
Deep Tracking on the Move: Learning to Track the World from a
Moving Vehicle using Recurrent Neural Networks

Julie Dequaire, Dushyant Rao, Peter Ondrúška, Dominic Zeng Wang and Ingmar Posner

Abstract— This paper presents an end-to-end approach for
tracking static and dynamic objects for an autonomous ve-
hicle driving through crowded urban environments. Unlike
traditional approaches to tracking, this method is learned
end-to-end, and is able to directly predict a full unoccluded
occupancy grid map from raw laser input data. Inspired by
the recently presented DeepTracking approach ([1], [2]), we
employ a recurrent neural network (RNN) to capture the
temporal evolution of the state of the environment, and propose
to use Spatial Transformer modules to exploit estimates of the
egomotion of the vehicle. Our results demonstrate the ability
to track a range of objects, including cars, buses, pedestrians,
and cyclists through occlusion, from both moving and stationary
platforms, using a single learned model. Experimental results
demonstrate that the model can also predict the future states
of objects from current inputs, with greater accuracy than
previous work.

I. INTRODUCTION

The safe and effective operation of an autonomous vehicle
depends on its ability to interpret its surroundings and track
and predict the state of the environment over time. Many
tracking systems employ multiple hand-engineered stages
(e.g. object detection, semantic classification, data associa-
tion, state estimation and motion modelling, occupancy grid
generation) in order to represent the state and evolution of the
world ([3], [4], [5]). However, as the tasks assigned to robots
become more complex, this approach becomes increasingly
infeasible.

Recent advances in machine learning, particularly those
of deep neural networks, have demonstrated the ability to
capture complex structure in the real world, and have led
to significant improvements in numerous computer vision
and natural language processing applications ([6], [7], [8]).
Such approaches would however typically require large, task-
specific corpora of annotated ground-truth labels to master
the desired task. This becomes difficult when learning a
model of the environment without access to corresponding
ground truth, as is often the case for object tracking in
crowded urban environments.

In recent work, [2] took an alternative approach and
presented an end-to-end fully and efficiently trainable frame-
work for learning a model of the world dynamics, building on
the original DeepTracking work by [1]. We considered the
specific problem of learning to track and classify moving
objects in a complex and only partially-observable real-
world scenario, as viewed from a static sensor. Here, we

Authors are from the Mobile Robotics Group at the
University of Oxford, United Kingdom: julie, dushyant,
ingmar@robots.ox.ac.uk

Ra
w

 S
en

so
r 

In
pu

t
Ne

ur
al

 
Ne

tw
or

k
O

cc
up

an
cy

 
Pr

ed
ic

tio
n

h0 h5

t t+5…

G
ro

un
d 

Tr
ut

h 
Co

m
pa

ris
on

true positive
false positive
false negative 

visible space
occluded space

dynamic object
static object
field of view mask

…

Fig. 1. A typical training sequence. The unoccluded occupancy map is
predicted directly from the input grid data, allowing objects to be tracked in
occlusion and in future frames. The observed false positives are therefore
beneficial. Comparison to the visible ground truth shows that the model is
able to capture the dynamics of the moving vehicle (pink rectangle) and
accurately predicts its track.

advance this work and address the problem of tracking from a
moving platform. We extend the neural network architecture
proposed in [2] to account for the egomotion of the sensor
frame as it moves in the world frame, and demonstrate
improved tracking accuracy as compared to previous work.

We demonstrate the system on laser point cloud data
collected in a busy urban environment, with an array of static
and dynamic objects, including cars, buses, pedestrians and
cyclists. The model not only bypasses the sequence of hand-
engineered steps typical of traditional tracking approaches,
but is empirically shown to successfully predict the future
evolution of objects in the environment, even when they are
completely occluded.

The rest of the paper is structured as follows. Section II

ar
X

iv
:1

60
9.

09
36

5v
3 

 [
cs

.C
V

] 
 1

9 
A

pr
 2

01
7



highlights related work and Section III summarises the prob-
lem definition and DeepTracking framework first presented
in ([1], [2]). Section IV describes the models used to perform
tracking in real-world scenarios considering both static and
dynamic sensors. Section V presents an empirical evaluation
of our methods, and Section VI concludes the paper and
discusses the future implications of our findings.

II. RELATED WORK

A number of previous works have explored the problem of
model-free tracking of objects in the environment of an au-
tonomous vehicle ([3], [4], [5]). Typically, these approaches
follow the traditional paradigm of a multi-component
pipeline, with separate components to parametrise and detect
objects, associate new measurements to existing tracks, and
estimate the state of each individually tracked object. The
use of multiple stages in the framework is cumbersome and
introduces extra unnecessary failure modes for the tracking
algorithm.

