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Abstract— Reinforcement learning (RL) can automate a wide
variety of robotic skills, but learning each new skill requires
considerable real-world data collection and manual representa-
tion engineering to design policy classes or features. Using deep
reinforcement learning to train general purpose neural network
policies alleviates some of the burden of manual representation
engineering by using expressive policy classes, but exacerbates
the challenge of data collection, since such methods tend to
be less efficient than RL with low-dimensional, hand-designed
representations. Transfer learning can mitigate this problem by
enabling us to transfer information from one skill to another
and even from one robot to another. We show that neural
network policies can be decomposed into “task-specific” and
“robot-specific” modules, where the task-specific modules are
shared across robots, and the robot-specific modules are shared
across all tasks on that robot. This allows for sharing task
information, such as perception, between robots and sharing
robot information, such as dynamics and kinematics, between
tasks. We exploit this decomposition to train mix-and-match
modules that can solve new robot-task combinations that
were not seen during training. Using a novel neural network
architecture, we demonstrate the effectiveness of our transfer
method for enabling zero-shot generalization with a variety of
robots and tasks in simulation for both visual and non-visual
tasks.

I. INTRODUCTION

Deep reinforcement learning (RL) has been successful in
multiple domains, including learning to play Atari games [1],
simulated qnd real locomotion [2], [3] and robotic manipu-
lation [4]. The onerous data requirements for deep RL make
transfer learning appealing, but the policies learned by these
algorithms lack clear structure, making it difficult to leverage
what was learned previously for a new task or a new robot.
The relationship between the optimal policies for different
combinations of tasks and robots is not immediately clear,
and doing transfer via finetuning does not work well for
robotic RL domains due to the lack of direct supervision in
the target domain.

However, much of what needs to be learned for robotic
skills (dynamics, perception, task steps) is decoupled be-
tween the task and the robot. Part of the information gained
during learning would help a new robot learn the task,
and part of it would be useful in performing a new task
with the same robot. Instead of throwing away experience
on past tasks, we propose learning structured policies that
decompose in a way that we can use transfer learning to help
a robot benefit from its own past experience on other tasks,
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as well as from the experience of other, morphologically
different robots, to learn new tasks more quickly.

In this paper, we address the problem of transferring
experience across different robots and tasks. Specifically,
we consider the problem of transferring information across
robots with varying morphology, including varying numbers
of links and joints and across a diverse range of tasks. The
discrepancy in the morphologies of the robots and the goals
of the tasks prevents us from directly reusing policies learned
on multiple tasks or robots for a new combination, and
requires us to instead devise a novel modular approach to
policy learning. An additional difficulty is determining which
information can be transferred to a new robot and which can
be transferred to a new task. As an example, consider a robot
that has learned how to fold shirts and pants. Given a new
robot which when only knows how to fold shirts, we wish
to transfer something about folding pants from the first to
the second robot which combined with the second robot’s
experience folding shirts, would help it achieve the task.
The first robot would transfer task information to the second,
while the second robot would transfer its understanding of its
own dynamics and kinematics from folding shirts to folding
pants.

In this work, we explore modular decomposable policies
that are amenable to cross-robot and cross-task transfer.
By separating the learned policies into a task-specific and
robot-specific component, we can train the same task-specific
component across all robots, and the same robot-specific
component across all tasks. The robot and task-specific
modules can then be mixed and matched to execute new
task and robot combinations or, in the case of particularly
difficult combinations, jump start the learning process from
a good initialization. In order to produce this decomposition
of policies into task-relevant and robot-relevant information,
we show that policies represented by neural networks can
be decomposed into task-specific or robot-specific modules.
We demonstrate that these modules can be trained on a set
of robot-task combinations and can be composed to enable
zero-shot performance or significantly sped up learning for
unseen robot-task combinations.

Our contributions are as follows:
1) We address robotic multi-task and transfer learning

by training policy modules that are decomposed over
robots and tasks, so as to handle novel robot-task
combinations with minimal additional training.

