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Distributed scaling control of rigid formations

Hector Garcia de Marina, Bayu Jayawardhana and Ming Cao

Abstract— Recently it has been reported that biased range-
measurements among neighboring agents in the gradient
distance-based formation control can lead to predictable collec-
tive motion. In this paper we take advantage of this effect and
by introducing distributed parameters to the prescribed inter-
distances we are able to manipulate the steady-state motionof
the formation. This manipulation is in the form of inducing
simultaneously the combination of constant translationaland
angular velocities and a controlled scaling of the rigid forma-
tion. While the computation of the distributed parameters for
the translational and angular velocities is based on the well-
known graph rigidity theory, the parameters responsible for the
scaling are based on some recent findings in bearing rigidity
theory. We carry out the stability analysis of the modified
gradient system and simulations in order to validate the main
result.

I. INTRODUCTION

The use of teams of autonomous agents has attracted a lot
of interest in recent years. This is due to the fact that in many
tasks, such as the transportation of objects or area exploration
& surveillance, robotic teams can effectively accomplish
tasks with robustness against uncertain environment and offer
new functionalities, e.g. enhanced sensing instrumentation
[1]. One of the key tasks in coordinating a team of agents
is the formation and motion control, where the former refers
to keeping a prescribed shape while the later refers to the
steering of it. In particular, a very active topic regarding
formation control is thedistance-basedcontrol for rigid
shapes, where the combination of potential-gradient control
and rigidity graph theory allows us to achieve (locally) a pre-
scribed shape by only controlling the inter-distances between
neighboring agents [2], [3]. It is a very appealing approach
since the agents can work with only local information, such
as their own frame of coordinates and the relative positionsof
their neighbors. In addition, the equilibrium at the prescribed
shape is exponentially stable and it can be made robust
against sensor’s biases [4], [5], [6].

In this paper we propose a novel distributed control algo-
rithm for achieving the following three tasks simultaneously:

i) Formationscale-freeshape keeping.
ii) Steering the scale-free formation as a whole with the

combination of a constant translation velocity and a
constant angular velocity applied at its centroid.
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iii) Precise scaling of the formation, i.e. controlling pre-
cisely the rate of growing or shrinking between two
desired scaled shapes. The proposed control law even
allows the changing between two different shapes.

The findings of our work employ the recent results in
[7] on bearing rigidity theory. Roughly speaking, bearing
rigidity theory is employed for controlling a shape insteadof
focusing on maintaining constant distances or positions be-
tween neighbors, so one is interested in maintaining constant
inner angles of the shape which can be obtained from the
unit vectors between neighbors of ascale-free rigid shape.
In fact these findings have been recently employed to control
the translational motion of a rigid formation with a precise
scaling rate in [8]. The approach presented in this paper has
several advantages over [8]. Firstly, it does not require a
common frame of coordinates for the agents. Secondly it is
estimator free and it does not require global information such
as the position of the centroid and its desired velocity. Lastly,
the distance-based approach also allows rotational motion, a
feature lost in the position-based control since the steady-
state orientation is globally fixed by design.

The strategy employed in this paper is based on assigning
motion parameters to the prescribed distances of a desired
rigid formation. It has been reported in [9] that when
two neighboring agents differ in the prescribed distance to
maintain, collective motion of the formation occurs. More
precisely, the formation converges to a distorted version of
the desired rigid shape and at the same time it undergoes a
constant translation together with a rotation about its centroid
as has been described in detail in [10]. It has been shown in
[11] that if these mismatches in the prescribed distance are
taken as distributed motion parameters, one can maintain a
desired rigid shape and at the same time control precisely
a combination of a constant translation of the formation
with a constant rotation about its centroid. By unifying
the aforementioned results on motion control employing
distributed motion parameters and bearing rigidity theory,
one can control simultaneously the motion of the prescribed
rigid shape and its scale in a precise way, i.e. not distorting
a scale-free shape for a desired rate of growing/shrinking.