Recent work proposes to replace these multiple stages with
an end-to-end learning framework known as DeepTracking,
by leveraging neural networks to directly learn the mapping
from raw laser input to an unoccluded occupancy grid ([1],
[2]), even with relatively small amounts of data. The ap-
proach utilises an RNN architecture using gated recurrent
units [9] to capture the state and evolution of the world
in a sequence of laser scan frames. Another work [10]
considers recurrent flow networks and takes a different angle
to predicting occupancy in dynamic environments. They
explicitly encode a range of velocities in the hidden layers of
a recurrent network, and use Bayesian optimization to learn
the network parameters which update velocity estimation
and occupancy prediction. However, the model does not
explicitly track objects through occlusion.

DeepTracking shares similarities with deep learning ap-
proaches to predictive video modelling ([11], [12]), in that
it is trained to predict the future state of the world based on
current input data. This is particularly important, because in
order to successfully capture the future location of dynamic
objects in the scene, the model must implicitly store the
position and velocity of each object in its internal memory
state.

While this eliminates the need to design individual com-
ponents by hand, the model assumes a static vehicle [2].
Extending the problem to a moving platform is a challenging
task, as it introduces an array of complex relative motions
between the vehicle and objects in its environment. As
DeepTracking ignores the motion of the vehicle, the model is
forced to learn all possible motion interactions between the
vehicle and its environment as if the vehicle were stationary.
For a moving platform, we leverage estimates of egomotion
as a proxy for vehicle motion. We scale up the RNN-based
models proposed by ([1], [2]) for real-world application on
dynamic vehicles, and exploit Spatial Transformer modules
[13], which allow the internal memory state representations
to be spatially transformed according to the estimated ego-
motion.

The main contributions of this work are as follows:
1) A more in-depth analysis of the performance of Deep-

Tracking in the case of a static vehicle, building on the
experiments presented in [2].

2) The use of Spatial Transformer modules to exploit
estimates of visual egomotion in the DeepTracking
framework.

3) Demonstration of end-to-end tracking of a variety of
object classes through occlusion, on a moving vehicle
in crowded urban scenes.

III. TRACKING PROBLEM FORMULATION

The problem we address in this paper is to uncover the
true state of the world, in terms of a 2D occupancy grid
yt, given a sequence of partially observed states of the
environment x1:t computed from raw sensor measurements.
In particular, we solve for P (yt|x1:t), the probability of
the true unoccluded state of the world at time t given a
sequence of partial observations at all previous time steps.
This formulation can also be used to predict future states by
solving for P (yt+n|x1:t), given empty input for xt+1:t+n.

P (yt|x1:t) = P (yt|ht) (1)

Evolution of this latent state ht, which includes propa-
gating model dynamics and integrating new sensor measure-
ments, is modelled by the update equation:

ht = f(ht−1, xt) (2)

The key element here is that both the latent state update
f(ht−1, xt), and the decoding step to produce the output
P (yt|ht) are modelled as parts of a single neural network and
are trained jointly. Equations 1 and 2 can then be performed
repeatedly as the building block of a recurrent neural network
that continuously updates the belief state ht, and uses it as
network memory to predict yt. This makes it suitable for
online stream filtering of sensor input.

When the output ground-truth yt is not readily available,
as is the case in real-world scenarios, the network can be
trained in an self-supervised fashion. This is made possible
by considering that predicting the movement of objects in
occlusion at time t is similar to predicting a future state yt+n

provided no input is given to the network, i.e xt+n = �.
Lack of input observation equates to complete occlusion of
the scene. As only observable ground truth is available, we
reduce the problem of predicting yt+n to that of predicting
the directly observable input xt+n. Training the network to
predict P (xt+n|x1:t) is then equivalent to computing and
backpropagating the errors only on the observable parts of
the scene. We refer the reader to [1] and [2] for further details
on the RNN and the training procedure.