2) We analyze regularization techniques that force the
modules to acquire a generalizable bottleneck inter-
face.
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3) We present a detailed evaluation of our method on a
range of simulated tasks for both visual and non-visual
policies.

To the best of our knowledge, this is the first method
to decompose policy neural networks into interchangeable
modules than can perform zero-shot transfer with novel
module combinations.

II. RELATED WORK

Robotic skill learning via reinforcement learning has been
studied extensively in recent years [5], [6], [7], [8], and
transfer learning in particular has been recognized for some
time as an important direction in robotic learning [9], [10],
[11], [12], [13], due to its potential for reducing the burden
of expensive on-policy data collection for learning large
repertoires of complex skills. [14] and [15] transfer between
tasks by storing symbolic knowledge in knowledge bases.
Work by Guestrin et al. learned to play many versions
of a computer strategy game by decomposing the value
function into different domains [16]. The PG-Ella algorithm
uses policy gradients for sequential multitask learning [17].
Past work in transfer on robotics domains includes shaping
the target reward function from the source policy [18],
[19] and learning a mapping between tasks [20]. Another
transfer approach used by [21] is to split each task into
sub-tasks and transfer the sub-tasks between tasks. An early
work by Caruana uses backpropagation to learn many tasks
jointly [10]. Our work differs from these prior methods in
that we explicitly consider transfer across tasks with two
factors of variation, which in our experiments are robot
identity and task identity. This allows us to decompose the
policy into robot-specific and task-specific modules, which
perform zero-shot transfer by recombining novel pairs of
modules. Our method is complementary to prior transfer
learning techniques in that we address primarily the ques-
tion of policy representation, while prior methods focus on
algorithmic questions.

Beyond robotic learning, recent work in computer vision
and other passive perception domains has explored both
transfer learning and recombination of neural network mod-
ules. Pretraining is a common transfer learning technique
in deep learning [22]. However, pretraining cannot provided
zero-shot generalization, and finetuning is ill-defined outside
of supervised learning. Domain adaptation techniques have
been used to adapt training data in the face of systematic
domain shift [23], and more recently, work on modular net-
works for visual question answering has been demonstrated
with good results [24]. Our method differs from these prior
approaches by directly considering robotic policy learning,
where the policy must consider both the invariances and task-
relevant differences across domains.

Although our method is largely agnostic to the choice of
policy learning algorithm, we use the guided policy search
method in our experiments [4]. This algorithm allows us to
train high-dimensional neural network policy representations,
which can be readily decomposed into multiple intercon-
nected modules. Other recent work on high-dimensional

Fig. 1: The 3DoF and a 4DoF robot which specify one degree of
variation (robots) in the universe described in Section III as well
as the tasks of opening a drawer and pushing a block which specify
the other degree of variation (tasks) in the universe.

Fig. 2: The possible worlds enumerated for all combinations of
tasks and robots for the universe described in Section III

neural network policy search has studied continuous control
tasks for simulated robots [2], [25], playing Atari games
[1], and other tasks [26]. Recent work on progressive neural
network also proposes a representation suitable for transfer
across Atari games [27], but does not provide for zero-shot
generalization to new domains, and work by Braylen et al.
used evolutionary algorithms to recombine networks trained
for different Atari games, but again did not demonstrate
direct zero-shot generalization [28]. We further emphasize
that our approach is not in fact specific to neural networks,
and our presentation of the method describes a generic
framework of composable policy modules that can easily be
extended to other representations.

III. MODULAR POLICY NETWORKS

The problem setting that this work addresses is enabling
transfer across situations that can vary along some predefined
discrete degrees of variation (DoVs). These DoVs can be
different robot morphologies, different task goals, different
object characteristics, and so forth. We define a “world” w
to be an instantiation of these DoVs, and our “universe”
U to be the set of all possible worlds. To illustrate this
formalism, consider a universe with the following 2 DoVs:
robot structure (3 DoF and 4 DoF), and task (open drawer
and pushing a block). This universe would have 4 possible
worlds: 3 DoF arm opening a drawer, 3 DoF arm pushing a



block, 4 DoF arm opening a drawer, and 4 DoF arm pushing
a block.