The rest of the paper is organized as follows. In SectionII
we introduce the notation and background for bearing rigid
formations. SectionIII explains the design of the motion
controller with precise scaling/morphing of the formationby
introducing changing-motion parameters in a distance-based
controller. In SectionIV we demonstrate the exponential con-
vergence of our proposed algorithm. Numerical simulations
validate the main results in this paper in SectionV.
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II. PRELIMINARIES

We start by introducing some notation employed through-
out the paper. For a given matrixA ∈ IRn×p, defineA

∆
= A⊗

Im ∈ IRnm×pm, where the symbol⊗ denotes the Kronecker
product, withm = 2 for the 2D formation case orm = 3 for
the 3D case, andIm is them-dimensional identity matrix.
For a stacked vector/matrixx

∆
=

[

xT
1 xT

2 . . . xT
k

]T
with

xi ∈ IRn×l, i ∈ {1, . . . , k}, we define the block diagonal

matrix Dx
∆
= diag{xi}i∈{1,...,k} ∈ IRkn×kl. We denote by

|X | the cardinality of the setX , by ||x|| the Euclidean norm
of a vectorx and byx̂ = x

||x|| the unit vector of a non-zero

x. We define the orthogonal projector operator asP⊥
x

∆
=

(

Im − x̂kx̂
T
k

)

or more generallyP⊥
X over an orthogonal

subspace ofX . Finally we use1n×m and0n×m to denote
the all-one and all-zero matrix inIRn×m respectively and
will drop the subscript if the dimensions are clear from the
context.

A. Graphs and rigidity theory

We consider a formation ofn ≥ 2 agents whose positions
are denoted bypi ∈ IRm for i ∈ {1, . . . , n}. The agents
can measure their range and directions with respect to their
neighbors. The representation of this sensing topology is
given by an undirected graphG = (V , E) with the vertex
set V = {1, . . . , n} and the ordered edge setE ⊆ V × V .

The setNi of the neighbors of agenti is defined byNi
∆
=

{j ∈ V : (i, j) ∈ E}. We define the elements of the incidence
matrix B ∈ IR|V|×|E| for G by

bik
∆
=











+1 if i = E tail
k

−1 if i = Ehead
k

0 otherwise,

whereE tail
k andEhead

k denote the tail and head nodes, respec-
tively, of the edgeEk, i.e.Ek = (E tail

k , Ehead
k ). Since the graph

G is undirected, it is irrelevant how the directions of the
edges are defined inB.

A framework is defined by the pair(G, p), wherep =
[

pT1 . . . pTn
]T

is the stacked vector of the agents’ posi-
tions. The available relative positions of the agents in the
framework are given by the following stacked vector

z = B
T
p,

where each vectorzk = pi − pj in z corresponds to the
relative position associated with the edgeEk = (i, j).

Let us now briefly recall the notions ofdistanceinfinitesi-
mally rigid framework and minimally rigid framework from
[3]. Define the edge functionfG by fG(p) = col

k

(

‖zk‖2
)

where the operator col defines the stacked column vector and
we denote its Jacobian, also known as therigidity matrix,
by R(z) = DT

z B
T

. A framework (G, p) is infinitesimally
rigid if rankR(z) = 2n− 3 when it is embedded inR2 or if
rankR(z) = 3n−6 when it is embedded inR3. Additionally,
if |E| = 2n − 3 in the 2D case or|E| = 3n − 6 in the 3D
case then the framework is calledminimally rigid. Roughly

speaking, the only motions that one can perform over the
agents in a minimally rigid framework, while they are already
in the desired shape, are the ones defining translations and
rotations of the whole shape.

The stacked vector of relative positionsz∗ =
[ z∗

1

T z∗
2

T ... z∗
|E|

T ]T defines a desired infinitesimally and min-
imally rigid shape with||z∗k|| = dk for all k ∈ {1, . . . , |E|}
wheredk is the desired inter-distance. The resulting setZ
of the possible formations with the same shape is defined by

Z
∆
=

{(

I|E| ⊗R
)

z∗
}

, (1)

whereR is the set of all rotational matrices in 2D or 3D.
Roughly speaking,Z consists of all formation positions that
are obtained by rotatingz∗.

Consider a scale-free shapebased onan infinitesimally
and minimally rigid shape, for example the collection of all
regular squares with an internal diagonal. It is obvious that
this collection can be distinguished from other (infinitesi-
mally and minimally rigid) scale-free shapes by looking at
its inner angles or equivalently by looking at all the scalar
productsẑTl ẑn wherel andn are two edges sharing a node.
This fact has been explained in more detail in [12]. Bearing-
based rigid frameworks are related to the distance-based ones
where the bearing-based shape can be defined by the inner
angles, instead of the distances. Let us review some basic
concepts in bearing rigidity.

Definition 2.1: [7] Frameworks (G, p) and (G, p′) are
bearing equivalentif P⊥

zk
z′k = 0 for all k ∈ {1, . . . , |E|}.

Definition 2.2: [7] Frameworks (G, p) and (G, p′) are
bearing congruentif P⊥

(pi−pj)
(p′i − p′j) = 0 for all i, j ∈ V .

Definition 2.3: [7] The bearing function is defined by
fBG

(p)
∆
= ẑ ∈ IRm|E|, where1 ẑ is the stacked vector of

ẑk for all k ∈ {1, . . . , |E|}.
Similar to the rigidity matrix one can define thebearing
rigidity matrix by computing the Jacobian matrix of the
bearing function

RB(z) =
∂fBG

(p)

∂p
= D

T

z̃ D
T
P⊥

ẑ

B
T
,

whereP⊥
ẑ ∈ IRm|E|×m is the stacked matrix of operators

P⊥
ẑk

and z̃ ∈ IR|E| is the stacked vector of 1
||zk||

for all k ∈
{1, . . . , |E|}. The non-trivial kernel ofRB(z) includes the
scalings and translations of the framework [7], leading to
the following definition

Definition 2.4: [7] A framework isinfinitesimally bearing
rigid if the kernel of its bearing rigidity matrix only includes
scalings and translations.
In order words, if a scale-free shape can be determined
uniquely by its inner angles, then it belongs to theinfinites-
imally bearing rigid framework.

Consider a given shape defined byZ, we define the scale-
freeZS by takingZ rescaled by all the possible scale factors
s ∈ IR+ such that||zk|| = sdk for all k ∈ {1, . . . , |E|}. This
leads to the following definition

1In order not to overload the notation, here byẑ we mean exclusively
the vector-element wise normalization ofz.



Definition 2.5: The shapes defined byZ within the set
ZS are infinitesimally and minimally congruentrigid.

The name comes from the fact that all the scales of
an infinitesimally and minimally rigid shape are bearing
congruent.

B. Frames of coordinates

In order to describe and design motions for the desired
scale-free formation defined byZS , it will be useful to
attach a frame of coordinates to the centroid of the shape.
We denote byOg the global frameof coordinates fixed at
the origin of IRm with some arbitrary fixed orientation. In
a similar way, we denote byOb the body framefixed at
the centroidpc of the desired scale-free rigid formation.
Furthermore, if we rotate the scale-free rigid formation with
respect toOg, thenOb is also rotated in the same manner.
Note thatpc is invariant with respect toZS . Let bpi denote
the position of agenti with respect toOb. In order to simplify
notation, whenever we represent an agent’s variable with
respect toOg, the superscript is omitted, e.g.pi

∆
= gpi.

III. M OTION AND SCALING OF RIGID FORMATIONS

We consider then agents in the framework(G, p) to be
governed by single integrator dynamics

ṗi = ui, (2)

whereui ∈ IRm is the control action for alli ∈ {1, . . . , |V|}.
For each edgeEk in the framework one can associate a
potential functionVk(zk) whose minimum corresponds to
the desired configuration of the associated edge, for example,
in order to (locally) stabilizeZ we can employ the classical
elastic potential functionfrom physics for controlling the
length of the edges

V (p) =

|E|
∑

i=1

Vk(zk) =
1

2

|E|
∑

i=1

(||zk|| − dk)
2. (3)

It has been reported in [9] that in undirected gradient-
based controlled formations if at least two neighboring agents
differ about the prescribed distance to maintain, i.e. they
have a mismatch, then a steady-state collective motion with
a distorted shape occurs. The collective motion, illustrated
in Figure1, is described by the combination of two constant
velocity vectors:

• A linear velocity bv∗pc
of the centroid with respect to

the steady-state distorted shape.
• An angular velocitybω∗ that rotates the steady-state

distorted shape.

