h(wk) + vy, (1b)

wherex;, € R" andy, € R™ are state and observation vectors, respectively. The mystedel f(-)
and the observation modél(-) are nonlinear functions. The noise procesagsand v, represent the
uncertainties in the models and are zero mean Gaussianmapducesses, i.ew;, ~ N (0; Q) and
vy ~ N(0;Ry). Let Y, = {y,, v, - ,y,} be the set of all available observations /h instant.

The aim of filtering process is to provide an estimate of ttegestvector giveny ,. We know that the



State prediction step:

.’%km_l: E[wk\Yk_l] :/f(wk—l)Nmkl (-’ik—l\k—lu Plffl\k—1>dmk—1
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Observation prediction step:
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(4)
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Bayesian filter correction step:
rik = Tap1 + P[P ™ (U = Fagp)
(7)
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optimal estimate in terms of minimum mean square error (MBE)iven by 2, = E[z;|Y ] o
Zyp = [ @ip(x]Y))de,. Using Bayes theorem, we getx,|Y,) = Lo(y,|er)p(xr]Y 1), Where
(@k|Yk—1) = [ plaglep—1)p(xr—1]Y p—1)dzr—1, and ¢ := p(y,|Yr-1). Hence we have a recursive

relation to evaluate(zx|Y'x) and consequentlyy, .. Assuming thatp(zx|Y'x) = Ny (Zx, Pfjf) and
p(@p|Y k1) = Ny (Zrp—1, Piji_,), the optimal estimater,;, admits a solution[[1], se€l(2)i(8).

Note that the Bayesian filtering process essentially breaka to the evaluation of Gaussian weighted
integrals of the form/(s) =

[ s(x)Ngz(z, P)dz. The integrall(s), in general, does not admit a closed-
form solution, and thus, numerical integration is emploj2jd [9], [11], [13].



IIl. STOCHASTIC INTEGRATION METHOD

Here, we describe stochastic integration method of ariteecuracy to approximate the Gaussian

weighted integral/ (s), and consequently develop a fifth-degree stochastic iatiegr (Bayesian) filter.

We introduce a transformatiom = & + v/ Pe, where P = v/Pv/P' [d]; accordingly, the Gaussian
weighted integral is written ag s(& + v/Pe)N.(0,I)dec = [ g(e)N.(0,1)dc =: I(g), whereg(c) :=
s(z ++/Pc). Secondly, we introduce a change of variable to convertrtegial into the radial-spherical

coordinate system, i.e., we let= rz, with zz” = 1, w(||c||) := (27) "% exp(—3c'c), andr? = c’c

[19],
/sz / 'g(rz)drdz, (9)

wherew(r) = (27) "2 exp(—4r?). We approximate the radial integral using a stochasticatadie of the

form
I(g) = / " w(r)r Y g(r)dr (10a)

NZ { pi +9( pz)} (10b)

where weightw, ;} with a set of random point§p;} are selected such that (10b) become&hadegree

integration rule for[(10a). Similarly, we have a spheriagdker

Lig)= [ glz)dzn Y mg(@x) 1)

Combining [10b) and(11), a product stochastic spheriadiat rule is defined to approximaféy), i.e

PE0 SR YN (R E L) ”

where{w; ;} are weights, and@ is an orthogonal matrix.

Remark 1 The spherical-radial rule described above i#tfadegree rule if 1) it is exact for @(x) that
can be described by a linear combination of monomials up ¢wesel, 2) It is not exact for at least one
monomial of degreel + 1. Moreover, if the radial rule in[(10b) and the spherical ring(11) are both
dth-degree, then the resulting spherical-radial rule_in) ($2ith-degree as well [16].



A. Stochastic Radial Rule

To realize the radial ruld (10b), we have a proposition:

Proposition 1 [19} If weightsw,; in (108) are defined by

N 2 2
Wriq = Ir H 2 k ) (13)

2
k=0,k+#i Pi = Py

where po = 0 and p; is chosen from a distribution proportional te(pi,ps, - ,pn.) =
[T, ot w(p) TTZ (0 — pi)?(pi + pr), then [I0b) is an unbiased degréeV, + 1 integration rule
for 1,.(g).