Learning a single policy to act in all worlds is non-optimal
because differences in the degrees of variation result in
different optimal policies. Strategies required to push a block
are quite different from those for a drawer, and robots with
different numbers of joints would require different controls.

Standard reinforcement learning algorithms would treat
each world w as a separate problem and learn an optimal
policy for that world from scratch. However, the worlds have
overlap: although a 3 DoF arm pushing a block and a 3 DoF
arm opening a drawer are doing different tasks, they share
the same arm, and thus will have commonalities in their
optimal policy. This concept can be extended to other degrees
of variation, such as when different arms perform the same
task, or when the same arm interacts with different objects.
Using this notion of commonality between worlds that share
some DoVs, we tackle the problem of training policies for a
subset of all worlds in a universe, and use these to enable fast
transfer to new unseen worlds. Our experiments operate in
the regime of 2 DoVs, which we take to be the identity of the
robot and the identity of the task. However, we emphasize
that this formalism can be extended to include variations
like different objects, different environment dynamics, and so
forth. In our subsequent method description, we adhere to the
regime specified above, where our universe has 2 DoVs: the
robot and the task being performed. We use R to denote the
number of robots and K to denote the number of tasks. The
robots can have different system parameters, such as link
length, configuration, geometry, and even state and action
spaces of completely different dimensionality, with different
numbers of joints and actuators. We assume that the K tasks
are achievable by all of the robots.

A. Preliminaries

For each world w, let us define observations ow and
controls uw. The observations ow are the input that a robot
would receive at test time, which could include images,
encoder readings, motion capture markers, etc. In the case
of complete information, the observations ow would be the
full state xw. The controls uw are the commands sent to
the robot’s motors, which could be joint torques, velocities,
positions, etc. We assume access to a policy optimization
algorithm that can perform policy search to learn a separate
optimal policy πw for each world w. A policy πw(uw|ow)
specifies a distribution over controls uw given an observation
ow. A policy search algorithm aims to search in policy
space to find optimal parameters for πw which minimize the
expected sum of costs Eπw(∑

T
t=0 c(ow, t)). Given an optimal

policy π∗w, we can draw actions uw given observations ow
from the distribution π∗w(uw|ow).

For most worlds we consider, an observation ow can
be split into a robot-specific “intrinsic” observation ow,R
containing elements of the observation corresponding to
the robot itself, and a task-specific “extrinsic” observation
ow,T containing elements of the state corresponding to
the task being performed. ow,R could include robot joint

state and sensor readings, while ow,T could include im-
ages, object locations, and the position of the robot’s end-
effector. We assume that the state can be decomposed in
the same way into xw,R and xw,T . In order to decompose
the policy by tasks and robots, we assume that the cost
can be decomposed into a term that depends on the in-
trinsic state, and a term that depends on the extrinsic state:
c(xw,uw) = cR(xw,R,uw)+ cT (xw,T ), where the actions only
affect the robot-dependent term, since they are inherently
intrinsic. This assumption is reasonable, as the cost tends to
be in terms of object locations and torque penalties. This
decomposition of states and observations is crucial to being
able to learn modular policies, as explained in Section III-B.

