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Chance constraint based multi agent

navigation under uncertainty
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Abstract. We present Probabilistic Reciprocal Velocity Obstacle or
PRVO as a general algorithm for navigating multiple robots under per-
ception and motion uncertainty. PRVO is defined as the space of veloc-
ities that ensures dynamic collision avoidance between a pair of robots
with a specified probability. Our approach is based on defining chance
constraints over the inequalities defined by the deterministic Reciprocal
Velocity Obstacle (RVO). The computational complexity of the proposed
probabilistic RVO is comparable to the deterministic counterpart. This is
achieved by a series of reformulations where we first substitute the com-
putationally intractable chance constraints with a family of surrogate
constraints and then adopt a time scaling based solution methodology
to efficiently characterize their solution space. Further, we also show that
the solution space of each member of the family of surrogate constraints
can be mapped in closed form to the probability with which the original
chance constraints are satisfied and thus consequently to probability of
collision avoidance. We validate our formulations through numerical sim-
ulations where we highlight the importance of incorporating the effect
of motion uncertainty and the advantages of PRVO over existing for-
mulations which handles the effect of uncertainty by using conservative
bounding volumes.

1 Introduction

Ensuring collision free navigation of multiple robots between given start and goal
positions is an important problem in robotics, swarm and crowd simulation.
One commonly used approach to solve this problem performs local collision
avoidance between multiple robots using velocity obstacles (VO) [1], [2], [3]. This
involves repeatedly solving a set of non-convex inequalities to characterize the
space of collision free velocities available to each robot at a given instant. Some
faster techniques use a conservative formulation and reduce the local velocity
computation to a linear programming problem [4].

Most algorithms for multi-robot navigation focus primarily on the determin-
istic setting where it is assumed that the robot can perfectly estimate the states
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of the neighbouring robots and execute the computed avoidance maneuver with-
out any errors. However, in reality both motion and state estimation associated
with each robot are imprecise and it is important to take the uncertainty in
consideration. Thus, for robust implementation of multi robots in a particular
task, it is imperative to make the transition to the probabilistic domain, where
we explicitly consider the uncertainty in the system while computing the avoid-
ance velocities. As one would expect, the complexity of the probabilistic variant
tends to be much higher than the deterministic counterpart, as now the reason-
ing shifts from just collision avoidance to probability of collision avoidance. To
be more precise, in the probabilistic setting, it is required to map each velocity
in a given set to the resulting probability of collision avoidance. Alternatively,
one needs to obtain the characterization for the space of velocities for a given
probability of collision avoidance.

In this paper, we present a novel algorithm for multi-robot collision avoid-
ance which explicitly takes into account, the perception and motion uncertainty
of each robot. Our approach combines ideas from velocity obstacle based multi-
robot collision avoidance and robust control specifically robust Model Predictive
Control (MPC) . In particular, we borrow the concept of chance constraints
which are used in robust control to ensure constraint satisfaction under uncer-
tainty [13]. These chance constraints ensure that the probability of a constraint
being satisfied is greater than a specified threshold. In our approach, we for-
mulate chance constraints over the conditions defined by the deterministic Re-
ciprocal Velocity Obstacle (RVO) [2] and characterize the the resulting set of
inequalities as Probabilistic Reciprocal Velocity Obstacle or PRVO.

We also provide a computationally efficient approach for solving these com-
plex set of inequalities. To this end, we build upon our recent series of works
[14], [15], where chance constraints are substituted with a more tractable family
of surrogate constraints. The solution space of each member of the family can
be mapped in closed form to the probability with each the original chance con-
straints are satisfied. Finally, a time scaling based methodology can be adopted
to efficiently solve the surrogate constraints. In this paper, we extend the ap-
proach of [14], [15] to multiple decision making robots by expanding our model
to incorporate the uncertainty that the robot would exhibit while executing the
computed avoidance maneuver.

