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Distributed scaling control of rigid formations

Hector Garcia de Marina, Bayu Jayawardhana and Ming Cao

Abstract— Recently it has been reported that biased range- iii) Precise scaling of the formation, i.e. controlling pre
measurements among neighboring agents in the gradient cisely the rate of growing or shrinking between two
distance-based formation control can lead to predictable alec- desired scaled shapes. The proposed control law even

tive motion. In this paper we take advantage of this effect ad . .
by introducing distributed parameters to the prescribed inter- allows the changing between two different shapes.

distances we are able to manipulate the steady-state motiaof S .
the formation. This manipulation is in the form of inducing The findings of our work employ the recent results in

simultaneously the combination of constant translationaland ~ [7] On bearing rigidity theory Roughly speaking, bearing
angular velocities and a controlled scaling of the rigid foma-  rigidity theory is employed for controlling a shape instexd
tion. While the computation of the distributed parameters for ~ focusing on maintaining constant distances or positions be
the translational and angular velocities is based on the wel  tyeen neighbors, so one is interested in maintaining cohsta

known graph rigidity theory, the parameters responsible fo the . . :
scaling are based on some recent findings in bearing rigidity inner angles of the shape which can be obtained from the

theory. We carry out the stability analysis of the modified Unit vectors b_etvyeen neighbors ofsaale-free rigid shape
gradient system and simulations in order to validate the mai  In fact these findings have been recently employed to control

result. the translational motion of a rigid formation with a precise
scaling rate in [8]. The approach presented in this paper has
I. INTRODUCTION several advantages over [8]. Firstly, it does not require a

The use of teams of autonomous agents has attracted agdgmmon frame of coordinates for the agents. Secondly it is
of interest in recent years. This is due to the fact that inynarestimator free and it does not require global informatiochsu
tasks, such as the transportation of objects or area exjolora as the position of the centroid and its desired velocitytlyas
& surveillance, robotic teams can effectively accomplistihe distance-based approach also allows rotational madion
tasks with robustness against uncertain environment dad offeature lost in the position-based control since the steady
new functionalities, e.g. enhanced sensing instrumemtati State orientation is globally fixed by design.

[1]. One of the key tasks in coordinating a team of agents The strategy employed in this paper is based on assigning
is the formation and motion control, where the former refermotion parameters to the prescribed distances of a desired
to keeping a prescribed shape while the later refers to thigid formation. It has been reported in [9] that when
steering of it. In particular, a very active topic regardingwo neighboring agents differ in the prescribed distance to
formation control is thedistance-basedcontrol for rigid maintain, collective motion of the formation occurs. More
shapes, where the combination of potential-gradient obntrprecisely, the formation converges to a distorted versibn o
and rigidity graph theory allows us to achieve (locally) apr the desired rigid shape and at the same time it undergoes a
scribed shape by only controlling the inter-distances betw constant translation together with a rotation about itsrodh
neighboring agents [2], [3]. It is a very appealing approachs has been described in detail in [10]. It has been shown in
since the agents can work with only local information, sucld 1] that if these mismatches in the prescribed distance are
as their own frame of coordinates and the relative positisns taken as distributed motion parameters, one can maintain a
their neighbors. In addition, the equilibrium at the prédsed desired rigid shape and at the same time control precisely
shape is exponentially stable and it can be made robustcombination of a constant translation of the formation
against sensor’s biases [4], [5], [6]. with a constant rotation about its centroid. By unifying

In this paper we propose a novel distributed control algahe aforementioned results on motion control employing
rithm for achieving the following three tasks simultandgus distributed motion parameters and bearing rigidity theory

i) Formationscale-freeshape keeping. one can control simultaneously the motion of the prescribed

i) Steering the scale-free formation as a whole with théigid shape and its scale in a precise way, i.e. not distgrtin
combination of a constant translation velocity and & scale-free shape for a desired rate of growing/shrinking.
constant angular velocity applied at its centroid. The rest of the paper is organized as follows. In Section

we introduce the notation and background for bearing rigid
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1. PRELIMINARIES speaking, the only motions that one can perform over the

We start by introducing some notation employed througl‘fjlgents in a minimally rigid framework, Wh“_e they are a_lryead
out the paper. For a given matike IR™*?, defineA Ayp N the desired shape, are the ones defining translations and

[ € IR "7, where the symbab denotes the Kronecker r()t'lzilt?gnSs'?f::ctlt]e?dwhvoelits:1 aF(J)? relative positions® =
product, withm = 2 for the 2D formation case on = 3 for P -