Each input observation xt ∈ {0, 1}2×M×M is represented
as a pair of discretised 2D binary grids of size M × M ,
parallel to the ground and locally built around the sensor. The
first matrix encodes whether a cell is directly observable by
the sensor at time t, while the second matrix encodes whether
a cell is observed to be free (value of 0) or occupied (value



Odometry

16

1

2

16

16

h t-1

h t

x t

yt

GRU

GRU

GRU

dilation: 2 

dilation: 1
 

dilation: 4
 

Spatial Transform
er 

M
odule

Fig. 2. The proposed network architecture features dilated convolutions,
gated recurrent units, a spatial transformer module, and outputs cell occu-
pancy in the sensor’s surroundings. The spatial transformer module is only
utilised in a moving vehicle scenario.

of 1). We refer to these two matrices as xt,vis and xt,occ,
the visibility and occupancy grids respectively. The output
we wish to obtain is an occlusion-free state of the world
yt ∈ {0, 1}M×M , and is represented by an occupancy
matrix similar to that of the input occupancy grid of xt.

In the next section, we build upon [2] to deploy the
DeepTracking paradigm on a real-world moving platform.

IV. TECHNICAL OVERVIEW

A. Deep Tracking from a Static Sensor

First, we revisit [2] to detail the baseline DeepTracking
architecture for real world application, which we extend to
a moving platform.

At each time step t, the partially observed grid xt used as
input to the network is computed from raw 2D laser scans by
ray tracing. Cells in which a measurement ends are marked
as occupied, all cells from the sensor origin up to the end
of the ray are marked as free, and cells beyond the ray are
marked to be unobserved.

The input xt is processed by a multi-layer network il-
lustrated in Figure 2, with the Spatial Transformer module
only utilised in the moving vehicle scenario. The architecture
originally proposed in [1] is scaled up with dilated convolu-
tions [14] and a variant of gated recurrent units ([9], [15]) to
allow for the simultaneous tracking of different-sized objects
such as cars and pedestrians. Each layer l at time t is updated
considering its own activations at time t−1 and those of layer
l−1 below at time t, thus implementing the recurrence. This
allows the network to extract and remember the information
from the past and to use it for prediction of occluded objects
or future states of the world. An additional static memory
can also be utilised, in which the network is able to learn
individual pixel-wise biases to add to the output of every
convolutional operation. The output of the final layer is then
converted into the output cell occupancy yt via a simple
convolutional decoder. As explicited in the results section,
we also experiment with architectures that decode the entire
hidden state to the output.

B. Deep Tracking from a Moving Vehicle

Tracking a dynamic scene from a moving platform poses
the challenge of decoupling the motion of the vehicle from
the motion of objects in the global environment. In the static
scenario, information related to an object located at index
{i, j} in the input xt would typically be stored at the corre-
sponding neighbouring spatial location {i+∆i, j+∆j} in the
layers of the latent representation, with the neighbourhood
∆i,j based on the receptive field of each neuron in the
hidden state. The latent state update would then pass the
information along spatially in accordance with the observed
relative motion of the input object (Figure 4). In the static
scenario, the dynamics of the scene as viewed from the world
frame are coherent with that viewed from the local sensor
frame.

When tracking from a moving vehicle however, the spatial
update of information within the latent representation would
additionally need to account for the sensor’s egomotion as
it will affect the position of the object relative to the sensor
frame. Although this is a major drawback of the baseline
DeepTracking architecture, it can be compensated by trans-
forming the memory state in accordance to the egomotion. In
other words, a static obstacle situated at position {it−1, jt−1}
in the sensor frame at t−1, will be moved to position {it, jt}
in the sensor frame at time t such that:

[xt, yt, 1]T = Tt,t−1 × [xt−1, yt−1, 1]T (3)

where Tt,t−1 is the SE(2) forward transformation of the
sensor source frame at t−1 into the sensor destination frame
at t. This formulation naturally extends to 3D motion with
SE(3).

We aid the network in decoupling egomotion and object
motion in this way by introducing a Spatial Transformer [13]
module (STM) in the hidden state (Figure 2). In the original
work by [13], the STM is introduced as a learnable module
for actively spatially transforming feature maps to aid tasks
such as the classification of distorted datasets. However,
in the context of tracking from a moving platform where
egomotion is readily available (e.g. visual odometry), the
STM can be used just to forward transform the hidden feature
maps centred in the sensor source frame at time t− 1, into
the sensor destination frame at time t, using transformation
Tt,t−1 (Equation 3).

Thus, the STM is introduced in the hidden state and
performs a transformation on all feature maps of ht−1, set
in frame t − 1, into frame t before update with the new
incoming input xt to form the new memory at t.

C. Training

In both static and dynamic cases, the network is presented
the input sequence x1:t and trained to predict the next n input
frames xt+1:t+n. The binary cross-entropy loss is calculated
and backpropagated only on the visible part of the output,
which is achieved by simply masking the prediction yt
with xt,vis and multiplying the resulting grid element-wise
with the occupancy part grid xt,occ. By using a loss that



encourages the model to predict the state of the environment
in the future, the model is forced to capture the motion of
each object in the hidden representation.