Remark 2 Note that, it is not straightforward to sample the disttiba p(py, p2, -, pn,) for an
arbitrary N,.. For N, = 1, the required probability is(p;) o (p1)" ™ exp(—p?/2), i.e., a chi-distribution
with n-+2 degrees of freedom. Fo¥, = 2, p(p1, p2) o< (p1p2)" " exp(—35(p7 + p3))(p2—p1)*(pa+p1). The
probability p(p1, p2) is not a standard distribution; however, if we choose sgmé&om chi-distribution
with 2n + 7 degrees of freedom, and some from beta-distribution withh = n 4+ 2 and g = % then
p1 = m sin(3sin~" (n2)) andp, = n cos(5 sin~" (1)) will be distributed proportional tp(p1, p2) [19]. For
N, > 3, the resulting joint distributions are either not standarchot easily factored into standard forms,

and hence methods like Monte-Carlo sampling, such as refesampling [[20], may be employed.

B. Stochastic Spherical Rule

A large variety of deterministic integration rules are #falie in literature to approximate the spherical
integral I, (g). For instance, [16] describes a method to develop sphetited of arbitrary degrees based
on the work of Genz[[21]. More efficient fifth- and seventh-gegrules can be found in_[22] and [23],
respectively. Here, however, we are interested in comgrdi given deterministic rule into a stochastic

one. To do so, we exploit the following proposition:

Proposition 2 [19] Let S(g) = ij;’o ws,;9(z;) be an integration rule of degreé for the integral
I.(g). If Q is a uniformly chosem x n orthogonal matrix, thenSg(g) = Z;.V;‘O ws,;9(Qz;) is also an

unbiased integration rule of degregfor 7,(g).

Remark 3 We can develop a stochastic spherical rule of an arbitragrek usingProposition 2and
any of the various rules available in the literature! [21R][Z23]. The standard method for generati@g
is to set it equal to th€) matrix of the R-factorization of am x n random matrixX, where each entry

of X is independent and distributed .ix{(0, 1). More efficient methods can be found [n [24].



C. Fifth-degree Stochastic Spherical Radial Rule

To develop a fifth-degree stochastic radial rulE,. (= 2), we note fromProposition 1that the

corresponding weightsy,., w,; andw, » are evaluated as follows:

2 2 2 2 2 2
- - —(n+2
— ((7“ plg(z Pz)) _ T[l _nlpt+ ry 2(n +2)) (142)
P1P2 P1P2
r?(r? — p3) n(n +2— p3)
wrl—fr(z 2_2>:TW (14b)
pi(pi — p3) pi(pi—p3)
r?(r? — p?) n(n +2— p?)
WM—Ir(z 2_2)—TW (14c)
p3(p3 — pi) p3(p3 — pi)

whereT = 7="/2I'(n/2). The method for generating, p. has been discussed Remark 2

For the fifth-degree stochastic spherical rule, we first emghe deterministic spherical-simplex method
[17], [22] and then make use &froposition 2to convert it into a stochastic rule. The spherical-simplex

rule is given as:

2w 1 s 2w 2 nintl)/2
L(g) ~ == > [9(a)) +9(-ap)] + === > [9(b) +9(=b))], (15)
Jj=1 j=1
where2/T is the surface area of unit sphere, the weights are givemas= ;s and @, » =
#}tfm. The vector pointsz; = [a;1,a;1, - ,a;,])" are the vertices of an-simplex and are given
as
n+1 .
_\/n(n—k+2)(n—k+l)’ k<j
= (nt1D)(n—=j+1) —
@j,k + n(n_jé) ) k=j (16)
0, k>

Whereasp; are the midpoints o&; projected onto the spherical surface, itg.= \/n/(2(n — 1))(a; +
a) : k < l,andl = 1,2,--- ,n + 1. Finally, using [A2){(1b), the integral(g) in (@) can be

approximated using the stochastic spherical-radial rgleexpressed in((17)-(18), where, = 1 —
n(pf +p3 — (n+2))/(pip3) andg(z) = 3(g(x) + g(—)).