«T _xT « T1T - . e g . . -
the 3D case, and,, is the m-dimensional identity matrix. [=i7 =57 - 2o ] de_ﬁnes;adeswed infinitesimally and min
ked y At ™7 it imally rigid shape with||z}|| = di for all k € {1,...,|E|}
For a stacked vector/matrix= [f @y ... @] with oy is the desired inter-distance. The resulting get

nxl - -

z; € R™ € {1,...,k}, we define the block diagonal o the possible formations with the same shape is defined by
matrix D, = diag{z;}ic;1, 1y € R***. We denote by A

|X| the cardinality of the set’, by ||z|| the Euclidean norm zZ=2{(Ig®@R) ="}, 1)

po—= _L_ i - . . . .
of a vectorz and byz = [[]] the unit vector of a non-zero whereR is the set of all rotational matrices in 2D or 3D.

x. We define the orthogonal projector operator i3S 2 Roughly speakingZ consists of all formation positions that
(Im — @xd}) or more generallyPy over an orthogonal are obtained by rotating*.
subspace oft. Finally we usel, «,, and0, ., to denote Consider a scale-free shapased onan infinitesimally
the all-one and all-zero matrix iflR"*™ respectively and and minimally rigid shape, for example the collection of all
will drop the subscript if the dimensions are clear from theegular squares with an internal diagonal. It is obvious tha
context. this collection can be distinguished from other (infinitesi
mally and minimally rigid) scale-free shapes by looking at
its inner angles or equivalently by looking at all the scalar
We consider a formation of > 2 agents whose positions productsz] 2,, wherel andn are two edges sharing a node.
are denoted by; € R™ for i € {1,...,n}. The agents This fact has been explained in more detail in [12]. Bearing-
can measure their range and directions with respect to théiased rigid frameworks are related to the distance-basesl on
neighbors. The representation of this sensing topology ishere the bearing-based shape can be defined by the inner
given by an undirected grapf = (V, &) with the vertex angles, instead of the distances. Let us review some basic
setV = {1,...,n} and the ordered edge s€tC V x V. concepts in bearing rigidity.
The set\; of the neighbors of ageritis defined by\; 2 Definition 2.1: [7] Frameworks (G,p) and (G,p’) are
{jev:Gje 5%. We define the elements of the incidencedearing equivalentf Pz, =0 for all k € {1,...,|&]}.

A. Graphs and rigidity theory

matrix B € RV!*€l for G by Definition 2.2: [7] Frameworks (G,p) and (G,p’) are
bearing congruentf Pt (p;—pi)y=0forallijeV.
T tail S (pi—py) 1 Hg . !
A +1 if =& Definition 2.3: [7] The bearing functionis defined by
b, = -1 if i =ghead fo.(p) £ 2 € R™EI, wheré : is the stacked vector of
0 otherwise, Zp forall ke {1,...,|&|}.

_ _ Similar to the rigidity matrix one can define tHeearing
where&?' and&£f**d denote the tail and head nodes, respegigidity matrix by computing the Jacobian matrix of the
tively, of the edgey,, i.e. &, = (£, £1°%). Since the graph pearing function
G is undirected, it is irrelevant how the directions of the

edges are defined iB. Rp(z) = 9fBs(p) _ ﬁgplingT’
A frameworkis defined by the pai(G, p), wherep = Ip ®
i ... pﬂT is the stacked vector of the agents’ posiwhere P- € R™¢/*™ is the stacked matrix of operators
tions. The available relative positions of the agents in thng and: € R/¢! is the stacked vector Zl for all k
framework are given by the following stacked vector {1....,|€|}. The non-trivial kernel ofRz (=) 'includes the
L FTp’ scalings and translations of the framework [7], leading to

the following definition

where each vector, = p; — p; in z corresponds to the Definition 2.4: [7] A framework isinfinitesimally bearing

relative position associated with the ed§e= (i, 7). rigid if the kernel of its bearing rigidity matrix only includes
Let us now briefly recall the notions elistanceinfinitesi- ~ scalings and translations. _

mally rigid framework and minimally rigid framework from In order words, if a scale-free shape can be determined