It has been shown in [11] that if we replace mismatches
by distributed motion parameters, then we can control both,
a non-distorted desired shape and a desired motion of the
formation with respect toOb. Throughout this section we will
show that such an approach can also be employed to scale
the formation shape precisely over time while simultaneously
to guide the formation to travel with a desiredbv∗pc

and
bω∗. This approach is easier and more effective in several
aspects than the one presented in [8], since we do not need

Og
Ob

bω∗

bv∗pc

Fig. 1: The resultant motion of the tetrahedron is the com-
position of the two constant velocitiesbv∗pc

and bω∗. The
described trajectory has been split in two red curves.

estimators for traveling at a constant speed and we can also
rotate the desired formation with respect toOg by controlling
only one agent. Moreover, using our proposed approach, the
agents can use only local coordinates since we are using the
distance-based control strategy.

We introduce the motion and changing parameters to the
gradient-based control and show the steady-state motion,
including the scaling of the shapeZ, is related to its unit
vectors. The control inputs derived from the gradient of the
distance-based potential (3) for the agentsi and j on the
edgeEk = (i, j) are as follows

uk
i = −ẑk

(

||zk|| − dk
)

uk
j = ẑk

(

||zk|| − dk
)

,

}

(4)

where the superscriptk denotes the contribution of the edge
k to the total control inputui and uj . Introduce a pair
of parametersµk and µ̃k to the prescribed distancedk as
follows

uk
i = −ẑk

(

||zk|| − dk − µk

)

= −ẑk
(

||zk|| − dk) + ẑkµk

uk
j = ẑk

(

||zk|| − dk + µ̃k

)

= ẑk
(

||zk|| − dk) + ẑkµ̃k.

}

(5)
The structure in (5) allows us to write the complete control
law u in the following compact form

u = −cBDẑe+A(µ, µ̃)ẑ, (6)

whereu ∈ IRm|V| is the stacked vector of control actionsui,
c ∈ IR+ is a constant gain,e ∈ IR|E| is the stacked vector
of all the distance errorsek = ||zk|| − sdk where all the
sdk ’s have been taken fromZs, the parametersµ ∈ IR|E|

and µ̃ ∈ IR|E| are the stacked vectors ofµk and µ̃k for
all k ∈ {1, . . . , |E|} and the elements ofA are defined as
follows

aik
∆
=











µk if i = E tail
k

µ̃k if i = Ehead
k

0 otherwise.

(7)

Note that the elements ofA are related to the incidence
matrixB because of (5), and hence we still have a distributed
control law.

We can identify two terms at the right hand side of (6).
The first one is clearly related to the gradient distance-based
controller and its purpose is to form and keep the prescribed
shape given byZs. The second term corresponds to the
steady-state collective motion and changing induced by the
parametersµk andµ̃k and the actual shape of the formation



given by the unit vectors in̂z. We will see that in order to
guarantee the stability of the system we will make use of the
exponential convergence of the self-contained error system
in the original gradient-based controller. By choosingc in
(6) sufficiently large, we can make the gradient-based term
dominate the second term. Therefore the team of agents will
converge to the desired shapeZs, where s can be time-
varying i.e. we will scale the shape withinZS , and the
steady-state motion will be given by the parameters and the
unit vectors inz ∈ ZS .

A. Design of the distributed motion and changing parame-
ters

Suppose that the formation is at the prescribed shape, i.e.
e = 0. In this case ifA(µ, µ̃)ẑ defines translations and
rotations of the infinitesimally and minimally congruent rigid
family ZS , then the desired scaled shapeZs will be invariant
under such an additional control term. Note that from (6)
whene = 0 the control law for the agenti becomes

bui =

|E|
∑

k=1

aik
bẑ

∗

k, (8)

where bẑ∗ ∈ ZS . We recall that the elementsaik of A

are related toµ and µ̃ as in (7). In an infinitesimally and
minimally congruent rigid formation, the minimum number
of neighbors for agenti is two (resp. three) in 2D (resp.
3D) shapes with its correspondingz∗k ’s not being in non-
generic degenerated configurations, e.g. all of them collinear
(resp. coplanar), thenbui can span the wholeIR2 (resp .IR3).
In other words, we can design a pair of arbitrary constant
velocitiesbv∗pc

and bω∗ for the desired scale-free formation
ZS by choosing appropriatelyµ and µ̃. For choosing such
µ and µ̃, let us decompose them intoµ = µv +µω +µs and
µ̃ = µ̃v + µ̃ω + µ̃s, where each term in this decomposition
can be used to define the translation, rotation and scaling
of the group motion. Here, the subscript ‘v’ refers to the
motion parameters responsible forbv∗pc

, ‘ω’ refers to bω∗

and finally ‘s’ refers to the changing parameters which are
responsible for dilating/contracting the shape withinZS . As
shown in [11] the motion parameters ofµv, µ̃v, µω and µ̃ω

can be determined by imposing restrictions on the dynamics
of z ande in order to keep invariante at e = 0, i.e.

B
T
A(µ, µ̃)ẑ = 0 (9)

DẑB
T
A(µ, µ̃)ẑ = 0, (10)

where (9) stands for translations and (10) stands for rotations
and translations. Let us write the following identity

A(µ, µ̃)ẑ =
[

S̄1Dẑ S̄2Dẑ

]

[

µ

µ̃

]

= T (ẑ)

[

µ

µ̃

]

, (11)

whereS1 is constructed by setting all the1 elements in the
incidence matrixB to zero andS2

∆
= S1 − B. In order to

compute the distributed motion parametersµv, µ̃v for the
translational velocitybv∗pc

we eliminate the components ofµ
andµ̃ responsible of non-motion, i.e.A(µ, µ̃)ẑ = 0 in (6), by

Ob

Og

z
∗

1

z
∗

2z
∗

3

z
∗

4

z
∗

5

Fig. 2: The velocity of the agents at the desired shape is the
linear combination of the unit vectors from their associated
relative positions (black dashed lines) given by (8). The
common velocitybv∗pc

of the centroid is marked in blue and
it is given byµv and µ̃v. The rotational velocity about the
centroid definingbω∗ is marked in red and is givenµω and
µ̃ω. The velocity responsible for scaling the formation has
been marked in green and it is given byµs and µ̃s. Note
that these velocities are constant with respect toOb.

projecting the kernel ofB
T
T (bẑ∗) (derived from (9)) over

the orthogonal space of the kernel of (11)

[

µv

µ̃v

]

∈ Û
∆
= P⊥

Ker{T (bẑ∗)}

{

Ker{B
T
T (bẑ∗)}

}

(12)

where we have employedbẑ∗ in order to define the transla-
tional velocity of the desired formation with respect toOb as
in Figure1. In a similar way, by removing the components
responsible of non-motion and translational velocity, the
computation of the distributed motion parametersµω, µ̃ω for
the rotational motion of the desired shape is obtained from
(10) and (12) as

[

µω

µ̃ω

]

∈ Ŵ
∆
= P⊥

Û

{

Ker{DT
bẑ∗B

T
T (bẑ∗)}

}

. (13)

In order to compute the distributed changing parameters
µs, µ̃s we need to look at the bearing rigidity matrixRB(z).
It has been shown in [7] that the meaning of the kernel of the
bearing rigidity matrix stands for translations and scalings of
the desired shape. Therefore in a similar way as before the
following condition

[

µs

µ̃s

]

∈ S
∆
= P⊥

Û

{

Ker{DT
P⊥

bẑ∗
B

T
T (bẑ∗)}

}

, (14)

will give us the space of changing parameters responsible
for the scaling of the formation. We would like to remark
that the presented motion and changing parameters have
been designed for a family of infinitesimally and minimally
congruent shapesZS , i.e. for a scale-free version of a desired
infinitesimally and minimally rigid shape. Note that the three
spacesU ,W andS have been computed in a centralized way
while the parametersµ and µ̃ are applied in a distributed
fashion. This computation can be doneoff-line during the
design stage, e.g. at the same time that one designs the
correspondingdk for the desired shapeZ. An example of the
three spacesU ,W andS for an infinitesimally and minimally
congruent regular squares is given in Figure2.



B. Design of the controller for precise motion and changing
of the formation

Here by precise scaling we mean the control of agents
such that the inter-distances follow a time varyingd(t) but
with the shape inZS . More precisely, we setek(t) =
||zk(t)||−dk(t) for k ∈ {1, . . . , |E|} with Z ∈ ZS in a family
of infinitesimally and minimally congruent rigid shapes. For
simplicity we set the following relation in the edgeEk

dk(t) = s(t)d∗k + d∗k, (15)

wheres(t) ∈ IR is a time varying scaling signal which is
assumed to be at leastC1 andd∗k is defined for a particularZ.
We remark here that the form used in (15) is for convenience
of design. One can of course choosedk(t) = s(t)d∗k. Without
loss of generality, we assume thats(0) = 0. Obviously, for
well-posedness we also impose thats(t) is defined properly
such thatdk(t) > 0 for all t andk ∈ {1, . . . , |E|}.

It is clear that the desired linear speed||bv∗pc
|| and the

desired angular speed||bω∗|| are related to the norms of
µv, µ̃v andµω, µ̃ω respectively. It can also be easily checked
that the speedddtdk(t) is related to the norms ofµs and µ̃s.

We derive the dynamics ofz ande from (6) but consider
the time varying desired distances

ż = −cB
T
BDẑe+B

T
A(µ, µ̃)ẑ (16)

ė = −cDT
ẑ B

T
BDẑe+DT

ẑ B
T
A(µ, µ̃)ẑ − ḋ, (17)

where we have rewrittene as the stacked vector ofek(t) =
||zk(t)|| − dk(t) for k ∈ {1, . . . , |E|}, andd is the stacked
vector ofdk(t) also fork ∈ {1, . . . , |E|}.

In a similar way as in (9) and (10), in order to compensate
ḋ in (17) we impose the following condition for keeping
invariante for e = 0, i.e. the formation shape is always in
Zs

ḋ = DT
bẑ∗B

T [

S1Dbẑ∗ S2Dbẑ∗

]

[

µ

µ̃

]

, (18)

so that the last two terms of the right hand side of (17) is
zero whene = 0. Note that the solution to (18) for µ and
µ̃ includes the spacesU andW . Therefore the distributed
changing parameters that we are looking for scaling the
desired shape with a desired scaling speed are[

µs

µ̃s
] ∈ S

such that (18) holds.
For the constant growing case, i.e.s(t) = st, where

s ∈ IR+ is a common constant scaling speed among all
the agents, we have thatḋ = ds

dt d
∗ = sd∗ and therefore the

solution of (18) gives constantµs and µ̃s. Considering the
periodic scaling case we have thats(t) = s sin(ωt), which
obviously satisfiesḋ = ds

dt d
∗ = sω cos(ωt)d∗. Therefore the

changing parametersµs and µ̃s for the periodic case are the
same as we have seen previously calculated for the constant
growing case but multiplied by the periodic signalω cos(ωt),
which is obviously independent of the actual shape.

IV. STABILITY ANALYSIS

Before presenting the main result, we need to show first
that the error system in (17) is an autonomous system.
Indeed, the second term at the right hand side of (17) depends

on the dot products of the form̂zTi ẑj for i, j ∈ {1, . . . , |E|}.
It has been shown in [9] that all the scalar productszTi zj for
i, j ∈ {1, . . . , |E|} can be written as smooth functions of the
inter-distances||zk|| for k ∈ {1, . . . , |E|}. Since the errorsek
for k ∈ {1, . . . , |E|} are functions of only the inter-distances
||zk|| and ẑk for k ∈ {1, . . . , |E|}, we have that

ẑTi ẑj = gij(e), i, j ∈ {1, . . . , |E|}, (19)

wheregij is a local smooth function around the shapez ∈
Zs. Note that whenz ∈ Zs, the second and third terms on
the right hand side of (17) vanish because of (18), therefore
we can write the following local function

f(e) = DT
ẑ B

T
A(µ, µ̃)ẑ − ḋ, f(0) = 0 ⇐⇒ z ∈ Zs.

(20)
Employing the same argument, the matrix in the first term
of the right hand side of (17) can be rewritten as

Q(e) = DT
ẑ B

T
BDẑ, (21)

where it has been shown in [11] thatQ(0) with z ∈ Zs is
positive definite.

Theorem4.1: Consider the distributed parameters[ µv

µ̃v
],

[
µω

µ̃ω
] and [

µs

µ̃s
] belonging to the spaces (12), (13) and (14)

respectively. Then, there exist constantsρ, c∗ > 0 such that
the origin of the system (17), corresponding toz ∈ Zs with
time-varyings(t) as in (15), is locally exponentially stable
for all c ≥ c∗ in the compact setQ

∆
= {e : ||e||2 ≤ ρ}. In

particular, the formation will converge exponentially fast to
the time-varying shape defined byZs with the speedds(t)dt
satisfying (18) and the agents’ velocities

bṗi(t) →
bṗ∗i , t → ∞, i ∈ {1, . . . , |V|}, (22)

where thebṗ∗i ’s are given by the desiredbṗ∗c , bω and ds(t)
dt ,

that are determined by[ µv

µ̃v
], [ µω

µ̃ω
] and [ µs

µ̃s
].

Proof: Consider the following candidate Lyapunov
function

V =
1

2
||e||2, (23)

whose time derivative satisfies

dV

dt
= eT ė = −ceTQ(e)e+ eT f(e), (24)

with f(e) andQ(e) as in (20) and (21) respectively. We have
thatQ(0) is positive definite and that in a neighborhood of
Zs the formation is still infinitesimally and minimally rigid,
thereforeQ(e) is positive definite in the compact setQ for
some small positiveρ. Furthermore,f(e) is locally Lipschitz
in the compact setQ andf(0) = 0 with z ∈ Zs, therefore
there exists a constantq ∈ IR+ such that

dV

dt
≤ (−cλmin + q)||e||2, (25)

whereλmin is the minimum eigenvalue ofQ(e) in Q. Thus
if one choosesc ≥ c∗ > q

λmin
, then the exponential stability

of the origin of (17) follows from Theorem 4.10 from [13]
for non-autonomous systems. Therefore we have that the
formation shape converges exponentially toZs.



Now we substitutee(t) → 0 and ẑ(t) → Zs as t goes to
infinity into (6) and (2), which gives us

ṗ(t)− Ā(µ, µ̃)ẑ(t) → 0, t → ∞. (26)

In other words, the velocity of the formation converges expo-
nentially fast to the desired velocity given as a superposition
of bv∗pc

andbω∗ with the scaling speedds(t)dt satisfying (18).

Remark 4.2:The magnitude of the positive constantρ
only depends on the desired shape, i.e. if one chooses a shape
where all the agents are far away from each other and far
away from a collinear (2D) or coplanar (3D) configuration,
then one should expect a biggerρ for such desired shape than
for the one that does not meet such requirements. In some
senseρ is measuring (in a conservative way) how the desired
formation can be distorted without falling into a degenerated
configuration. Examples about how to computec∗ andq can
be found in the PhD thesis [14].

V. SIMULATION RESULTS

In this section2 we validate the correctness of Theorem
4.1. We have four agents with a scale-free regular square as
the prescribed shape. The objective of this simulation is to
design the distributed motion-changing parametersµ and µ̃

in the control law (6) such that the square spins around its
centroid and at the same time we vary periodically the scale
of the square. We define the sensing topology of the agents

byB =

[

1 0 −1 0 −1
−1 1 0 0 0
0 −1 1 −1 0
0 0 0 1 1

]

and define the regular square that

we will periodically scale with side-lengthd∗1 = 15 pixels. In
order to induce the spinning motion we design the following
µω and µ̃ω satisfying (13)

µω = [−w −w 0 w −w ]T , µ̃ω = [−w −w 0 w −w ]T , (27)

with w = 1. We want to vary periodically the size of the
square following the desired time-varying distances

di(t) = d∗i + 2hd∗i sin(ωst), i = {1, . . . , 5}, (28)

where one can deduce thats(t) = 2h sin(ωst) and we set
h = 2 and ωs = 1.5 rads/sec. The desiredµs and µ̃s

satisfying (14) and (18) are

[µs(t)
T µ̃s(t)

T ] = hωs cos(ωst)[ 1 1 0 1 1 −1 −1 0 −1 −1 ].
(29)

Finally we choosec = 5 for (6), which in numerical checking
is much smaller than the conservative gain in Theorem4.1.
The numerical results are shown in Figure3.

VI. CONCLUSIONS

In this paper we have modified the popular distance-
based controller by adding distributed parameters at their
prescribed inter-distances in order to control the steady-state
motion while at the same time controlling precisely the
scaling rate of the formation. This approach is compatible
with higher order agent dynamics [15] and is applicable to

2Video footage from actual mobile robots can be found at
www.youtube.com/c/HectorGarciadeMarina with their explanations in [14].
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Fig. 3: The left plot shows the trajectories of the agents with
the ‘x’ denoting the initial points. The dashed lines show
two different scales of the prescribes square. The right plot
shows the evolution of the inter-distances.

the target enclosing and tracking problem. For the periodic
scaling, future work includes the addition of estimators based
on the internal model principle in order not to require all the
scaling signalss(t) to have the same phase at the starting
time.
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