B. Modularity

The problem we tackle is that of transferring information
along values of each degree of variation while the remaining
DoVs change. We intuit that for a particular degree of
variation, all worlds with that DoV set to the same value
can share some aspect of their policies. Going back to our
2-DoV universe as shown in Fig. 2, with 3 DoF and 4 DoF
arms, performing the tasks of opening a drawer and pushing
a block, consider 2 of the possible worlds: w1, which is
a 3 DoF arm opening a drawer, and w3, a 3 DoF arm
pushing a block. Although these worlds require different
strategies due to the different tasks being performed, the
robots are the same and hence robot kinematics, and control
dimensionality matches across both worlds. We hypothesize
that, for a particular degree of variation, all worlds with that
DoV set to the same value can share some aspect of their
policies. This is achieved by making the policies modular,
so that the policies for worlds w1 and w3 share a “3 DoF
arm” part of the policy.

We let πwrk(u|o) be the policy for the world w with
robot r performing task k. To make the notation clearer,
let us say that πwrk(u|o) is a distribution parametrized by a
function φwrk(o). For example, πwrk(u|o) can be a Gaussian
N (φwrk(o),Σ) with mean set to φwrk(o), and φwrk can be an
arbitrary function on observations.

For modular policies, we express φwrk(o) as a composition
of functions fr and gk that represent robot-specific and task-
specific parts of the policy for robot r and task k. Note that
throughout our explanation, f shall represent robot-specific
modules and g shall represent task-specific modules. These
functions fr and gk act on the decomposed parts of the
observation ow,R and ow,T respectively. The compositionality
of modules can be represented as

φwrk(ow) = φwrk(ow,T ,ow,R) = fr(gk(ow,T ),ow,R) (1)

We refer to fr as the robot-module for robot r and the
function gk as the task-module for task k. A separate set of
parameters is used for each robot-module and task-module,
such that worlds with the same robot instantiation r would
reuse the same robot module fr, while worlds with the same
task instantiation k would use the same task module gk.

The reason the modules are composed in this particular
order for the scenarios we consider is because we expect



that the identity of the task would affect the task plan of
the policy, while the robot configuration would affect the
control output. An important point to note here is that the
output of the task module gk is not fixed or supervised
to have a specific semantic meaning. Instead it is a latent
representation that is learned while training the modules.

If we consider a larger number of DoVs, such as robots,
tasks, and objects on which those tasks are performed, we
could arrange the modules in an arbitrary ordering, so long
as the ordering forms a directed acyclic graph (DAG). In the
general case, each module receives inputs from its children
and the observation corresponding to its DoV, and the root
module outputs the action.

This definition of modularity now allows us to reuse
modules across worlds. Given an unseen new world wtest,
using robot rtest to perform task ktest, modules frtest and gktest ,
which have been learned from other worlds in the training
set, can be composed to obtain a good policy. We do require
that some world in the training set must have used robot rtest
and some other world must have performed ktest, but they
need not have ever been trained together. For the unseen
world, we have

φwtest(otest) = φwtest(owtest,T ,owtest,R)

= frtest(gktest(owtest,T ),owtest,R)

Note that we do not attempt to build a mapping relating
different robots or tasks to each other, but instead use
the experience of our desired robot on other task and the
performance of our desired task with other robots to enable
transfer of skills. As the number and variety of worlds
which use a particular module increase, the module becomes
increasingly invariant to changes in other DoV’s, which is
crucial for generalization. For example, as the number of
robots being trained increases, each task module will need
to work with various robot modules, which encourages them
to become robot-agnostic. Similarly robot modules become
task-agnostic as more tasks are performed with the same
robot.

C. Architecture and Training

For this work, we choose to represent the modules f and
g as neural networks due to their expressiveness and high
capacity, as well as the ease with which neural networks
can be composed. Specifically, for a world with robot r and
task k, we choose φwrk(o) to be a neural network, and we
choose the policy πwrk(u|o) to be a Gaussian with mean
set to φwrk(o), and a learned but observation-independent
covariance. Each policy mean is thus a composition of two
neural network modules fr, gk, where the output of the task
module is part of the input to the robot module.

Several training worlds are chosen with combinations of
robots and tasks, such that every module has been trained
for at least one world. This is illustrated in Fig. 3.