[3]. Define the edge functiorfg by fs(p) = C]?|(sz||2) quuely by_ its inner angles, then it belongs to thénites-

where the operator col defines the stacked column vector affg@lly bearing rigid framework. _

we denote its Jacobian, also known as thgidity matrix, Consider a given shape defined Bywe define the scale-

by R(z) = DZET. A framework (G, p) is infinitesimally free Zs by taking Z rescaled by all the possible scale factors

rigid if rankR (=) = 2n— 3 when it is embedded i&? or it * © d]Ri St‘lffhft?lam?k“ " f.d’?t.for allk e {L,.... |€[}. This
rankR(z) = 3n— 6 when it is embedded iR?. Additionally, c20s 0 (N€ following detinition

if [£] =2n —3in the 2D Case 0¢5|_: 3n —61n the 3D LIn order not to overload the notation, here bywe mean exclusively
case then the framework is calladnimally rigid. Roughly  the vector-element wise normalization af



Definition 2.5: The shapes defined hg within the set byy*
Zs areinfinitesimally and minimally congruemigid.
The name comes from the fact that all the scales of

an infinitesimally and minimally rigid shape are bearing (k
congruent.

B. Frames of coordinates

In order to describe and design motions for the desireldig. 1: The resultant motion of the tetrahedron is the com-
scale-free formation defined bgs, it will be useful to position of the two constant velocitids? and *w*. The
attach a frame of coordinates to the centroid of the shap@escribed trajectory has been split in two red curves.

We denote byO, the global frameof coordinates fixed at

the origin of IR™ with some arbitrary fixed orientation. In

a similar way, we denote by, the body framefixed at estimators for traveling at a constant speed and we can also
the centroidp. of the desired scale-free rigid formation.rotate the desired formation with respectig by controlling
Furthermore, if we rotate the scale-free rigid formatiothwi only one agent. Moreover, using our proposed approach, the
respect toO,, thenO, is also rotated in the same manneragents can use only local coordinates since we are using the
Note thatp, is invariant with respect t&s. Let °p; denote distance-based control strategy.

the position of agentwith respect taD,. In order to simplify We introduce the motion and changing parameters to the
notation, whenever we represent an agent’s variable wigiradient-based control and show the steady-state motion,

respect to0,, the superscript is omitted, e.g; 2 9p;. including the scaling_ of the sh_apé, is related to _its unit
vectors. The control inputs derived from the gradient of the
IIl. M OTION AND SCALING OF RIGID FORMATIONS distance-based potentiad)(for the agentsi and j on the
We consider thex agents in the frameworkG, p) to be edge&y = (i,;) are as follows
overned by single integrator dynamics 5
g y sihg 9 y Ug = ?zk(||zk|| - dk) } (4)
pi = w, &y = Ze(llz]] = i)
whereu; € IR™ is the control action for all € {1,...,|V|}. Where the superscrigt denotes the contribution of the edge

For each edgef,, in the framework one can associate & to the total control inputu; and u;. Introduce a pair
potential functionV;(z;) whose minimum corresponds to Of parameters.; and /i to the prescribed distanaé. as
the desired configuration of the associated edge, for exgmpfollows
in order to (locally) stabilizeZ we can employ the classical  uf = — 2, (||zx|| — di — 1)
elastic potential functiorfrom physics for controlling the u? = 2 (||2nl| — di + )
length of the edges

& ) B The st.ructure in 5).allows us to write the complete control

) = Z Vi(zw) = 5 Z(sz” — )2 3) law w in the following c_ompactf_orm~

i=1 i=1 u=—cBDze+ A(u, 1)z, (6)

It has been reported in [9] that in undirected gradient-
based controlled formations if at least two neighboringage
differ about the prescribed distance to maintain, i.e. the
have a mismatch, then a steady-state collective motion with_
a distorted shape occurs. Theycollective motion, illusttat sdy’s have been taken fronz,, the parameters. ¢ L

~ |g‘ ~
in Figure1l, is described by the combination of two constanf}lnd pi € R™ are the stacked vectors gf; and Hk for
velocity vectors: all k € {1,...,]€]} and the elements ofl are defined as

b follows _
« A linear velocity “v; of the centroid with respect to pp it Q=g
the steady-state dlstorted shape. AL L
ai = i i i = gped @)
« An angular velocity’w* that rotates the steady-state _k
distorted shape. 0 otherwise.

It has been shown in [11] that if we replace mismatchellote that the elements ofi are related to the incidence
by distributed motion parameters, then we can control botmatrix B because off), and hence we still have a distributed
a non-distorted desired shape and a desired motion of thentrol law.
formation with respect t@;. Throughout this section we will ~ We can identify two terms at the right hand side 6F.(
show that such an approach can also be employed to scalee first one is clearly related to the gradient distancetas
the formation shape precisely over time while simultangouscontroller and its purpose is to form and keep the prescribed
to gwde the formation to travel with a deswéd* and shape given byZ,. The second term corresponds to the

. This approach is easier and more effectlve in severateady-state collective motion and changing induced by the
aspects than the one presented in [8], since we do not ngearameters:;, and i and the actual shape of the formation

=2k (|2l — dr) + Zrpin
2 (|lznll = di) + 2ufg-
(5)

whereu € R™V! is the stacked vector of control actions
€ R is a constant gairg € R is the stacked vector
all the distance errors;, = ||zx|| — sdr where all the



given by the unit vectors it. We will see that in order to Zi O\
71

guarantee the stability of the system we will make use of the /! o ‘
exponential convergence of the self-contained error gyste 0, %\ 2 . 2
in the original gradient-based controller. By choosinn (T L Oy !
(6) sufficiently large, we can make the gradient-based term - - -
dominate the second term. Therefore the team of agents will T’zl

converge to the desired shag®, wheres can be time- Fig 2: The velocity of the agents at the desired shape is the

varying i.e. we will scale the shape withifs, and the |inear combination of the unit vectors from their assodate

ste_ady-state_motmn will be given by the parameters and thg|ative positions (black dashed lines) given 1§). (The

unit vectors inz € Zs. common velocity’v?, of the centroid is marked in blue and

A. Design of the distributed motion and changing parameIE IS given b.y/.‘” an*d.“”' The ro-tatlonal velpcn_y about the

ters centroid definingw* is marked in red and is given,, and

o ) fi,. The velocity responsible for scaling the formation has

Suppose that the formation is at the prescribed shape, ien marked in green and it is given py and ji,. Note

e = 0. In this case ifA(u,f1)2 defines translations and that these velocities are constant with respeabgo
rotations of the infinitesimally and minimally congruergid

family Zs, then the desired scaled shapgwill be invariant
under such an additional control term. Note that frodh (

o =T b o .
whene = 0 the control law for the agentbecomes projecting the kernel o3 T("2*) (derived from §)) over

the orthogonal space of the kernel afi)
€]

b i = i bg® 8 v v A =T 2%
b ;“k “h (®) ZU €U S Piorpsy {Ker{B T("2 )}} (12)

box* .
where °2" € Zs. We recall that the elementsy, of A = 0o have employétt* in order to define the transla-

are related tgu and i as in (7). In an infinitesimally and . . : . .
. w e ) . - y tional velocity of the desired formation with respectidg as
minimally congruent rigid formation, the minimum number.

of neighbors for agent is two (resp. three) in 2D (resp. in Figure 1. In a similar way, by removing the components

3D) shapes with its corresponding’s not being in non- responsible of non-motion and translational velocity, the
generic degenerated configurations, e.g. all of them allin computa.tlon of thg distributed m_otlon paramet,e&sp{w for
(resp. coplanar), thehy; can span the wholR? (resp JR?) the rotational motion of the desired shape is obtained from

In other words, we can design a pair of arbitrary constarsflo) and (19) as
velocitiesbvgc and®w* for the desired scale-free formation
Zs by choosing appropriately and ji. For choosing such [

uand i, let us decompose them into= p, + pue, + s and

fi = fiw + fiw + fis, where each term in this decomposition|, order to compute the distributed changing parameters
can be used to define the translation, rotation and scaling ;e need to look at the bearing rigidity matds (z).
of the group motion. Here, the SUESCT'F",’-’ refers tObﬂle It has been shown in [7] that the meaning of the kernel of the
motion parameters responsible ftw; , ‘w’ refers to °w*  pearing rigidity matrix stands for translations and sagiof

and finally 's’ refers to the changing parameters which argne desired shape. Therefore in a similar way as before the
responsible for dilating/contracting the shape withlip. As  fo|lowing condition

shown in [11] the motion parameters @f, i, (., and i,

can be determined by imposing restrictions on the dynamics LLs AL S
of z ande in order to keep invariant ate = 0, i.e. {~ ] €S=h; {KQY{DP;E*B T2 )}}7 (14)

’f“} eWe Ppt {Ker{DZ;*FTT(bé*)}} . 3)

flos

S

—T—
B A(p, 1)z =0 ) wil give us the space of changing parameters responsible
DZAETZ(%[L)@ =0, (10) for the scaling of the formation. We would like to remark
that the presented motion and changing parameters have
where @) stands for translations and stands for rotations peen designed for a family of infinitesimally and minimally
and translations. Let us write the following identity congruent shapess, i.e. for a scale-free version of a desired
B B infinitesimally and minimally rigid shape. Note that thedér
A(p, i)z = [S1Ds SyDs] [4 =T(2) {lf] ,  (11) spaceg/,W andS have been computed in a centralized way
M H . - - .
while the parameterg and i are applied in a distributed
where S, is constructed by setting all theelements in the fashion. This computation can be doné#-line during the
incidence matrixB to zero andS, 2 S1 — B. In order to design stage, e.g. at the same time that one designs the
compute the distributed motion parameters i, for the corresponding) for the desired shap&. An example of the
translational velocit)?v;C we eliminate the components pf three spaceld, VW andsS for an infinitesimally and minimally
and: responsible of non-motion, i.el(y, 1)2 = 0in (6), by  congruent regular squares is given in Figdre



B. Design of the controller for precise motion and changingn the dot products of the foray 2; for i, € {1,...,|€|}.

of the formation

It has been shown in [9] that all the scalar produgts; for

Here by precise scaling we mean the control of agents/ € {1,...,|€[} can be written as smooth functions of the

such that the inter-distances follow a time varyifh(@) but
with the shape inZs. More precisely, we set(t) =
|2 (8)||—di(t) for k € {1,...,|&|} with Z € Zs in a family

of infinitesimally and minimally congruent rigid shapes.rFo

simplicity we set the following relation in the eddg

di(t) = s(t)di, + di, (15)

inter-distance$|z;|| for k € {1,...,|€|}. Since the errorsy,
for k € {1,...,|€|} are functions of only the inter-distances
[|z|| and 2; for k € {1,...,|£]}, we have that

i,j €{1,...,[€[},

whereg;; is a local smooth function around the shape
Z,. Note that whenx € Z,, the second and third terms on

(19)

where s(t) € R is a time varying scaling signal which is the right hand side ofl(7) vanish because ofi§), therefore

assumed to be at least andd; is defined for a particulag .
We remark here that the form used itb) is for convenience
of design. One can of course choakgt) = s(t)d;.. Without
loss of generality, we assume thgt) = 0. Obviously, for
well-posedness we also impose thét) is defined properly
such thatdy(¢) > 0 for all ¢t andk € {1,...,|&|}.

It is clear that the desired linear spegtiv; || and the

desired angular speeld’w*|| are related to the norms of

we can write the following local function

fle)=DIB A(u f): —d, f(0)=0 < z€ Z,.
(20)
Employing the same argument, the matrix in the first term
of the right hand side of1(7) can be rewritten as

Q(e) = DI'B' BD:, (21)

Iy, fly and u,, fi, respectively. It can also be easily checkedvhere it has been shown in [11] th@(0) with z € Z; is

that the spee%‘i—tdk(t) is related to the norms qf,; and is.
We derive the dynamics of ande from (6) but consider
the time varying desired distances

i =—cB BD:e+ B A(u ji)?
¢ = —cDIB' BDse+ DTB' Ay, i)z — d,

(16)
(17)
where we have rewritten as the stacked vector ef,(t) =
l|zi(t)|| — di(t) for k € {1,...,]€|}, andd is the stacked

vector ofdy(t) also fork € {1,...,|&]}.
In a similar way as ing) and (L0), in order to compensate

d in (17) we impose the following condition for keeping
invariante for e = 0, i.e. the formation shape is always in

S

d = DQ*ET [ngbé* §2Db2*:| |:Z:| 5 (18)
so that the last two terms of the right hand side bf)(is
zero whene = 0. Note that the solution tol@) for 1 and
i includes the spacdd and . Therefore the distributed

positive definite.

Theorem4.1: Consider the distributed parameters ],
[%2] and [%°] belonging to the spaced?), (13) and (14)
respectively. Then, there exist constaptg* > 0 such that
the origin of the systeml(/), corresponding ta € Z; with
time-varyings(t) as in (L5), is locally exponentially stable
for all ¢ > ¢* in the compact se® = {e :|le]|*> < p}. In
particular, the formation will converge exponentially tfas
the time-varying shape defined I, with the speeadfj#
satisfying (L8) and the agents’ velocities

Upi(t) — P, t — o0, i € {1,..., |V}, (22)

ds(t)
de !

where the’p:’s are given by the desiretp;, bw and

that are determined bl ], [5] and[%°].

changing parameters that we are looking for scaling the

desired shape with a desired scaling speed[dré € S
such that {8) holds.
For the constant growing case, i.e(t) = st, where