In the static sensor scenario, the error is only backpropa-
gated on the ground truth available, i.e the visible part of the
space. In the case of a moving sensor, however, an additional
constraint needs to be imposed to account for the fact that as
the robot moves in future frames, it will discover new space
that falls outside the field of view of the current frame. Given
this fact, the model should not be falsely penalised for failing
to accurately guess objects located within this new space
when the input is blanked out. This is similar in nature to
the static case, where the input grid also represents a frontier
between what the robot can perceive and understand of the
scene and the unknown world outside its field of view.

To address this, we apply an additional mask at training
time on the cost computation and error backpropagation to
represent the predictable space in future frames. Accounting
for this field of view drift is crucial in terms of tracking
performance, as it corrects for an objective function that
is otherwise skewed towards the incredibly difficult task
of predicting objects outside the field of view. This mask
has been overlaid in transparency over the ground truth
comparison outputs of Figure 1, and indicates the predictable
free space shrinking on future timesteps.

V. EXPERIMENTAL RESULTS

In this section, we perform experimental validation of
both the baseline DeepTracking and the STM-based variant
proposed in this paper. With a stationary vehicle, no spatial
transform is necessary and the two are identical.

A. Static Vehicle
For the static case, we consider an architecture with three

hidden layers of 16 GRU feature maps each. Computation of
the hidden state consists of 3×3 convolutional filters, applied
on the three layers (from bottom up) with strides of 1, 2, and
4 pixels, and receptive fields of 3 × 3, 7 × 7, and 15 × 15,
respectively. We consider an input field of view of 20 × 20
m2 discretised into cells of 20 × 20 cm2, which translates
into a H ×W = 101× 101 input grid. With a hidden state
consisting of 48 feature maps, the additional static memory
contributes to H×W×D = 489, 648 of the total 1, 506, 865
parameters of the network.

The evaluation dataset consists of a 75 minute log col-
lected from a stationary Hokuyo UMT-30LX 2D laser scan-
ner, positioned in the middle of a busy urban intersection.
The area features dense traffic composed of buses, cars, cy-
clists and pedestrians, which results in extensive amounts of
occlusion. Consequently, at no point in time is the complete
scene fully observable. The dataset is subsampled at 8Hz and
split into a 65 minute set for training, and a 10 minute set
for testing occupancy prediction.

The full model was trained on an Nvidia Tesla K40 GPU
until convergence, using the unsupervised training procedure
described in Section III. The training set is split into mini-
batch sequences of 40 frames (5 seconds). For every mini-
batch, the network is shown 10 frames and trained to predict

GRU3DilConvBias_16

GRU3DilConvBias_48

GRU3DilConv_16

GRU3DilConv_48

GRU3_16_A

RNN48

RNN16 [2]

Model-free tracker [4]

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Prediction time horizon [sec]

Pr
ed

ic
tio

n 
Pe

rfo
rm

an
ce

 [F
1 

sc
or

e]

0.25 0.5 0.75 111 12 13 14 15 16 17 18 19 20
Timesteps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F1
 m

ea
su

re

F1 on Test data epoch 58- St Giles

Fig. 3. F1 scores of network architectures when attempting to predict
the future occupancy of the scene in a 1.25 second time horizon. The F1
measure is computed with a threshold of 0.5 when considering a cell to be
predicted as occupied or free.

the next 10 frames, leading to two such sequences per 40-
frame mini-batch. This length of sequence covers the typical
lengths of occlusions observed but can be tuned accordingly.

1) Quantitative results: We first look to quantify the
gain in performance achieved by scaling up the original
DeepTracking network with the proposed architecture. We
compare a number of different architectures ranging from
the original [1] to the proposed model in [2], and compare
performance on the task of predicting the observable near-
future scene occupancy given the input sequence x1:t. The
predicted output occupancy P (yt+n|x1:t) is compared to
xt+n,occ, which corresponds to the observed occupancy of
the world at time t. A threshold of 0.5 is used to determine
whether a cell is predicted as occupied or free, and an F1
measure computed for each frame.