The combined grid of policy networks, with weights tied
between modules, are trained using inputs from all the
worlds. This is done synchronously, by first collecting sam-
ples from each of the worlds and them feeding them forward

through their corresponding modules to output predicted
controls for each world. However, asynchronous training
methods could also be explored in future work.

Formally, training proceeds by minimizing the reinforce-
ment learning loss function L, which is the sum of individual
loss functions Lw from each of the training worlds w. The
details of the loss function and how it might be minimized,
depends on the particular RL algorithm used to train the
policies. In our experiments, we use guided policy search
(GPS) [4], though other methods could be readily substituted.
GPS proceeds by using local policy solvers to supervise
the training of the final neural network policy, such that
the loss for Lw is a Euclidean norm loss for regression
onto the generated training actions. A more standard policy
gradient might instead use the approximate linearization of
the expected return as the loss [2]. Most policy learning
methods, including GPS and policy gradient methods, require
computing the gradient of logπ(u|o) with respect to its
parameters. In our method, as πwrk is parametrized by a
neural network φwrk (with parameters θk for the task module
and parameters θr for the robot module), we get the following
gradients.

∂πwrk

∂θr
=

∂πwrk

∂φwrk

∂φwrk

θr

∂πwrk

∂θk
=

∂πwrk

∂φwrk

∂φwrk

θk

As φwrk = fr(gk(ow,T ),ow,R), we can rewrite the gradients as
follows,

∂πwrk

∂θr
=

∂πwrk

∂ fr

∂ fr

∂θr

∂πwrk

∂θk
=

∂πwrk

∂ fr

∂ fr

∂gk

∂gk

∂θk

These gradients can be readily computed using the stan-
dard neural network backpropagation algorithm.

D. Regularization

In order to obtain zero-shot performance on unseen robot-
task combinations, the modules must learn standardized in-
terfaces. If, for example, a robot module overfits to the robot-
task combinations seen during training, it might partition
itself into different “receptors” for different tasks, instead
of acquiring a task-invariant interface. With only a few
robots and tasks (e.g. 3 robots and 3 tasks), we have found
overfitting to be problematic. To mitigate this effect, we
regularize our modules in two ways: by limiting the number
of hidden units in the module interface, and by applying the
dropout method, described below.

Limiting the number of hidden units in the outputs of
the first module forces that module to pass on information
compactly. A compact representation is less likely to be
able to overfit by partitioning and specializing to each
training world, since it would not be able to pass on enough
information to the next module.
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Fig. 3: Modular policy composition for a universe with 2 tasks and 2 robots. There are 4 available modules - 2 task modules and 2 robot
modules, and each module is a nerual network. For the training worlds, these modules are composed together to form the individual
policy networks. Modules of the same color share their weights. Policy networks for the same task share task modules and those for the
same robot share robot modules. The training worlds are composed and then trained end-to-end. On encountering an unseen world, the
appropriate previously trained modules are composed to give a policy capable of good zero-shot performance

Dropout is a neural network regularization method that
sets a random subset of the activations to 0 at each mini-
batch [29]. This prevents the network from depending too
heavily on any particular hidden unit and instead builds
redundancy into the weights. This limits the information flow
between the task and robot modules, reducing their ability
to overspecialize to the training conditions.

IV. EXPERIMENTS

To experimentally evaluate modular policy networks, we
test our transfer approach on a number of simulated envi-
ronments. For each experiment we use multiple robots and
multiple tasks and demonstrate that using modular policy
networks allows us to train on a subset of the possible worlds
in a universe, and achieve faster or zero-shot learning for an
unseen world. We evaluate our method against the baseline
of training a separate policy network for each world instanti-
ation. In order to evaluate our method on a challenging suite
of simulated robotic tasks, we constructed several simulated
environments using the MuJoCo physics simulator [30]. We
evaluate our method on tasks that involve discontinuous
contacts, moving and grasping objects, and processing raw
images from simulated cameras.For all experiments, further
details and videos can be found at https://sites.
google.com/site/modularpolicynetworks/