1.1 Summary of Main Results

On the computational side, we show that the complexity of the PRVO is com-
parable to its deterministic counterpart. This is primarily achieved by the use of
surrogate constraints and a time scaling based methodology for their solution.
Further, we show that the previous developed Cantellis inequality based bounds
which relates solution space of surrogate constraints to the probability of collision
avoidance performs well in case of maneuvering targets as well. On the practical
side, we highlight the importance of explicitly including the uncertainty associ-
ated with execution of avoidance maneuvers. Moreover, the advantage of PRVO



over existing works which incorporates the effect of uncertainty by enlarging the
size of the robot [16],[22], [17], [18] is also presented.

1.2 Layout of the Paper

The rest of the paper is organized as follows. Section 2 contrasts the proposed
formulation with the existing works. Section 3 summarizes the notations used
in the paper. Section 4 presents the collision avoidance conditions as modeled
Reciprocal Velocity Obstacle (RVO) in the deterministic setting. Section 5 in-
troduces the model of the uncertainty used in the current work followed by the
introduction of chance constraints over the inequalities defined by RVO. Section
6 presents a time scaling based methodology for efficient characterization of the
solution space of the surrogate substitution of the chance constraints. Section 7
presents an analysis of computational complexity, probability bounds and mo-
tivations for choosing RVO as the basis for construction of chance constraints
as compared to its convex approximation ORCA. The simulation results are
presented in section 8

2 Related Work

In this section, we contrast our proposed formulation with the existing works in
terms of uncertainty model, methodology for formulating and solving dynamic
collision avoidance under uncertainty in the context of both single robot and
multi-robot navigation.

2.1 Uncertainty Model

Our methodology of modeling uncertainty in the system is similar to that pre-
sented in works like [5], [6], [7], [8], [9], [10], [11], [12], [16], [17], [18]. in the sense
that uncertainty at any time instant is represented as a normal random variable
with a particular mean vector and covariance matrix. However, among these, [5]-
[11] consider the case of a single robot moving among non-responsive dynamic
obstacles and incorporates the effect of only perception uncertainty while treat-
ing the robot’s motion through deterministic models. Algorithms presented in
[12] considers the effect of both perception and motion uncertainty but only in
the context of dynamic collision avoidance of a single robot. In [16], each robots
motion uncertainty is taken into consideration while constructing the RVO. How-
ever, it does not consider the uncertainty in the error between the computed and
executed avoidance maneuver,or in short the actuation uncertainty.

2.2 Dynamic Collision Avoidance Constraints under Uncertainty

At a conceptual level, our modeling of dynamic collision avoidance under un-
certainty is similar to works like [5]-[12] in the sense that we are also primarily



concerned with relating each velocity in some given set to a probability of col-
lision avoidance. The differentiating factor however, with these cited works lies
in the technical approach followed and in the fact that we deal with multiple
maneuvering robots. [5]-[12] relies on sampling different velocities, using them
to construct robot’s trajectory over a short horizon and inferring probability of
collision with respect to them. However, such sampling based approaches are
difficult to extend for multiple robots due increase in complexity of the search
space. In contrast, we propose a systematic decomposition of probabilistic colli-
sion avoidance constraints into simpler forms eventually leading to a close form
approximation of the solution space.

The probabilistic approach followed in the current proposed work is also very
different from those presented in [16], [17], [18] which account for uncertainty in
dynamic collision avoidance by expanding the size of the velocity and radius of
the robot, depending on the level of uncertainty in the system. In principle, this is
equivalent to drawing a lot of samples from position, size and velocity uncertainty
ellipse and writing collision avoidance with respect to each of them. Although
very simple, this approach suffers from the drawback that it is blind to the
probability of samples drawn and thus, samples which are closer to the mean are
given same importance as samples farther from the mean. At the implementation
level, one would have the same collision avoidance constraints with respect to
both the samples. As we show later, this leads to a very conservative solution
space.

3 Symbols and Notations

We used bold faced small case letters with superscripts to describe vectors asso-
ciated with a particular robot. For example, the position and velocity of robot i

is represented as pi = (px, py) and vi = (vx, vy). We use fRV Oi
j to represent the

collision avoidance conditions computed through the concept of RVO. The sym-
bol vi

rvo represents collision avoiding velocities computed using the deterministic
RVO algorithm. We use µ and σ2 with suitable subscripts and superscripts to
represent mean and variance of vectors or functions respectively. In section 6, we
use additional superscript ”s” to denote time scaled variants of vectors, functions
or constraints.

4 Pre-Requsitie: Deterministic Velocity and Reciprocal

Velocity Obstacle

In this section, we briefly review the concept of Reciprocal Velocity Obstacle
(RVO). We do not go into details, rather present the general algebraic form
for the collision avoidance constraints defined by RVO. For details, the readers
are requested to refer to [2]. We consider disk shaped robots each modeled as
following single integrator system in 2D Euclidean X − Y space



ẋi = vix ⇒ xi(t+∆t) = xi(t) + vix∆t, ẏi = viy ⇒ yi(t+∆t) = yi(t) + viy∆t (1)

In (1), vix and viy respectively represents the x and y component of the velocity

of the ith robot. It is clear from (1) that the trajectory of each robot is assumed
to be composed of piece-wise straight line segments.

Now, consider a collision scenario where two robots with radius Ri and Rj

are moving with constant velocities vi and vj . The space of such velocities vi
rvo

which allow robot i to come out of the collision course with robot j can be
characterized by the following set of inequalities derived from the concept of
RVO [2].

fRVOi
j (pj ,vj) ≥ 0 (2)

fRVOi
j (pj ,vj) = ‖rij‖2 −

(rij)T (2vi
rvo − vi − vj)

‖2vi
rvo − vi − vj‖2

−R2

It is straightforward to observed that (2) is a non-convex quadratic with
respect to vi

rvo and thus, computing a characterization of collision free velocities
automatically becomes a challenging problem.

At this point, it is worth pointing out that the in the deterministic setting
it is assumed that each robot can estimate its current state and the state of
the other robot perfectly and thus, can construct inequalities (2) exactly. In the
subsequent sections, we relax this assumption thereby extending RVO to the
probabilistic domain.

5 RVO in the Probabilistic Domain

Let us start by representing the current trajectory of each robot as the following
random variables.

pi ≈ N(µi
p
, (σi

p
)2), pj ≈ N(µj

p
, (σj

p
)2) (3)

vi ≈ N(µi
v
, (σi

v
)2), vj ≈ N(µj

v
, (σj

v
)2), (4)

where µi
p
, (σi

p
)2, µi

v
, (σi

v
)2 and similarly others represents position and veloc-

ity level mean and variances, respectively. In the context of two robot collision
scenario considered in the previous section, equations (3) and (4) model the
fact that robot i has some uncertainty in the estimate of its current state and
the state of the robot j. Although, we have assumed a Gaussian form, our ap-
proach can be easily extended to incorporate other representations as well and
we discuss that briefly, later on in the paper.

Similarly, let us assume that each robot has an imperfect actuation and
thus there is an inherent noise between the commanded and actual velocity.



This noise would result in some error between the avoidance maneuver that the
robot intends to perform and actually performs. Moreover, this error itself would
be a random variable. In the context of RVO, we account for this uncertainty
associated with avoidance maneuver by assuming that vi

rvo is drawn from a
distribution. In other words, it is modeled as the following Gaussian random
variable

vi
rvo ≈ N(vi

rvo, (σ
i
vrvo

)2), (5)

The above equation models the fact that when the robot commands a velocity
vi
rvo, the executed velocity can correspond to any sample drawn from a Gaussian

distribution whose mean is the commanded velocity and the variance is some
constant (σi

vrvo
)2

Now, in light of definitions (3)-(5), fRV Oi
j becomes a multivariate function of

random variables and thus, consequently a random variable itself. Thus, math-
ematically, (2) does not make sense. Instead, a more well defined alternative
would be to consider the following inequality

P (fRV Oi
j (pj ,vj) ≥ 0) ≥ η. (6)

Constraint (6) ensures that the probability of RVO based collision avoidance
condition (2) being satisfied is greater than some lower bound η. It is straight-
forward to note that (6) infact defines the space of velocities vi

rvo for robot i

which ensures satisfaction of RVO constraints with atleast probability η for the
given robot j trajectory parameters pj and vj . We define (6) as probabilistic
reciprocal velocity obstacle or PRVO.

Constraints having the general form as that of (6) are popularly known as
”chance constraints” in the robust control literature [13], and in general are
computationally intractable [19]. The primary difficulty lies in computing the
analytical form for the chance constraints. One notable exception exists in the
case when the random variables in consideration have Gaussian distribution and
the chance constraints are defined over affine inequalities [20]. In such cases, effi-
cient convex approximations for the chance constraints can be derived. However,

as stated earlier, fRV Oi
j is non-convex quadratic in terms of random variables

and thus the techniques proposed in [20] is not applicable in our case. In the
next section, we present a novel substitution for (6), which exploits the fact that
although it is intractable to obtain the analytical form for left hand side of (6), it
is relatively straightforward to obtain symbolic expressions for expectation and

variance for fRVOi
j .

5.1 Expectation and Variance of fRV O
i
j(.)

Expectation of a multivariate function g in terms of variables z1, z2...zn is given
by the following expression.



E[g(z1, z2...zn)] = (7)∫ ∞

−∞

...

∫ ∞

−∞

g(z1, z2...zn)h(z1, z2...zn)dz1dz2..dzn

Using (7), the expectation of fRV Oi
j (.) can be obtained in the following man-

ner.

E[fRV Oi
j ] = µ

f
RV Oi

j
=

∫ ∞

−∞

...

∫ ∞

−∞

f
RV Oi

j (.)P (.)dxi
dy

i
dx

j
dy

j
dvx

i
dvy

i
dvx

j
dvy

j
d(virvo)x, d(v

i
rvo)y

(8)

In (8) P (.) represents the joint probability distribution of the random vari-
ables (xi, yi, xj , yj , vx

i, vy
i, vx

j , vy
j , (virvo)x, (v

i
rvo)y). Integral (8) can be com-

puted symbolically using packages like MATHEMATICA [21] and can be even-
tually reduced to a quadratic polynomial in terms of vi

rvo.

We can proceed to use (8) to compute the variance of fRV Oi
j (.) in the follow-

ing manner. The right hand side of equality (9), when computed symbolically,
reduces to a fourth order polynomial in terms of vi

rvo

(σ
f
RV Oi

j
)2 = E[(fRV Oi

j − E[fRV Oi
j ])2] (9)

Equations having the general form similar to (8) and (9) were introduced in
our earlier work [14]. However, in contrast to our earlier formulations, (8) and
(9) is more complex as they depend on additional random variables pertaining
to motion uncertainty of the robot i.

5.2 Approximations for PRVO

Using (8) and (9), we can replace (6) with the following family surrogate con-
straints.

µf
RV Oi

j

− kσf
RV Oi

j

≥ 0, k ≥ 0 (10)

As shown in our earlier work [14], inequality (10) represents a strip of width
µf

RV Oi
j

− kσf
RV Oi

j

from the distribution of fRV Oi
j
. Thus, solving (10) with in-

creasing value of k ensures increasingly larger part of the distribution of fRVOi
j

to be above zero. This in turn leads to increasingly safer velocities. To put it
mathematically, satisfaction of (10) ensures satisfaction of original chance con-
straints (6) with a lower bound probability dependent on the value of k, i.e
η ≥ c(k) for some positive monontonic function c(k). In [14], we derived the
following mapping based on Cantellis inequality, thus providing a closed form
mapping between the solution space of each member of the family of constraints
(10) and the probability with which the original chance constraints are satisfied.

η ≥
k2

1 + k2
(11)



6 Time Scaling based solution of Surrogate Constraints

As stated earlier, (8) and (9) are respectively quadratic and quartic in terms of
variable vi

rvo. Thus, (10) represents a non-convex polynomial inequality, which in
general is computationally intractable. In this section, we present a time scaling
based framework for approximating the solution space of (10). The basic idea is
simple. We first compute the space of velocities vi

rvo which the robot can reach
by just changing the time scale of the current trajectory. Importantly, we show
that this solution space can be characterized in closed form to obtain a set of
formuale. Further, evaluating these formulae over multiple paths gives a good
approximation of the complete solution space of (10).

6.1 Time Scaled Variant of Surrogate Constraints

Changing the time scale of a trajectory from t to τ does not alter the geometric
path but results in following change in the velocity profile

v(τ) = v(t)s, s =
dt

dτ
(12)

In (12), dt
dτ

is called the scaling function and decides the mapping between
the time scales. Now, with slight abuse of notation, let us assume that the robot
i is moving along a straight line trajectory characterized by a velocity vi. Let us
denote by following the space of collision avoiding velocities that the robot can
achieve by just changing the time scale of the current trajectory

svi
rvo = svi (13)

Substituting (13) into (8) and (9) results in the following time scaled variant

of the expectation and variance of fRV Oi
j .

µ
sf

RV Oi
j
= as2 + bs+ c (14)

σ
sf

RV Oi
j
=

√

E[(sfRVOi
j − E[sfRV Oi

j ])2] =
√

ds4 + es3 + fs2 + gs+ h (15)

Where, a(.), b(.)...h(.) are function of parameters of distribution of random
variables i. e, µi

p
, (σi

p
)2, µj

p
, (σj

p
)2, µi

v
, (σi

v
)2 etc. Please note the additional super-

script ”s” representing that we are now dealing a time scaled variant of µf
RV Oi

j

and σf
RV Oi

j

derived in (8) and (9)

Now, we perform one final simplification of (15) to obtain quadratic approx-
imation based on second order Taylor series expansion around a point s∗

σ
sf

RV Oi
j
= σ

s∗f
RV Oi

j
+ σ

′

s∗f
RV Oi

j
(s− s∗) + σ

′′

s∗f
RV Oi

j

(s∗ − s∗)2

2
(16)



Using (14) and (16), the final form of the time scaled variant of (10) can be
obtained in the following manner.

as2 + bs+ c− k(σ
s∗f

RV Oi
j
+ σ

′

s∗f
RV Oi

j
(s− s∗) + σ

′′

s∗f
RV Oi

j

(s− s∗)2

2
) ≥ 0 (17)

It can be observed that (17) is a single variable quadratic inequality and thus,
its solution space can be characterized in closed form [23]. Extending (17) to say
n robots is also straightforward as in that case we would have n single variable
quadratic inequalities, the solution space of which can again be characterized
in closed form. The inequality (17) can be constructed along multiple paths to
obtain a good characterization of the complete solution space.

It is worth pointing out that there are various heuristics for choosing the
point s∗. One of them which has been shown to result in low approximation
errors is to choose s∗ from the solution space of µ

sf
RV Oi

j
≥ 0 [14]. It is easy to

note that solving it is similar to solving (17).

7 Analysis of PRVO

7.1 Computational Complexity of RVO and PRVO

. The collision avoidance through deterministic RVO for a pair of robots takes
the form of non-convex quadratic inequality (2). In contrast, the surrogate con-
straints (10) which approximates the PRVO constraints (6) is a quartic inequal-
ity. Thus, on the surface PRVO seems significantly more complicated than RVO.
However, the time scaling based reformulations discussed in section 6 does pro-
vide a significant simplification. Essentially as explained in section 6, solving
the surrogate constraints and consequently PRVO has been reduced to gener-
ating multiple candidate trajectories and evaluating the solution space of (17).
Generating multiple candidate trajectories is simple; during implementation,
we randomly generate some velocity samples and then use them to construct
straight line trajectories. Solving (17) is straightforward and as explained can
be infact done in closed form. Although it is difficult to derive an bounds on
the number of samples, we employ some heuristics and often recover a solution
space with mostly one or two samples. Thus, it can be concluded that kind of
surrogate constraints that we have proposed coupled with time scaling based
solution makes computational complexity of PRVO atleast comparable to RVO.

7.2 PRVO Vs PORCA

In the deterministic setting, the collision avoidance conditions modeled through
ORCA for a pair of robots can be written as the following linear inequality for
some z1 and z2 which are a function of robot j trajectory parameters.

fORCAi
j = z1v

i
orca − z2 ≥ 0 (18)



In (18), vi
orca is the collision avoidance velocity as modeled through ORCA.

Now, since ORCA is an approximation of RVO, the space of collision avoidance
velocities characterized by (18) is much smaller than that characterized by RVO
(2). Now let us consider chance constraints defined over (18) and its surrogate
constraints given by [20]

P (fORCAi
j ≥ 0) ≥ η, z1 ≈ N(µz1 , σz1) (19)

⇒ z1v
i
orca − z2 − η

1

2 ((vi
orca)

2 − 2z2µz1 + z22)
1

2 ≥ 0 (20)

Ineqaulity, 20 represents a convex second order cone constraint. Moreover,
the first two terms in 20, is conjunction is nothing but the deterministic ORCA
(18), while the third term is non-negative. It is clear from (20) that chance con-
straints essentially boils down to obtaining a even smaller subset from the already
restrictive solution space of deterministic ORCA. Thus, at the implementation
level, infeasibility of (20) can be of concern.

In light of the above arguments, it obviously makes more sense to start with
the larger solution space of RVO such that feasibility can still be ensured when
the solution space shrinks because of the application of chance constraints.

8 Results

The results presented in this section are grouped into following categories. (1)
Validating that solving the surrogate constraints (10), with increasing value of
k leads to satisfaction of original PRVO constraints (6) with increasing proba-
bility η. (2) Showing the importance of incorporating the motion uncertainty.
(3) Comparing solution space computed through PRVO with that obtained from
[16] and similar approaches.

8.1 Validating Mapping between the Surrogate Constraints and the
PRVO constraints

Figure 1(a) shows a collision scenario with three robots. In line with the time
scaling based methodology described in section 6, each robot generates multiple
candidate trajectories (figure 1(b)) and then solves time scaled variant of the
surrogate constraints (17) along them. Depending on the value of k, a particular
candidate trajectory and its corresponding time scale is chosen. Figures, 2(a)-
3(c) summarizes these results. Consider, figure 2(a)-2(c), where each robot solves
(10) for k = 1. According to Canetlli’s based bounds, discussed in section 5.2,
this would mean, that PRVO constraints (6) should be satisfied with atleast
probability 0.5. We validate this by sampling position and velocity samples from
the uncertainty ellipses of the robots and evaluating what percentage of these
samples satisfy the deterministic RVO constraints (2). As shown in the figures,
the minimum probability observed agrees with Cantelli’s bounds. Figures 3(a)-
3(c) solves (10) for k = 1.5 and as shown, the minimum probability with which
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Fig. 1. (a): Collision scenario involving three robots. (b). For computing avoidance
maneuvers, each robot generates various candidate trajectories and then solves the time
scaled variant of the surrogate constraints (17) along them. Computing an avoidance
maneuver would essentially mean choosing a particular candidate trajectory and a
corresponding time scale for it.

PRVO is satisfied for each robot increases to 0.75, which is again in accordance
with the Cantellis bounds.

Figures 4(a)-(4(c)) summarizes the avoidance maneuvers for various values
of k or in other words for various probabilities η. As shown, with increase in k,
the deviation from the current trajectory increases for each robot.

8.2 Illustrating the need for incorporating motion(ego) uncertainty
while computing collision free velocities

In this section, we highlight that if self motion uncertainties of robots are ig-
nored, then it is difficult to reliably infer, the probability with which the RVO
constraints are actually satisfied with each robot. To put it alternatively, the
Cantellis bounds based mapping between the solution space of the surrogate
constraints (10) and the PRVO (6) does not hold if self motion uncertainties of
the robots are ignored.

We start by deriving a variant of the surrogate constraints (10) but without
considering equation (5), i.e, vi

rvo is no longer treated as a random variable.
Now for a configuration of robots shown in figure 5(a), consider figures 5(b)-
5(c), where this variant is solved by each robot for k = 1. Based on Cantelli’s
bounds, this should translate to PRVO being satisfied with η ≥ 0.5. However,
as shown, when evaluated through sampling, η turns out to be less than 0.5. In
contrast, in figures 5(d)-(5(e)), where self motion uncertainties are considered,
Cantellis bounds hold perfectly.
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Fig. 2. (a): Each robot chooses a candidate trajectory and then solves the time scaled
variant of the surrogate constraints (17) along them for k = 1. Based on the Cantellis
bounds discussed in section 5.2, this should lead to satisfaction of PRVO constraints
(6) with atleast probability 0.5. As can be seen from the figures, we validate that this
is indeed the case. To elaborate further, we take various samples from the position
and velocity uncertainty ellipse of each robots and evaluate what percentage of these
samples lead to satisfaction of RVO constraints (2), and this is shown in the form of
black and red samples in each uncertainty ellipse, where black samples indicate that
the RVO constraints are not satisfied, and the red samples indicate that the RVO
constraints are satisfied

.
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Fig. 3. (a)-(c): Results are same as figure 2(a)-2(c), but are now obtained for k = 1.5.
With this value of k, the probability with which (6) should get satisfied for each robot
should be 0.70, which as shown in figure is indeed the case. The validation was done
through sampling procedure similar to figure 2.

8.3 Advantage of PRVO over existing works

One of the simplest approach to model the probabilistic variant of RVO is to
grow the radius of the robots by a value corresponding to a particular confidence
region of the uncertainty ellipses . This procedure has been illustrated in [16]
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Fig. 4. (a)-(c) Collision avoidance maneuvers for various values of k or in other various
probabilities η of PRVO constraints (6). As can be seen, higher probabilities require
each robot to take a larger deviation from the current trajectory.

and [22].Table1 and Table2 compares this method with our proposed formulation
for two robots for a scenario similar to Figure 5(a). The solution space of the
timescaled variant 17 of the surrogate functions for a particular value of ’k’ that
satisfies a 68 percentage and 80 percentage confidence contour of the uncertainty
ellipse in the position space was obtained.This is then compared with the solution
space that is obtained by enlarging the robot’s radius by 68 percentage and
80 percentage confidence contours.While we enlarge the radius by the desired
confidence region, it is also important to take into consideration the probability
of velocities that the robots can take. So the solution spaces presented in tables
1 and 2 were evaluated for the most probable velocities (velocities that are very
close to the mean velocities). It is clearly seen that the robots , especially robot
1 may tend to decelerate a bit higher if the solution space obtained by enlarging
the radius is followed.

Table 1. Comparison of the solution space obtained from the proposed formulation
and that by the method of enlarging the robot’s radius for agent 1

Formulation 68 % contour 80 % contour

Expanding the radius by a desired confidence contour [0 0.59] [0 0.4]

Solution space of surrogate functions [0 0.67] [0 0.5]

Table 2. Comparison of the solution space obtained from the proposed formulation
and that by the method of enlarging the robot’s radius for agent 2

Formulation 68 % contour 80 % contour

Expanding the radius by a desired confidence contour [0 0.35] ∪ [1.1 ∞) [0 0.23] ∪ [1.1 ∞)

Solution space of surrogate functions [0 0.37] ∪ [1.1 ∞) [0 0.27] ∪ [1.1 ∞)
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Fig. 5. (a)-(e),(b) and (c) illustrates the effect of not considering the effect of motion
uncertainty while computing collision free velocities, it can be observed from the num-
ber of colliding samples(black) that for k=1,the PRVO constraints (6) are not satisfied
with a lower bound as 0.5, while (d) and(e) illustrate the effect of considering motion
uncertainty, it can be seen here that for k=1, the PRVO constraints (6) are satisfied
with atleast probability 0.5

9 Conclusions, Limitations and Future Work

9.1 Conclusions

In this paper, we have presented the probabilistic variant of RVO, defined as
chance constraints 6 over the inequalities defined by the deterministic RVO.
These chance constraints are generally computationally intractable,and the con-
sideration of ego and estimation uncertainties further increases its complex-
ity.This paper attempts to approximate such a chance constraint through a fam-
ily of surrogate constraints 10 that have a closed form characterization of their
solution space. Further a closed form mapping based on cantelli’s inequalities is
provided that maps the solution space of these surrogates to the probability of
the chance constraint being satisfied.



9.2 Limitations

The computed avoidance maneuvers are piece-wise straight line trajectories with
no velocity continuity or acceleration bounds. For practical implementation,
these needs to be incorporated. The cantelli’s inequality 11 represented here
can act as a weak bound at times. Formulation of an efficient scheme for map-
ping the solution space of the surrogate functions to the probability of the chance
constraint being satisfied is very important and would form the main crux of our
future work.
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