Figure 3 compares the F1 measures computed on each
of n = 10 blacked out future frames, given the 10 frames
in the past. All model predictions decrease over time as
would be expected, as the uncertainty of the state of the
world increases with the prediction horizon. There is a
notable step change in performance with neural architectures
compared to a state-of-the art model-free tracking pipeline
approach by [4]. If we increase the capacity of the original
RNN architecture of [1] (RNN16) from 16 to 48 feature
maps (RNN48), we obtain marginal performance increase.
In comparison, replacing the standard RNN48 hidden unit
state with three layers of 16 GRU units (GRU3 16 A)
provides significant improvement in prediction ability. The
affix 16 signifies that we decode only the last hidden unit
(composed of 16 features maps) to the output. Incorporating
dilated convolutions (GRU3DilConv 16) in place of tradi-
tional dense convolutions achieves comparable performance
to GRU3DilConv 16 for a similar output receptive field of
15×15. The model with dilated convolutions additionally
requires less computation and nearly one third fewer model
parameters than its dense counterpart GRU3DilConv 16.
Further, we experiment with GRU3DilConv 48 which de-
codes the full hidden state (composed of 48 features maps)
to the output. Performance of the model is maintained as



In
pu

t

G
RU

 3  

O
ut

pu
t

Hi
dd

en
 S

ta
te

Sequence t

car
static background
pedestrian

true positive
false positive
false negative

visible space

occluded space

G
RU

 2  

G
RU

 1  

i
ii

Fig. 4. Example of outputs produced by the system along with a selection of activations in the hidden layers. As highlighted in colour-coded circles, the
network is able to propagate the assumed motion of the objects even when in complete occlusion. The sample hidden layer activations shown highlight the
fact that lower layers in the hidden units (corresponding to a low dilation of the convolutions) capture the motion of small and slow moving objects such
as pedestrians (e.g pink circle) and static background (e.g yellow squares), whereas a higher level layer learns to detect moving vehicles (orange oval).

illustrated in Figure 3. This is a departure from traditional
architectures where information from the different scales of
the hidden units is directly passed to the output. This may
assist positively for tasks such as semantic labelling, where
scale information is essential. Lastly, performance of the

full model with added static biases (GRU3DilConvBias 16
and GRU3DilConvBias 48) remains commensurate to that
of GRU3DilConv 16 and GRU3DilConv 48 (Figure 3), and
the learned static bias values may convey useful information
such as that of the static background layout. We consider the



GRU3DilConv 48 model in the rest of this paper.
2) Qualitative results: To better understand what the net-

work has learned, we also qualitatively analyse a typical test
sequence of length 3 seconds from GRU3DilConv 48, along
with the network output and selected hidden state feature
maps in Figure 4. The network is able to track pedestrians
through full occlusion and the unobserved hallucinated tracks
are represented in blue in the output sequence.

It can be seen that the GRU1 feature maps appear to
have learned to capture the static background, as activations
remain stationary during the sequence (i), and track pedestri-
ans, as highlighted through the pink circles (ii). The GRU2
feature map also captures the motion of pedestrians moving
upwards to the left, while, interestingly, the GRU3 unit seems
to activate only on the car that appears to the top right at
frame 2 (indicated by the orange box). This provides empir-
ical support for the use of Dilated Convolutions which allow
the model to capture patterns of increasing receptive fields
in the hidden state units, while requiring fewer parameters
than more traditional dense convolutional kernels.

In general, we observe that information regarding objects
in the scene is captured in the hidden state, and moves
spatially through the feature maps according to the motion
of the object in the input. This can be problematic when
extending tracking to a moving platform, as the object motion
and vehicle motion are coupled. We address this concern in
the following section.

B. Moving vehicle

In this section we compare our baseline model
GRU3DilConv 48 (BaselineDT) with an equivalent architec-
ture that incorporates the Spatial Transformer module into
the hidden belief state (STM). As with the static case, we
evaluate the ability to predict future frames given blacked
out input, and illustrate the achieved occlusion-free tracking
performance on a series of examples selected from the test
set.

The evaluation dataset was collected over a 35 minute
period, from a moving vehicle equipped with two Velodyne
HDL64E lasers, resulting in a 360 degree field of view. The
3D point clouds were reduced to a 2D scan by considering
the range of points within 0.6-1.5 meters height from the
ground.

The network was trained on mini-batches of 40 sequences
with a frame rate of 10Hz, alternating between 5 inputs
shown, and 5 inputs hidden. This higher frequency is better
adapted to the moving vehicle case given the input field of
view of 18×18 m2 and a vehicle mean velocity of 20 miles
per hour. Longer occluded sequences would lead to increased
loss in useful memory due to the aforementioned drift of
field of view. Finally, we performed an 80/20 split of the
data into training and test set with no overlap in location,
and trained our model on an Nvidia Tesla K40 GPU until
convergence. Our architecture is implemented on Torch and
uses the Spatial Transformer GPU-implementation of [16].

a) