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Abstract— We consider the problem of reconstructing a 3-D
scene from a moving camera with high frame rate using the
affine projection model. This problem is traditionally known
as Affine Structure from Motion (Affine SfM), and can be
solved using an elegant low-rank factorization formulation. In
this paper, we assume that an accelerometer and gyro are
rigidly mounted with the camera, so that synchronized linear
acceleration and angular velocity measurements are available
together with the image measurements. We extend the standard
Affine SfM algorithm to integrate these measurements through
the use of image derivatives.

I. INTRODUCTION

A central problem in geometry in computer vision is
Structure from Motion (SfM), which is the problem of
reconstructing a 3-D scene from sparse feature points tracked
in the images of a moving camera. This problem is known
also in the robotics community as Simultaneous Localization
and Mapping (SLAM). One of the main differences between
the two communities is that in SLAM it is customary to
assume the presence of an Inertial Measurement Unit (IMU)
that provides measurements of angular velocity and linear
acceleration in the camera’s frame. Conversely, in SfM there
is a line of work which uses an affine camera model, which
is an approximation to the projective model when the depth
of the scene is relatively small with respect to the distance
between camera and scene. The resulting Affine SfM problem
affords a very elegant closed-form solution based on matrix
factorization and other linear algebra operations [65]. This
solution has not been used in the robotics community, possibly
due to the fact that it cannot be immediately extended to use
IMU measurements.

We assume that the relative pose between IMU and camera
has been calibrated using one of the existing offline [45],
online [32], [33], [36], [48], [70] or closed form [19], [52],
[53] approaches.

Paper contributions: In this paper we bridge the gap
between the two communities by proposing a new Dynamic
Affine SfM technique. Our technique is a direct extension of
the traditional Affine SfM algorithm, but incorporates syn-
chronized IMU measurements. This is achieved by assuming
that the frame rate of the camera is high enough and that
we can compute the higher order derivatives of the point
trajectories. Remarkably, our formulation leads again to a
closed form solution based on matrix factorization and linear
algebra operations. To the best of our knowledge, this kind of
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relation between higher-order derivatives of image trajectories
(flow) and IMU measurements, and the low-rank factorization
relation between them, have never been exploited before.

II. REVIEW OF PRIOR WORK

In the vision community, the Dynamic SfM problem is
related to traditional Structure from Motion (SfM), which uses
only vision measurements. The standard solution pipeline [28]
includes three steps. First, estimate relative poses between
pairs of images by using matched features [6], [17], [46]
and robust fitting techniques [23], [26]. Second, combine
the pairwise estimates either in sequential stages [2], [3],
[25], [61], [62], or by using a pose-graph approach [9]
(which works only with the poses and not the 3-D structure).
Algorithms under the latter category can be divided into
local methods [1], [11], [27], [67], which use gradient-based
optimization, and global methods [5], [51], [69], which
involve a relaxation of the constraints on the rotations together
with a low-rank approximation. The fourth and last step of
the pipeline is to use Bundle Adjustment (BA) [22], [28],
[66], where the motion and structure are jointly estimated by
minimizing the reprojection error.

In the robotics community, Dynamic SFM is closely related
to other Vision-aided Inertial Navigation (VIN) problems.
These include: Visual-Inertial Odometry (VIO), where only
the robots’ motion is of interest, and Simultaneous Local-
ization and Mapping (SLAM), where the reconstruction
(i.e., map) of the environment is also of interest. Existing
approaches to these problems fall between two extremes. On
one end of the spectrum we have batch approaches, which
are similar to BA with additional terms taking into account
the IMU measurements [8], [63]. If obtaining a map of the
environment is not important, the optimization problem can
be restricted to the poses alone (as in the pose-graph approach
in SfM), using the images and IMU measurements to build
a so-called factor graph [4], [16], [31]. To speed-up the
computations, some of the nodes can be merged using IMU
pre-integration [9], [47], and key-frames [39].

On the other end of the spectrum we have pure filtering
approaches. While some approaches are based on the Un-
scented Kalman Filter (UKF) [21], [30], [36] or Particle filter
[24], [58], the majority are based on the Extended Kalman
Filter (EKF). The inertial measurements can be used in either
a loosely coupled manner, i.e., in the update step of the filter
[10], [33], [40], [56], or in a tightly coupled manner, i.e., in the
prediction step of the filter together with a kinematic model
[7], [34], [37], [38], [41], [49], [57], [63], [64]. Methods
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Rf , Tf : transformation
from Rf to Rs

Xsp: 3-D point expressed in Rs, p ∈ {1, . . . , P}
Xcfp: 3-D point expressed in Rf

Rs: absolute reference

Rf : body reference
at frame f ∈ {1, . . . , F}
τf , νf , ωf : translation,
velocity, and angular
velocity in Rf

xfp: image of Xcfp

gs: gravity vector in Rs

αIMU : acceleration from IMU

Fig. 1: Schematic illustration of the problem and notation.

based on the EKF can be combined with an inverse depth
parametrization [12], [20], [38], [57] to reduce linearization
errors.

Between batch and filtering approaches there are three
options. The first is to use incremental solutions to the batch
problem [35]. The second option is to use a Sliding Window
Filter (SWF) approach, which applies a batch algorithm on a
small set of recent measurements. The states that are removed
from the window are compressed into a prior term using
linearization and marginalization [18], [29], [42], [54], [60],
possibly approximating the sparsity of the original problem
[14]. The third option is to use a Multistate-Constrained
Kalman Filter (MSCKF), which is similar to a sliding window
filter, but where the old states are stochastic clones [59] that
remain constant and are not updated with the measurements.
Comparisons of the two approaches [13], [42] show that the
SWF is more accurate and robust, but the MSCKF is more
efficient. A hybrid method that switches between the two has
appeared in [43], [44].

III. NOTATION AND PRELIMINARIES

In this section we establish the notation for the following
sections. In particular, we define quantities related to a robot
(e.g., a quadrotor) equipped with a camera and an inertial
measurement unit. We consider its motion as a rigid body,
and the relation of this with the IMU measurements and with
the geometry of the scene.

a) Reference frames, transformations and velocities: We
first define an inertial spatial frame Rs, which corresponds
to a fixed “world” reference frame, and a camera reference
frame Rf , which corresponds to body-fixed reference frame
of the robot. For simplicity, we assume that the reference
frame of the camera and of the IMU coincide with Rf ,
and that they are both centered at the center of mass of the
robot. We denote the world-centered frame as Rs, and as Rf
the robot-centered frame at some time instant (or “frame”)

f ∈ {1, . . . , F}. We also define the pair (Rf , Tf ) ∈ SE(3),
where Rf is a 3-D rotation belonging to the space of rotations
SO(3), and Tf ∈ R3 is a 3-D translation and SE(3) is the
group of rigid body motions [55]. More concretely, given a
point with 3-D coordinates Xf ∈ R3 in the camera frame,
the same point in the spatial frame will have coordinates
Xs ∈ R3 given by:

Xs = RfXc + Tf . (1)

Note that this equation implies that the Tf is equal to the
position of the center of mass of the vehicle in Rs. Hence,
Ṫf and T̈f represent its velocity and acceleration in the same
reference frame.

We also define the angular velocity ωf ∈ R3 with respect
to Rf such that

Ṙf = Rf ω̂f , (2)

With this notation, Euler’s equation of motion for the
vehicle can be written as [55]:

Jω̇f + ω̂fJωf = Γf , (3)

where J is the moment of inertia matrix and Γf is the torque
applied to the body, both defined with respect to the local
reference frame Rf .

b) Body-fixed quantities: We denote the translation,
linear velocity, linear acceleration, rotation and angular
velocity of the robot expressed in the reference Rf as τf , νf ,
αf , Rf and ωf , respectively. Since these are vectors, they are
related to the corresponding quantities in the inertial frame
Rs by the rotation RT

f :

τf = RT
f Tf , (4)

νf = RT
f Ṫf , (5)

αf = RT
f T̈f . (6)



An ideal body-fixed ideal IMU unit will measure the
angular velocity

ωIMU = ωf , (7)

and the acceleration A body-fixed, ideal accelerometer
positioned at the center of mass of the object will measure

αIMU = RT
f (T̈f + gs) = αf +RT

f gs, (8)

where gs is the (downward pointing) gravity vector in the
spatial frame Rs, around −9.8ezm/s

2, where and ez =
[0 0 1]T.

c) Tridimensional structure: We assume that the on-
board camera can track the position of P points having
coordinates Xsp ∈ R3, p ∈ {1, . . . , P} in Rs. For conve-
nience, we assume that Rs is centered at the centroid of this
points, that is, 1

P

∑P
p=1Xsp = 0.

Given the quantities above, we can find expressions for
the coordinates of a point in the camera’s coordinate system
and its derivatives. However, it is first convenient to find
the derivatives of τc, νc and ωc, which can be obtained by
combining (4) and (5) with the definition (2), and from Euler’s
equation of motion (3).

τ̇f = −ω̂fτf + νf , (9)
ν̇f = −ω̂fνf + αf , (10)

ω̇f = J−1
(
Γf − ω̂fJωf

)
. (11)

Then, the coordinate of a point Xsp in the reference Rf
and its derivatives are given by [55]:

Xcfp =RT
fXsp − τf , (12)

Ẋcfp =− ω̂fRT
fXsp + ω̂fτf − νf , (13)

Ẍcfp =
(
ω̂2
f − ˙̂ωf )RT

fXsp −
(
ω̂2
f − ˙̂ωf )τf

+ 2ω̂fνf − αIMU
f −RT

f gs, (14)

where ·̂ denotes the skew-symmetric matrix representation of
the cross product [50], and where ω̇f can be obtained either
using Euler’s equation of motion as in (11), by assuming
ω̇f = 0 (constant velocity model) or by using numerical
differentiation of ωf .

Note that Xcfp and its derivatives these quantities can be
completely determined by the 3-D geometry of the scene in
the inertial reference frame, the motion of the camera (Rsc, τc,
νc) and the measurements of the IMU (αIMU , ωIMU ); these
all contain some coefficient matrix times the term RT

fXsp plus
a vector given by the IMU measurements, the translational
motion of the robot and the gravity vector. This structure will
lead to the low-rank factorization formulation below.

d) Image projections: The coordinates in the image of
the projection of Xsp at frame f is denoted as xfp. Assuming
that the camera is intrinsically calibrated [50], the image xfp
can be related to Xcfp with the affine camera model, that is:

xfp = ΠXcfp. (15)

where Π ∈ R2×3 is a projector that removes the third
element of a vector. This model is an approximation of the
projective model for when the scene is relatively far from

the camera. This model has been used for Affine SfM [65]
and Affine Motion Segmentation (see the review article [68]
and references within), and it will allow us to introduce the
basic principles of our proposed methods.

Using (15), one can show that the images {xfp} and their
derivatives {ẋfp} (flow) and {ẍfp} (double flow) can be
written as:

xfp =ΠRT
fXsp − τf , (16)

ẋfp =−Πω̂fR
T
fXsp + Π(ω̂fτf − νf ), (17)

ẍfp =Π
(
ω̂2
f − ˙̂ωf

)
RT
fXsp −Π

(
(ω̂2
f − ˙̂ωf )τf (18)

+ 2ω̂fνf − αIMU
f −RT

f gs
)
. (19)

e) Formal problem statement: In this section we give the
technical details for the proposed Dynamic SfM estimation
methods for single agents. The setup and notation used in
this section are shown in. We assume that the camera on the
robot can track P points for F frames. We assume that the
derivatives of the tracked points are available (e.g., through
numerical differentiation).

Using the notation introduced in this section, the Dynamic
Affine SfM problem is then formulated as finding the motion
{Rf , τf , νf}, the structure {Xsp} and the gravity vector
gs from the camera measurements {xfp}, {ẋfp}, {ẍfp} and
the IMU measurements {ωf , αIMU

f }. Figure 1 contains a
graphical summary of the problem and of the notation.

IV. DYNAMIC AFFINE SFM

f) Factorization formulation: We start our treatment by
collecting all the image measurements and their derivatives
in a single matrix

W = stack(W ′, Ẇ ′, Ẅ ′) ∈ R6F×P , (20)

where the matrix W ′ ∈ R3F×P is defined by stacking the
coordinates {xfp} following the frame index f across the
rows and the point index p across the columns:

W ′ =

x11 · · · x1P

...
. . .

...
xN1 · · · xNP

 ∈ R2F×P . (21)

Notice the common structure in where we have some
coefficient matrix times RT

f times Xsp plus a vector. Thus,
the matrix W admits an affine rank-three decomposition
(which can also be written as a rank four decomposition)

W = CMS +m =
[
CM m

] [ S
1T

]
, (22)

where the motion matrix

M = stack
(
{RT

f }
)

(23)

contains the rotations, the structure matrix

S =
[
Xs1 · · · XsP

]
(24)



contains the 3-D points expressed in Rs, the coefficient matrix
C contains the projector Π times the coefficients multiplying
the rotations in (14)

C = stack
(
{Π}Ff=1, {−Πω̂f}Ff=1, {Π(ω̂2

f − ˙̂ωf )}Ff=1

)
,

(25)
and the translation vector m ∈ R2F contains the remaining
vector terms

m = stack
(
{−Πτf}Ff=1, {Π(ω̂fτf − νf )}Ff=1,

{Π((ω̂2
f − ˙̂ωf )τf + 2ω̂fνf − αIMU −RT

f gs)}Ff=1

)
. (26)

In addition to this relation, the quantities τf , νf and
αIMU
f can be linearly related using derivatives (see (6)).

Similarly, Rf and wf can be related using the definition of
angular velocity. Note that the coefficients C are completely
determined by the IMU measurements and the torque inputs.

g) Optimization formulation: From this, the problem of
estimating the motion, the structure, and the gravity direction
can then be casted as an optimization problem:

min
{Rf ,τf ,νf},gs

‖W − (CMS +m)‖2F + fR({Rf}, {ωf})

+ fτ (M, {τf}, {νf}) + fν(M, {νf}, {αIMU
f }, gs), (27)

where fR, fτ and fν are quadratic regularization terms based
on approximating the linear derivative constraints between
τf , νf , αIMU

f and between Rf , wf with finite differences.
In particular, for our implementation we will use,:

fR =

F−1∑
f=1

‖Rf+1 −Rf expm(tsωf )‖2F (28)

fτ =

F−1∑
f=1

‖ 1

ts
conv(τk, hk, f)− νf‖2F (29)

fν =

F−1∑
f=1

‖ 1

ts
conv(νk, hk, f)− αIMU −RT

f gs‖2F . (30)

where with ts is the sampling period of the measurements,
expm is the matrix exponential and conv(τk, hk, f) gives the
sample at time f of the convolution τk∗hk of a signal τk with
a derivative interpolation filter hk. For our implementation
we obtain hk from a Savitzky-Golay filter of order one and
window size three.

h) Solution strategy: The optimization problem (27) is
non-convex. However, we can find a closed-form solution
by exploiting the low-rank nature of the product MS and
the linearity of the other terms. This closed-form solution is
exact for the noiseless case, and provides an approximated
solution to (27) in the noisy case.

1) Factorization. Compute a rank four factorization W =
M̃S̃ using an SVD. With respect to the last term in
(22), the factors M̃ and S̃ are related to, respectively[
CM m

]
and

[
S
1T

]
by an unknown matrix Kproj ∈

R4×4. In standard SfM terminology, M̃ and S̃ represent
a projective reconstruction.

2) Similarity transformation. Ideally, the last row of S̃′

should be 1T. Therefore, we find a vector k ∈ R4 by
solving kTS̃′ = 1T in a least squares sense. We then
define the matrix Ksymil = stack(

[
I 0

]
, kT), and the

matrices M̃ ′ = M̃K−1
symil, S̃

′ = KsymilS̃. In standard
SfM terminology, M̃ ′ and S̃′ represent reconstruction
up to a symilarity transformation.

3) Centering. To fix the center of the absolute reference
frame Rs to the center of the 3-D structure, we first
compute the vector c = 1

P [S̃′]1:3,:, where [S̃′]1:3,:

indicates the matrix composed of the first three rows of

S̃′. We then define the matrix Kcenter =

[
0 −c
0 1

]
, and

the matrices M̃ ′′ = M̃ ′K−1
center and S̃′′ = KcenterS̃

′. At
this point the forth column of the matrix M̃ ′′ contains
(in the ideal case) the vector m defined in (22), that is
m̂ = [M̃ ′′]:,4.

4) Recovery of the rotations and structure. We now solve
for the rotations {Rf} by solving a reduced version of
(27). In particular, we solve

min
M ′′∈R3F×3

‖[M̃ ′′]:,1:3 − CM ′′‖2F + ‖CRM ′′‖2F , (31)

where [M̃ ′′]:,1:3 indicates the matrix containing the
first three columns of M̃ ′′, and CR is a block-banded-
diagonal matrix with blocks I and − expm(tsωf )T

corresponding to the regularization term (28). This is
a simple least squares problem which can be easily
solved using standard linear algebra algorithms. Ideally,
the matrix M ′′ is related to the real matrix M by an
unknown similarity transformation Kupg ∈ R3×3. This
matrix can be determined (up to an arbitrary rotation)
using the standard metric upgrade step from Affine
SfM (see [65]). Once Kupg has been determined, we
define M̂ = M ′′Kupg and Ŝ = K−1

upg [S̃′′]1:3,: to be
the estimated motion and structure matrices. The final
estimates {R̂f} are obtained by projecting each 3× 3
block of M̂ to SO(3) using an SVD decomposition.

5) Recovery of the translations and linear velocities. We
need to extract {τf} and {ωf} and an estimated gravity
direction ĝs from the vector m̂. Following (26), we
define the matrix

Cm =



...
...

...
−Π 0 0

...
...

...
Πω̂f −Π 0

...
...

...
Π((ω̂2

f − ˙̂ωf ) 2ω̂f −Rf
...

...
...


(32)

and the vector cm = stack(06F , {αIMU
f }). Similarly

to the definition of CR in (31), we also define the
matrices Cτ , Cν corresponding to the regularization
terms (29) and (30). We can then solve for the vector



x = stack({τ̂f}, { ˆνf}, ĝs) by minimizing

min
x
‖Cmx− m̂‖2F + ‖Cτx‖2F + ‖Cνx‖2F , (33)

which again is a least squares problem that can be solved
using standard linear algebra tools.

V. PRELIMINARY RESULTS

Figure 2 shows a simulation of the result of a preliminary
implementation of the Dynamic Affine SfM procedure.
We have simulated 5 seconds of a quadrotor following a
smooth trajectory while an onboard camera tracks 24 points.
The measurements (point coordinates, angular velocity and
linear acceleration) are sampled at 30Hz and corrupted with
Gaussian noise with variances of the added noise: 3 deg/s
angular velocity, 0.2 m/s2 acceleration, 0.5 % image points
(corresponding to, for instance, 3.2 px on a 600 × 600 px
image). The reconstruction obtained using our implementation
is aligned to the ground-truth using a Procrustes procedure
without scaling and compared with an integration of the
inertial measurements alone. Figure 3 compares the plot of
the ground truth and estimated rotations and translations
in absolute coordinates. Three facts should be noted in
this simulation: 1) The use of images greatly improves the
accuracy with respect to the use of IMU measurements alone.
2) The noise in the estimation mostly appears along the
z-axis direction of the camera, for which the images do
not provide any information. Although ours is a preliminary
implementation, the result obtained is extremely close to the
ground-truth, except for small errors along the z axis of the
camera. These errors are due to the fact that the affine model
discards the information along the z axis (the affine model
provide little information in this direction, and the reconstruc-
tion mostly relies on the noisy accelerometer measurements).
3) Larger noise appears at lower velocities (beginning and end
of the trajectory), thus attesting the usefulness of incorporating
higher-order derivative information.

VI. EXTENSIONS AND FUTURE WORK

The approach can be easily extended to the case where
multiple (non-overlapping) cameras rigidly mounted to the
same IMU. In this case, one can constract multiple matrices
W (one for each camera), and performs steps 1–3 of our
solution independently. The rotations and translations (steps
4, 5) can then be recovered by solving the linear systems
(31) and (33) joinly over all the cameras by adjusting the
corresponding coefficient matrices with the relative camera-
IMU poses (which are assumed to be known). The Dynamic
Affine SfM approach can also be potentially extended to the
projective camera model by using the approach of [15]. Let
Λ ∈ RF×P be a matrix containing all the unknown depths

of each point in each view, and let L = Λ⊗
[
1
1

]
. Then, one

can find a low-rank matrix Ŵ by minimizing

min
Ŵ ,Λ,Λ̇,Λ̈

‖

 L�W ′
L̇�W ′ + L� Ẇ ′

L̈�W ′ + 2L̇� Ẇ ′ + L� Ẅ ′

− Ŵ‖2F
+ µ‖Ŵ‖∗ + fΛ(Λ, Λ̇, Λ̈), (34)

where ‖·‖∗ denotes the nuclear norm (which acts as a low-rank
prior for Ŵ ), µ is a scalar weight and fΛ relates Λ with its
derivatives using a derivative interpolation filter. This problem
is convex and can be iteratively solved using block coordinate
descent (i.e., by minimizing over Ŵ and the other variables
alternatively). The method described in Section IV can then
be carried out on the matrix Ŵ to obtain the reconstruction.
Intuitively, (34) estimates the projective depths of each point
so that we can reduce the problem to the affine case.

We will implement and evaluate these two extensions in
our future work.
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