A. Reinforcement Learning Algorithm

The policy search algorithm we use to learn individual
neural network policies is the guided policy search method
described in [31]. This work splits policy search into trajec-
tory optimization and supervised learning. To learn a number
of local policies under unknown dynamics, the method uses
a simple trajectory-centric reinforcement learning algorithm
based on LQR. This algorithm generates simple local time-
varying linear-Gaussian controllers from individual initial
states of each system, with different controllers for different

Fig. 4: Basic visuomotor policy network for a single robot. The
two convolutional layers and spatial softmax form the task module,
while the last few fully connected layers form the robot module

initial states. These controllers then provide supervision for
training a global neural network policy using standard super-
vised learning, with a Euclidean loss regression objective.
In our experiments, we use the BADMM-based variant of
guided policy search which applies an additional penalty
on the trajectory optimization for deviating from the neural
network policy to stabilize the learning process [4]. This
choice of learning algorithm enables us to train deep neural
networks with a modest number of samples. However, more
standard methods, such as policy gradient [32], [2] and actor-
critic [25], [33] methods, could also be used with modular
policy networks.

B. Network Architecture

For tasks that require performing simulated vision, we
used a neural network architecture as shown in Fig. 4. This
architecture follows prior work [4]. In non-vision tasks, the
convolutional layers are replaced with fully connected layers.
In both cases, the task module also takes as input the position
of the robot’s end-effector. Since the end-effector is present
in all robots, we provide this to the task module so as to
make it available to the policy in the earliest layers.

https://sites.google.com/site/modularpolicynetworks/
https://sites.google.com/site/modularpolicynetworks/


Fig. 5: Grid of tasks vs robots for the reaching colored blocks task
in simulation described in IV-C. We train on all the worlds besides
the 4link robot reaching to black, and test on this held out world.

C. Reaching Colored Blocks in Simulation

In the first experiment, we evaluate a simple scenario
that tests the ability of modular policy networks to properly
disentangle task-specific and robot-specific factors in a visual
perception task. In this task, the environment consists of four
colored blocks (red, green, yellow, and black) positioned at
random locations in the workspace, and each task requires
the robot to reach for a particular colored block. The universe
for this scenario includes three robots: a 3-link arm, a 3-link
arm with links of a different lengths, and a 4-link arm. Each
robot has its own robot module, and is controlled at the level
of joint torques. The size of the image passed is 80x64x3,
and the state space for each robots is its joint angles and its
joint angle velocities. This results in 15366 inputs for the
3-link robots and 15368 for the 4-link robots. An illustration
of this task is shown in Figure 5.

Although this task is not kinematically difficult, it requires
the task modules to pick up on the right cues, and the
small number of tasks and robots makes overfitting a serious
challenge. In order to evaluate zero-shot transfer in this setup,
we train the modules on 11 out of the 12 possible world
instantiations, with the 4 link robot reaching the black block
being the unseen world. None of the other policies being
learned can be trivially transferred to this world, as the 3
link robots have different dimensionality and the other task
modules have never learned to reach towards other blocks.
Successful transfer therefore requires perception and control
to be decomposed cleanly across the task and robot modules.
This is illustrated in Fig. 5.

We compare the performance of our method against two
baselines: the first baseline involves executing a random
policy, while the second involves running a policy learned for
the 4 link robot but for a different colored block. These base-
lines are meant to test for trivial generalization from other
tasks. The results, shown in Table I, show that our method is
able to perform the task well without any additional training,
while the baselines have significant error. This illustrates that

Test Position Random network Wrong task module Ours
1 1.16 2.34 0.12
2 1.29 1.75 0.28
3 1.35 1.65 0.21
4 1.29 2.41 0.08

TABLE I: We evaluate the zero shot performance of the 4-link
arm reach to the black block. The numbers shown in the table
are average distances from the end-effector to the black block over
the last 5 timesteps of a sample from the policy; a perfect policy
would get 0. We see that composing the 4-link robot module with the
reach to black-block task module generates very good performance
(under the column Ours), while composing a different task module
with the correct robot module, or running a random policy does
quite poorly.

Fig. 6: Grid of tasks vs robots for the object manipulation tasks
described in IV-D. The horizontal drawer tasks involve sliding the
grey drawer horizontally to the target in the direction indicated by
the arrow on the image. The vertical drawer tasks involve sliding
the grey drawer vertically up in the direction indicated by the arrow
on the image. The block push tasks involve pushing the white block
to the red goal. All positions shown in this image are the final
successful positions for each world.

we are able to transfer visual recognition capabilities across
robots, which is crucial for learning transferable visuomotor
policies.

D. Object Manipulation

In the next experiment, we evaluate our method on tasks
that are more physically different to understand how well
modular policy networks can transfer skills for manipulation
tasks with complex contact dynamics. In this experiment,
we use 3 robots and 3 tasks, as shown in Fig. 6. The
robots have 3, 4, or 5 links, with state spaces of different
dimensionality, and we input target coordinates instead of
images. The tasks are: pulling a drawer horizontally, pushing
a drawer vertically, and pushing a block to a target location.
The arrows in the Fig. 6 indicate direction of motion for
the tasks. Each of these tasks involve complex discontinuous
contact dynamics at the point where the robot contacts the
object. A grid of tasks and robots is presented in Fig 6. In
order to successfully transfer knowledge in this environment,
kinematic properties of the tasks need to be transferred as



Fig. 7: Results on the 3-link robot performing horizontal drawer
pulling. The initialization from composing the 3-link robot module
with the horizontal pull task module provides the fastest learning.
Although the vertical drawer module was trained with the 3-
link robot, the task is too different to directly transfer. Random
initialization performs well with reward shaping, but without it is
unable to learn the task.

well as dynamics of the robot.
We train 8 out of the 9 possible worlds, with the 3 link

robot pulling the horizontal drawer being held out. Although
our method does not successfully perform zero-shot gener-
alization directly simply by composing the modules for the
held-out world, the transferred policy provides an excellent
initialization for further learning. Figure 7 shows the learning
curves with policies initialized using four paradigms: com-
posing modules appropriately using our method, composing
modules using the incorrect task-module (vertical drawer),
and learning from scratch with and without shaping. In this
task, the shaping term in the cost encourages the robot’s
gripper to reach for the drawer, while the standard cost
without shaping simply considers the distance of the drawer
from the target. Typically, tasks like this are extremely
challenging to solve without shaping or a good initialization,
since the robot must rely entirely on random exploration to
learn to push the drawer before receiving any reward.

The results indicate that the transferred policy is able to
learn the drawer task faster without shaping than the task
can learned from scratch with shaping. When learning from
scratch without shaping, the learning algorithm is unable to
make progress at all. Therefore, if the shaping cost is not
available, the policy obtained by transferring knowledge via
modular policy networks is essential for successful learning.
This indicates that, despite the wide variability between
the tasks and robots and the small number of task-robot
combinations, modular policy networks are able to transfer
meaningful knowledge into the held-out world.

E. Visually Distinct Manipulation Tasks

In the third experiment, we evaluated our method on a set
of worlds that require both vision and physically intricate
manipulation skills to succeed. An illustration of the tasks
and robots in the experiment is presented in Figure 8. The
robots again include the 3-link arms with different link
lengths and a 4-link robot. The tasks require reaching to
a given position, pushing a block to a given target, and
inserting a peg into a hole. The goals for each task are
visually distinct, and the tasks require a different pattern of
physical interactions to handle the contact dynamics.

Fig. 8: R-obots for visually distinct tasks mentioned in IV-E. The
reach task involves reaching the white target. The push task involves
pushing the white block to the red goal. The peg insertion task
involves inserting the peg at the tip of the robot into the hole
specified by the black square. These tasks involve manipulation and
are also visually distinct in that they do not use the colors in the
same way (the target and block colors are not consistent). We train
on all combinations besides the 4link robot pushing the block.

