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Robot Contact Task State Estimation via Position-based Aabn
Grammars.
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Abstract— Uncertainty is a major difficulty in endowing  properly during the alignment, the force threshold might
robots with autonomy. Robots often fail due to unexpected nonetheless still be met, giving rise to the insertion barav
events. In robot contact tasks are often design to empirict but in which case the insertion will fail. The focus of

look for force thresholds to define state transitions in a thi is t f fi tat timati |
Markov chain or finite state machines. Such design is prone is paper is to perform continuous state estimation (also

to failure in unstructured environments, when due to exterral ~ réferred to as process monitoring). In particular, we are
disturbances or erroneous models, such thresholds are met, interested in yielding high level state estimates that asful

and lead to state transitions that are false-positives. The representations for error correction and action deliliemat

focus of this paper is to perform high-level state estimatin : T o
of robot behaviors and task output for robot contact tasks. As stated earlier, process monitoring has undertaken dis

Our approach encodes raw low-level 3D cartesian trajectogs ~Cr€te event detection approaches. In such cases, contact
and converts them into a high level (HL) action grammars. points are detected and then evaluated as a contact sequence
Cartesian trajectories can be segmented and encoded in a way [2], [3], [4], [5]. With respect to continuous detection,
that their dynamic properties, or “texture” are preserved. qur previous work [6], [7], [8], used a hierarchical tax-

Once an action grammar is generated, a classifier is trained . .
to detect current behaviors and ultimately the task output. onomy that encoded relative change from FT signatures

The system executed HL state estimation for task output and increasingly abstracted basic primitives to perforatest
verification with an accuracy of 86%, and behavior monitoring ~ estimation of a snap assembly task and identified behavior
with an average accuracy of:72%. The significance of the work  and anomaly information using statistical methods. In {9],
is the transformation of difficult-to-use raw low-level data to sticky-Hierarchical Dirichlet Process Hidden Markov Mode

HL data that enables robust behavior and task monitoring. : : : .
Monitoring is useful for failure correction or other delibe ration was used for continuous estimation of alignment tasks for

in high-level planning, programming by demonstration, and & block and id.entified class anomalies caused by a various
human-robot interaction to name a few. The data, code, €eXtraneous objects.

and supporting resources for this work can be found at:  Additionally, we have begun to consider the inclusion of
https://www.juanrOJas.net/resear(:h/posltlon_based_c;ztlon_gramma,:num_Sensor modalities for contact task’s continuoudesta

estimation. The neuroscience literature has been showing

. INTRODUCTION evidence on how humans perform haptic tasks best when
Uncertainty is a major difficulty in endowing robots with using multi-sensory inputs [10]’ [11]. While in this Papet,
we do not yet attempt a multi-model system, we wish to

autonomy. Robots often fail due to unexpected events or . : . .
) L : est the efficacy of performing high level continuous state
behaviors. Low-level state estimation using robot pose has,. — ° > A . .
. . . . . estimation of contact tasks withosition informationwhile

been extensively studied to help robots improve their belie

about their state [1]. However, for contact tasks the imerp using the same principle “?ed earlier in the V\_/rench_ domain-—
tation of signals is not as straightforward. One key questiothalt is, encoding of relative changes to yield high-level
i representations. Our hypothesis is that information from t

is how can we use information from an FT sensor to know " ... A
. . . .position domain will corroborate and complement the result
the system state? Especially at a high level (i.e. a behawgr

e . erived from state estimation in the wrench domain.
description) where the knowledge can be exploited to correc In th ¢ itori ) tion dat
failures or deliberate. In practice, contact tasks arenofte n the area ot process monitoring using position data,

designed to empirically look for force thresholds to defind’® find two _approaches: lterative 3D pham_ code construc-
state transitions in a Markov chain or finite state machiné'.on’ and N§|ghb0rh00d feature extract|0r! with a multlelbv_