Remark 4To achieve global convergence, the stochastic integradievaluatedV,, times and averaged.
In each evaluation, independent realizations of randoritienp,, p, and Q are considered. Fronm (118),
we note that each iteration operates#3r-3n+3 points. Hence, the total number of function evaluations

required iSN,,(n* + 3n + 3).

IV. STOCHASTIC INTEGRATION FILTERING

Here, we describe the procedure to recursively estimigtge using the stochastic integration rule

described in SectidnI4C. The filter is initialized witky o = E[x,] and Pyjo = E[(x0—Zoj0) (2o —Zoj0)” -



n+1

I(Q) ~ ws,l wr,09<0> + wr,l

_l’_

9(—p1Qa;) + g(p1 Qa;)
2

9(—p2Qa;) +g(szaj)}

+ W2 9

<
Il
—

‘s el {wrvog(o)+wr7lg(—p1ij)+g(p1ij) o g(—szbj)Jrg(mej)}
j=1

2 "2 2
(17)
ntl n(n+1)/2
~ @09(0) + @, 1 {Wm@(ﬂl Qa;) + @r29(p2 Qaj)} + Ws2 Z {wr,@(pl Qb;) + @r29(p2 ij)]
j=1 J=1
(18)

The filtering procedure is carried out by repeating the feifg steps for each instande

For thestate prediction stgpve sety = Ty qjp—1, X = P,ff”k_l and generate independent realizations

of p, pb and Q' for I = 1,2,---, N,,. Then, for each, we generate the following set of sigma-points
for j =1,2:
X!, =pu+VShQa 0<i<n+l, (19a)
X, =pu+VIQb  0<i<n(n+1)/2 (19b)

Let fi(z) = f(z), fo(z) = f(2)f(2)", and fi(z) = 3(fi(x) + fi(—=)), for i = 1,2. Then, using[(IB),

the integrals in[(2) and{3) are approximated as

1 N, n+l 2
s = 3 [l 4w 3D XL
m =1 j5=1
n(n+1)/2 2
DY Zfl } (20a)
n+1l 2
Sl I EE 3 ST
m i=1 j5=1
n(n+1)/2 2
+ s Z Zfz ;) f«,J*’Qk—ﬁ%k—@zk_l- (20b)

For theobservation prediction stepve sety = &1, ¥ = P and generate a new set of sigma-points

using [I9). Lethi(xz) = h(x), ho(z) = xh(z)”, hs(x) = h(z)h(x)" and h;(z) = 1(hi(x) + hi(—x)),



1 =1,2,3. Now using [(18), the integrals ifl(4),](5) arld (6) are apprmated as

1 N, n+1 2
gk|k—1:N—Z|:h< w0+w81zzh1 zap
m i=1 j=1
n(n+1)/2 2 -
fma 3 Dhixh,) } (212)

n+1l 2

Pl = Ny, Z {Hh(M)TWéJFWSJZZhQ gy

i=1 j=1
n(n+1/2 2

+ Ws,2 Z th pr m} _ik\k—lgg\k_p (21b)
i=1 7j=1
1 N, n+l 2
] (XTI N 3 BUNE I
™o=1 i=1 j=1
n(n+1)/2 2
T Ws,2 Z Zhi’» sz } - @k\k—lyg\k—l + Ry (21c)

i=1 7j=1

Finally, the correction step follow$(7)4(8).

V. SIMULATION RESULTS

In this Section, we compare the performance of the propo#edvih the third-degree SIF, third- and
fifth-degree CKF, and fifth-degree quasi-stochastic filg][ The first example considers approximating

a nonlinear integral; whereas, the second example cossaléltering scenario.

A. Approximating a Nonlinear Integral

Letx = [z, 79, -+ ,2,|T be a random vector consisting of zero-mean independents@ausgariables,
i.e., x ~ N,(0,I). We consider a Gaussian weighted integral of the fdim) = [ g(x)N(0, I)dz,
whereg(z) = Y, x;. The true value of the integral i& = ", (p—1)!'I;(p), where!! denotes double
factorial and/;(p) is an indicator function that returnisif p is odd andl if p is even.

For n = 6 and consequently; = 19, the relative error, defined a8. = |Ir — I4|/Ir, for various
approximation methods is tabulated in Talble |, whe&rds the approximate value obtained by the various
integration rules. We provide the maximum and the average ealues for the stochastic methods obtained
after 1000 runs. The deterministic methods, i.e., the third- and fiflgree CKF, have the same value of
the maximum and average error, hence only average valuehaven. The value ofV,, is adjusted such

that all stochastic integration methods utilize approxtehathe same number of points. We observe that,



for the given scenario, both third- and fifth-degree CKF gineeliable approximations and have very large
values of relative errors. The stochastic methods, on therdtand, provide superior average performances
and the proposed fifth-degree SIF outperforms all otherdilteurthermore, the third-degree SIF is found
to have a very large value of maximum relative error, and entay occasionally give large errors in
filtering applications. Moreover, we employed Monte-Caritegration, wherd (¢g) is approximated using

the average 0600 random realizations of(x); note that it performed far inferior to proposed scheme.

TABLE |
RELATIVE ERRORS OF ADDRESSED INTEGRAL RULES
Rule Remax % Remean% N, Points
Third-degree CKF — 104.0521 — 12
Fifth-degree CKF — 57.89 — 56
Third-degree SIF 83.11 13.92 50 600
Fifth-degree SIF 24.98 6.43 10 570
Fifth-degree QSIF 23.68 15.89 10 560
Monte-Carlo Integration ~ 99.25 18.33 — 600

B. Nonlinear Filtering

We consider the following state-space modell [18]

xr = 0921 + wy, (228.)

Y = 2 + Uk, (22b)

where z;, = (1 + i xy)?, wy, ~ N(0,Q) with Q@ = 1001, andn = 10, andv, ~ N(0, R) with R = 10.
The filter is initialized witha,, = E[xo|, wherex, ~ N(lnxl,Pgl’g) and Pgig = 101,. The parameter

g can be tuned to adjust the degree of nonlinearity in the -stgdee model. We have carried out the
simulation experiments for various values @f We compare the performance of various filters using
root-mean-square-error (RMSE) as the performance mehiec RMSE is obtained using the following

relation:

Nwc
1 .
m=1

where Nyc = 500. The parameten,, is set equal ta 0 for both fifth-degree SIF and QSIF; while, it is
50 for the third-degree SIF. In Fi@] 1 (above) fpr= 2, we observe that the fifth-degree CKF and QSIF
have similar performances, and they perform better tharnhing-degree CKF; the third- and fifth-degree

SIFs, however, outperform the fifth-degree CKF and QSIF.i¢gn[E (below) forq = 4, we observe that, all



filters exhibit large peaks in their respective RMSE valueg,that of proposed fifth-degree SIF remains

stable and smaller.

L L
50 100 150 200
Time index, k

Fig. 1. Comparison of RMSE of the proposed fifth-degree SIFfpwith third-degree SIF (SIF3), third-degree CKF (CKF8fth-degree
CKF (CKF5), and fifth-degree QSIF (QSIF5) for= 2 (above), and; = 4 (below).

VI. CONCLUSION

In this letter, we discussed the utilization of higher-aegspherical-radial stochastic integration rules
for nonlinear Bayesian filtering. We specifically developefifth-degree stochastic integration filter (SIF).
The performance of the proposed filter was compared with hiivd-tand fifth-degree cubature Kalman
filter, the third-degree SIF, and the fifth-degree quasifBifa nonlinear filtering scenario. It was observed

that the proposed fifth-degree SIF can perform better théstieg ones.
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