Proof: Consider the following candidate Lyapunov
function )
V= Sllel, (23)
whose time derivative satisfies
C(li—‘t/ =ele=—ceQe)e + el f(e), (24)

with f(e) andQ(e) as in 0) and 1) respectively. We have

s € R" is a common constant scaling speed among alhat Q(0) is positive definite and that in a neighborhood of

the agents, we have thdt= %d* = sd* and therefore the
solution of (L8) gives constanis and fi;. Considering the
periodic scaling case we have thgt) = ssin(wt), which

obviously satisfies] = 98 d* = swcos(wt)d*. Therefore the

Z, the formation is still infinitesimally and minimally rigid,
thereforeQ(e) is positive definite in the compact s& for
some small positive. Furthermoref (e) is locally Lipschitz
in the compact se® and f(0) = 0 with z € Z;, therefore

changing parameteys, and /i for the periodic case are the there exists a constagte IR" such that

same as we have seen previously calculated for the constant

growing case but multiplied by the periodic signatos(wt),
which is obviously independent of the actual shape.

IV. STABILITY ANALYSIS

dVv

T S (—cAmin + @) |lel|?, (25)

where Amin is the minimum eigenvalue af(e) in Q. Thus
if one chooses > c* > 1L, then the exponential stability

Before presenting the main result, we need to show firetf the origin of (L7) follows from Theorem 4.10 from [13]

that the error system inl{) is an autonomous system.

Indeed, the second term at the right hand side.@f depends

for non-autonomous systems. Therefore we have that the
formation shape converges exponentiallyZp



Now we substitute:(t) — 0 and 2(t) — Z, ast goes to
infinity into (6) and @), which gives us
In other words, the velocity of the formation converges expo
nentially fast to the desired velocity given as a superjosit
of bv* and’w* with the scaling speeé% satisfying (L8).
[ |
Remark 4.2:The magnitude of the positive constant

t — oo. (26)
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. 3: The left plot shows the trajectories of the agent& wit
the ‘X’ denoting the initial points. The dashed lines show

only depends on the desired shape, i.e. if one chooses a shije different scales of the prescribes square. The right plo
where all the agents are far away from each other and fahows the evolution of the inter-distances.

away from a collinear (2D) or coplanar (3D) configuration,
then one should expect a biggefor such desired shape than

for the one that does not meet such requirements. In sorift¢ target enclosing and tracking problem. For the periodic
sense is measuring (in a conservative way) how the desiregcaling, future work includes the addition of estimatorsea
formation can be distorted without falling into a degenedat ©n the internal model principle in order not to require a# th

configuration. Examples about how to computeandq can
be found in the PhD thesis [14].

V. SIMULATION RESULTS

In this section’ we validate the correctness of Theorem [1]
4.1. We have four agents with a scale-free regular square as
the prescribed shape. The objective of this simulation is tqz)
design the distributed motion-changing parameteend /i
in the control law ) such that the square spins around its 4
centroid and at the same time we vary periodically the scale
of the sqular%. We define the sensing topology of the agent[?1

-1 0 —1
by B = _01711 (1J 91 8
we will peﬁoé)icé)llylscallle with side-lengt#ii = 15 pixels. In
order to induce the spinning motion we design the following
1., and fi,, satisfying (L3)

and define the regular square that
(5]

ro@n @

Mo = [—w —wOw—w]T, ‘[Lw:[—w —w 0w —w

with w = 1. We want to vary periodically the size of the [7]
square following the desired time-varying distances

di(t) = d + 2hd; sin(wst), i = {1,...,5}, (8]

(28)
where one can deduce thaft) = 2hsin(w,st) and we set
h = 2 andws, = 1.5 rads/sec. The desired; and jis

satisfying (L4) and (L8) are

El

[10]
(s ()T fs(1)T] = hws cos(wst)[11011 -1 -10 -1 —1].
(29)
Finally we choose = 5 for (6), which in numerical checking [11]
is much smaller than the conservative gain in Theo#ein
The numerical results are shown in Figue

VI. CONCLUSIONS (12]

In this paper we have modified the popular distance-
based controller by adding distributed parameters at the[er?,]
prescribed inter-distances in order to control the stesidie
motion while at the same time controlling precisely thdl4l
scaling rate of the formation. This approach is c:ompatiblﬁ5
with higher order agent dynamics [15] and is applicable to

2\ideo footage from actual mobile robots can be found at
www.youtube.com/c/HectorGarciadeMarina with their exgltions in [14].

scaling signalss(t) to have the same phase at the starting
time.
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