Such design is prone to failure in unstructured environmemrep_resentatmn. The former_ Uses tWC.) adl"?‘ce”‘ vectors with
when due to external disturbances or erroneous models, tWQ_'Ch’ an alphabet of monoq directions is generatgd. _For
force thresholds are met but lead to state transitions tieat J1e|ghborhood feature extraction there are two main lines

false-positives. Consider an assembly task that consfsts work: (i) the use of Frenet frames (FF) instead of 3D

i t and i tion. If the t ts d t t& ain code constructs [12], [13], and (ii) the Scaled Indgxi
an alignment and insertion © tWo parts €0 NOt MAISt General Shapes (S-IGS) [14], [15], [16], which analyzes
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FF or AFF (see Sed._13A), the segmented curve is then
encoded using DCC. Encoded signals of different lengths,
are post-processed to have equal number of segments. Post-
processed data is then trained using classification algosit
(both for behavior estimation and task output verification)
An overview of the process is presented in Ei. 2.

A. Segmentation and Encoding

The use of FFs is motivated by the fact that this dis-
cretization is able to capture the “texture” of the motion in
a way other techniques have not [12]. Texture is captured
since FFs capture the motion’s local curvature from the tpoin
of view of an observer traveling on the curve. This also
makes the technique coordinate-independent and robqt-setu
Fig. 1. A series of 3D plots representing snap assembly taskier ?ndependent. ThiS PrinCiple is _similar to the appro_ach nake
controlled failure experiments. in our state estimation work using wrench information where

we capture relative change by fitting the signal with straigh

line segments using regression over a growing window [6].
methods have been applied to suturing task for minimalloth focus on relative change. FFs consists of a base frame
invasive surgery. consisting of three orthonormal vectors: tanggéntormalﬁ,

In our work, we wish to analyze whether FF-based apand binormab. On continuous curves(t) = [;||r'(o)|| do,
proaches can effectively perform high level state estiomati the vectors are defined according to Eqtn. 1.
for contact tasks. In particular, we tested snap assemblies

which are characterized by high frequency contact during _— %,
alignment and insertion phases, see Eig. 1 as an example. 5
o : . R dt/ds
Such application would be novel, since the aforementioned n = ——-, (1)
approaches have not been tested in highly non-smooth, noisy . ||dT/d5||
signals. We want to study how accurately these approaches b = tx7.

can perform bothbehavior (or sub-task) recognition and

task (output) verification. If a force-dominant task can be-or a discrete curve connected by a sequence Qf points
accurately estimated with position data, then we can compléx(k = 1,2,3,...), discrete Frenet frames (DFF) assign the
ment state estimation methods that use wrench informati@ithonormal vectors according to Eqtn. 2.

as the sensor modality. The contribution of our work is an . Trs1 — T
efficacy analysis in use of FF related techniques for state e = 5=

oY - | Zx+1 — Tl
monitoring and task verification for robot contact tasksr Ou - -
analysis looks at both sub-and-whole-task identificatian, - M’ )
success and failures cases, both in simulation and withla rea Tt Xt
humanoid robot. - 5

b = by Xt

Our approach can be organized into three stages: segmen-
tation, encoding, and classification. Signal segmentaBon tha first frame placement on the curve is arbitrary and

effected through the use of FF-based methods. The encodiggected by the user. Each succeeding frame is placed every
of the segmentation uses Direct Curve Coding (DCC), whicf}yt step and follows Eqtn’s 1 or 2. Direction can be encoded
gives rise to a grammar of motions, and, the action grammag asively as long as a current and a previous,_; frames

classification is done using linear SVM. The system executgtis; The sequence of FFs, generated from the position

HL state estimation for task output with an average value (ﬂ(me—series, are encoded into a string representationethe

86%, anq behavior monitoring with an average performanCgyerred as an action grammar) by mapping direction changes
value of:72%. The significance of the work is the tranSfor'through a small set of canonical directions.

mation of difficult-to-use raw low-level data to HL data that The number of canonical directions is related to the

enables ropust behavio_r and task mopitoriqg. Moqitoring iﬁumber of vectors used in the frame assignment. The base
usefu! for failure corrgctlon or other dehperauon in hitgivel case, with three orthonormal vectors, can represent a ralnim
_plannln_g, programming by demonstration, and human—robggt of directions. Namely: forward, backward, up, dowrt, lef
interaction to name a few. right, and no motion. These directions can be encoded with
strings: “0,1,...,6” respectively. Mathematically, thieedtion
d for time-steps is selected as the tendency of motion
High-level state estimation using position data is boottowards one of the 7 possible directionsis assigned by
strapped by segmenting a 3D position curve according forojecting the current tangent vecttt, onto the previous

Il. METHODOLOGY
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Fig. 2. Methodology overview: 3D curves can be segmentedoded, and trained for behavior and task classification.

orthonormal basis:;_; and choosing the direction thétis directional change of the curve has accumulated enough that
closestto one of the existing directions. the directional threshold is met and AFF updates its dioecti
In doing so, the action grammar is also modified. Directional
thresholds are set by the equatiom;, = =/2PT!. The
1 _p*~']. (3) equation is dependent on the DCC base number. For DCC7,
the threshold isy; = w/4. For DCC19 it isa = 7/8. Once
This encoding technique is known as Direct Curve Codinghe directional threshold is met, we use the same projection
(DCC). function from Eqtn.[I[-A, although with the appropriate
1) Accumulated Frenet Frames (AFFPne weakness in number of vectors for a DCC specification. Possible directio
the FF method is that it is unable to adequately represegitanges and DCC specifications can be appreciated iflFig. 4.
smooth trajectories, where the curve is characterized [}l smin the end, the action grammar—a sequence of labels that span
direction changes. The FF's action grammar only updateke entire trajectory, describes the local curvature chang
when turns greater thaw /4 take place. AFF’s, on the other experienced by the 3D position curve. This grammar encodes
hand, is a method that accumulates change over small spati@havior and task properties that help us characterize hew t
or temporal windows and is more sensitive to gradual changsotion was executed. In effect we have taken a continuous
It does so first by expanding DCC to be systematic and alloposition signal and mapped into discrete changes that will
different granularity levels to partition space. DCC pastis  aid in the high-level estimation of the robot contact task.
space depending on a base paramgtaccording to Eqtn.

d’ = arg max{t®.[zs_1]},

Ts = [ts—l’ns—l7 bs—l’ _ts—l —ns~

3

4 B. Classification
T+ T In this work, we classify behaviors and task output. A
p 1 U u (4) task is composed of a sequence of behaviors. A behavior's
‘ Tq :rbH action grammar is obtained by performing DCC on the time
|Za @ B| # 0, segment of a given behavior. At this time, the time transgio

are provided by the robot controller: when a threshold is, met
9.t T,y € [[ Zp- 1] a transition time is recorded. A task’s action grammar is the
| set of string labels for the entire task. The action grammar
is used as a feature vector for the supervised classification
null motion. It divides the space into octants. Granulaciy ~ 2/90rithm. Fig[6 shows an encoded color map for the action

be increased (and thus the set size of canonical directiorff)fmmar of a full snap assembly task for multiple trials. The
by inserting more vectors in the projection function (EqtnMap provides an intuitive way to see the texture and patterns
3). Additional vectors can be inserted by taking the union GRCross & task.

the previous base,_; with the normalized sum of its parts.

The partitioning level ascribed to a bage= 2 yields 19

This base case, whefe= 1, yields 7 vectors: 6 orthogonal
(up, down, forward, back, left, right) + one null vector for

vectors. The third base has 91 vectors, and the fourth 2891. v F F P

Note that the space is not evenly partitioned in these two ” by b

latter cases. Fid.l4 illustrates such space partitions. n s
Secondly, in AFF, new frames no longer set thgivector Coder 1141, /é

in Fig. ), instead, new frames keep the same orientation

until a directional threshold is met. At the time, we align Code mz b,

the newt, with the current tangenti,. In Fig. [3, we

compare FF and AFF' Notice that both teChmq.ueS keep tm%. 3. Comparison between action grammar updates betwEeanB
same code for the first four steps, but for the fifth step, therrs.

- N, Ny ts
: ba
along the current tangent of the curve (representedias ( > b!”\



AFF(i-1) AFF(I)

and in the real robot. Male and female 4-snap cantilever

k & 7 B & Fin Xyl [ camera parts were used. The male part was rigidly mounted
v TP , : : on the robot’s wrist, while the female snap was rigidly fixed
- =8 * ‘ O -~ to the ground as in Fid.]5. For this work we consider the
e | . .
3 " i Pivot Approach strategy presented in [6] where, a succkessfu
a) 1 b) c) * ¥

. : : assembly task consists of four behaviors: an approach, an
alignment, an insertion, and a mating. The Approach behav-

Fig. 4. lllustration off.possi_ble di(re)cg?]n char?gef1 in a wﬁgd glossible ior drives the male part along a smooth trajectory until it
space partitioning configurations. (a) Shows the changé&éatibn between : : :
succeeding frames, (b) DCC7 with 7 vectors and a directitmaishold of contacts the female part at an angle ata dOCklng pivot as in

/4, (c) DCC19 with 19 vectors and a directional thresholdrgg. [13].  Fig.[5. The rest of the behaviors are achieved using modular
force-moment controllers as stated in [6].
o With respect to the test configuration, two kinds of experi-
“As part of the classification, feature vectors used acroggents were conducted. One experiment only considered con-
trials need to have the same length for proper evaluatiofy|ieq fajlure experiments, while the other only consigtr
In this work we take two approaches to align the featuregy,ccessful assemblies. The failure experiments intratiuce
one is a blind approach where there is information 10ss andy || pyt large enough deviations from a nominal trajectory
the second approach is a simple interpolation procedure. {ishe Approach state to generate failure early in the assemb
the blind approach, we search for the feature vector with theq, The small deviations are characteristic of what a luma
smallest length in an experiment and then proceed to cut thg it would make when trying to enact a parts alignment
additional elements contained in the longer vectors foeoth ) ¢ narrowly misses the mark. The failure experiment was
trials through a logical AND operation. In the resampling, |y conducted in simulation, classification was conducted
case, we consider all trajectories in a training or testi®ly S to "hoth behaviors and task output. The other successful
count the number of frame assignments for each trajectoRyssemply task experiments, simulation and real-robos test

and compute the average number of points. We then roughf)are conducted, and behaviors and task output were both
approximate the length of each curve by summing the linej ssified. The data sets stand as follows:
distance between points and divide by the average number

of points. This gives a unit length for resampling. All cusve  « A: Successful Assembly Simulation
are then re-segmented with this length and later encodéd wit « B: Controlled Failed Assembly Simulation
sDCC. o C: Successful Assembly with the Real-Robot

C. Support Vector Machines As for our testing, we sought to thoroughly analyze the

Linear Support Vector Machines (SVMs) approximate gerformance of the system. We performed classification eval
. tions for data sets A,B,C, as well as their combinations:
boundary to separate binary classes through a hyperplﬁ’ AC, and ABC. We ran linear SVM with three kernel

for large feature spaces. The feature vector is used to lear X . .

A hypgrplanewabp: 0. wherew are the weights and is ypes: .I|near (SsvC ba_sed on libsvm & LinearSVC based

the bias from the zero point. In effect, the separation oheacon.l'b“.near)’ polynomial, and RBF' A 2-10-20 cross fold
. validation was used-we start with 2 folds and move up to

gg‘;:ﬁdp;?]t greomggglggr;esr:plane 's the functional marglrbo. Eor eachk-valug we run clas.s_ifica_uion 10 times. Average,
_ o maximum, and minimum classification accuracy results are
40 = @D (D 4 b) (5) collected. We also compared the results from FF and AFFs

Here the painy (i), z(i) represents the class ¢ < 1,1 and both running DCC19.
= is the input vector for training and testing. The SVM
optimizes the functional margin by maximizing the distance
to both true and failure cases by solving the quadratic
programming problem:

max(7)

SboT=gn ©

where,v is the geometrical margin of the input points from
the hyperplane. The larger the geometrical margin the mor
accurate the classifier. Our linear classifier was testel wit
a linear, polynomial, and a radial basis function as kernels
using Scikit's machine learning library [17].

I1l. EXPERIMENTS

Fig. 5. The HIRO-NX robot performing the snap assembly of denaad
NX-HIRO, a 6 DoF dual-arm anthropomorph robot waSemale camera part with 4 cantilever snaps. Top-left is avebin version

run both in the OpenHRP 3.0 simulation environment [18pf the assembly.



Fig. 6. Encoded color map for action grammars. The x-axisesamts color coded string labels from the action gramnaa folontact snap assembly task
under controlled failures. The y-axis represents diffeteals. The visible patterns in the map indicate similasitacross different parts of the trajectory.
(a) and (b) show different controlled failure experimentssimulation, (c) illustrates the successful assembly taskhe real robot.

TABLE | TABLE I

SVM PERFORMANCE WITHDIFFERENTKERNELS. OVERALL PERFORMANCE FOR THEFF METHOD.
SVC_Linearn Linear_SVC RBF|Polynomial Method| Level | Alignment A|B| C |AB|AC|ABC
FF | behavio 72 60 48 66 avg|81|76| 64 | 64 | 62| 64
task 86 85 63 81 Interp | min |73|73| 51 | 54 | 57| 58
AFF| behavio 70 59 44 66 Behavior max|93|80| 73| 76 | 69| 70
task 86 85 63 80 avg |83|77| 82| 76 | 68| 67
Cut min |[69|76| 77 | 71 | 65| 63
FF max| 95|82 90 | 82 | 72| 72

avg 78| 92|89 |80 83
Interp | min 71| 86| 84| 70| 77
Task max 83| 100| 96 | 85| 90
avg 77|100|100( 81| 80
Cut min 74(100|100| 78| 75
max 85| 100|100| 85| 86

A. Results

We first present color-coded maps for the action grammars
of some of the data sets in Figl 6. The color-coded maps,
provide an intuitive representation of motion texture a8l we

as the patterns therein. Each row corresponds to an encoded avg 761 64 | 64 | 63| 64
string for a given trajectory in the data subset and the 19- Interp | min 731 56 | 51| 56| 56
element alphabet (given by the DCC19-encoded strings) is Behavior max 8ol 721 76 | 71| 70
mapped to 19 levels of color brightness. From the color avg 77/ 82| 76| 70| 68
coded maps in Fid.]6, notice the similarities within class fo Cut | min 74| 77| 72| 65| 65
successful and failure trials. There is more variabilitythie AFF max 818781 |74| 71
failure class because in these controlled experiment ther avg 78/ 91| 88|81 82

Interp | min 72| 85| 83| 76| 77
Task max 88| 97| 96 | 85| 87
avg 76| 99 | 100| 80| 81
Cut min 71| 99 |100| 75| 77
max 82|100|100| 85| 88

are up to 6 different subclasses (that we did not classify in
this work). Not explicitly considering the failure sub-stes
hurts our classification result and this is something théit wi
be addressed in future work.