Test Position Random network Wrong task module Ours
1 0.95 0.95 0.48
2 1.79 1.14 0.19
3 1.54 1.27 0.25
4 0.94 1.32 0.23

TABLE II: Zero-shot results on the 4-link performing the block-
pushing task from section IV-E. The values are the distance between
the drawer and its target position averaged over tha last five time
steps of each sample. Forming the policy by composing the 4-link
module with the block pushing module performs best even those
modules were not trained together. Choosing the reach module
instead performs on par with a random network. We show that the
task and robot modules are able to generalize to unseen robot-task
combinations without additional training.

Fig. 9: The final positions of the zero-shot performance of our
method on the blockpushing task. Our method performs the task
very well on zero shot and gets the white block to the red goal.

We choose 8 out of the 9 possible worlds to train, with the
held out world being the 4 link robot pushing the block. This
task is particularly difficult, since it involves discontinuous
dynamics. Modular policy networks were able to succeed at
zero-shot transfer for this task, significantly outperforming
both a random baseline and policies from different robot-task
combinations. This indicates that the modules were able to
decompose out both the perception and the kinematic goal
of the task, with the robot modules handling robot-specific
feedback control to determine the joint torques needed to
realize a given task.



V. DISCUSSION AND FUTURE WORK

In this paper, we presented modular policy networks,
a method for enabling multi-robot and multi-task transfer
with reinforcement learning. Modular policy networks al-
low individual component modules for different degrees of
variation, such as robots and tasks, to be trained together
end-to-end using standard reinforcement learning algorithms.
Once trained, the modules can be recombined to carry
out new combinations of the degrees of variation, such
as new robot-task combinations. The task-specific modules
are robot-invariant, and the robot-specific modules are task-
invariant. This invariance allows us to compose modules to
perform tasks well for robot-task combinations that have
never been seen before. In some cases, previously untrained
combinations might generalize immediately to the new task,
while in other cases, the composition of previously trained
modules for a new previously unseen task can serve as a
very good initialization for speeding up learning.

One of the limitations of the current work is that, by utiliz-
ing standard reinforcement learning algorithms, our method
requires different task-robot combinations to be trained si-
multaneously. In a practical application, this might require
multiple robots to be learning simultaneously. A promising
direction for future work is to combine our approach with
more traditional, sequential methods for transfer learning,
such that the same robot can learn multiple tasks in sequence,
and still benefit from modular networks. This would enable
combined lifelong and multirobot learning, where multiple
robots might learn distinct robot-specific modules, trained
sequentially, while contributing to shared task-specific mod-
ules, trained in parallel. By training on a larger variety of
robots and tasks, the generalization capability of modular
policy networks is likely to increase also. This could make it
practically to automatically train large repertoires of different
skills across populations of heterogeneous robotic platforms.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep rein-
forcement learning,” CoRR, vol. abs/1312.5602, 2013.

[2] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” in International Conference on Machine
Learning (ICML), 2015.

[3] I. Mordatch, N. Mishra, C. Eppner, and P. Abbeel, “Combining model-
based policy search with online model learning for control of physical
humanoids,” in 2016 IEEE International Conference on Robotics and
Automation, ICRA 2016, Stockholm, Sweden, May 16-21, 2016, 2016,
pp. 242–248.

[4] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies.” Journal of Machine Learning Research,
vol. 17, pp. 1–40, 2016.

[5] M. P. Deisenroth, G. Neumann, and J. Peters, “A survey on policy
search for robotics,” Found. Trends Robot, vol. 2, no. 1&#8211;2, pp.
1–142, Aug. 2013.

[6] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” I. J. Robotics Res., vol. 32, no. 11, pp. 1238–
1274, 2013.
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