The first set of results to report is the SVM performance
for different kernels. SVM performance is reported both for
behavior classification and task output classification. The
numbers reported are the average of all data set resulfere is information loss in the blind approach. Even so, the
(A,B,C,AB,AC,ABC) for both FF and AFF: Tablé | reveals resampling approach performed well for task classification
that SVC_Linear performs best across the board: both und@hen using AFF-DCC19. For the successful assembly with
FF and AFF for both behavior and task classification. the real-robot, it correctly classifie®ll % of the time, while

The next set of results presents the overall performance fufr data set combinations AB, AC, and ABC, it correctly
SVC_Linear under 2-to-20 fold cross validation, for all alat classified betweef1% — 88% of the time.
sets under different alignment methods for both behavidr an  With respect to the performance between output task
task output, for both FF and AFF. The results can be seetassification and behavior classification, the former has a
in Table[T]. much higher accuracy on most data set combinations except

With respect to “Alignment” methods, Taklé Il shows thatfor B, the failure data set. We mentioned in Secl Il that
generally, the cut-off alignment method performs bettanth the failure data can be subdivided in multiple dissimilar
the resampling alignment. The results can be misleading eksses, hence the poorer classification in sets with &ilur




data: B, BC and ABC. The task-level classification has asensor modalities promises to increase robustness in state

outstanding 100% classification accuracy on the succeas dastimation, especially for contact tasks, that consistaoéiar

set combinations C and AB with cut-off alignment. We seé¢o predict signals.

that the longer the action grammar, the higher classifinatio

accuracy. Behavior classification rated as follod#% —81% V. CONCLUSION

for FF-Interpolated for classes A, B, C. FF-Cut does better This work presented a system to perform HL state es-

from 77% — 83%. AFF-Interpolated for classes A, B, C, timation for behavior monitoring and task verification for

performed less accuratel$4% — 76%, while FF-Cut did robot contact tasks. The system generates an action grammar

better:76% — 82%. from a 3D position trajectory generated from the robot end-
With respect to the performance between the FF and AFgffector that encodes the dynamic properties of the motion.

techniques (both using DCC19), we generally did not seBhis grammar is used as a feature vector for a classifier that

improvements anywhere. In fact, FF seems to do marginally turns helps to identify executing behaviors or the final

better all around. The reason for this might be that in fad@sult of a task. The work is significant in that it transforms
our contact task problem consists of trajectories full ofaw low-level data into useful high-level that can be used fo

discontinuities. Therefore, the advantages offered by AFfailure correction or deliberation about future actions.

for smooth curves cannot be appreciated in this domain.

IV. DISCUSSION
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of robot contact tasks by taking 3D Cartesian trajectories
and encoding them in action grammar and then classifying

them to monitor behavior and task output. Our trajectories
unlike previous works, have segments with significant non
smoothness and discontinuities. Nonetheless, the remdts
comparable to previous works that analyzed suturing task
in minimally invasive surgery. In our domain, the system
had average classification accuracy86f, for output task
verification. Though the system also reached valué® @f—

100% for real-robot success assemblies. For behavior HL[

state estimation the average classification rate ®2&%: but

reached?2% for real-robot successful assemblies (the aver-5]
age value was lowered by not considering the classificatior[1

of failure subclasses). In [13], for their DCC19 experingent

on data set DS-I, with known state boundaries and for spatial

guantization, their average behavior classification rads:w
82.16%. For their second data set DS-II, for spatial DCC19,
their average classification results across k-fold vailat
and one-user out validation (for all their skill sets) was
75.22%.

Our classification results may be also hurt due to the®

fact that the feature vector fed to the SVM classifier lacks
notions of similarity between different trials. A similayi

measure should be designed and used to formulate a nekd)

feature vector for the classifier. The second limitatiorhist t
our classifier is only running offline. We are considering
implementing a dynamic time warping solution that is a pow.
erful similarity measure that is optimal for online monitay
[19] and combine this with online supervised methods or
probabilistic models.

" . . [11]
Additionally, we are not yet performing automatic detec-

tion of state transitions. We currently rely on transitiongs

provided by the controller, which we earlier stated to be an

important source of error.

Finally, we are interested in integrating this work into &2l

multi-modal architecture for HL state estimation. By com-
bining both low-level and high-level information from miult

12
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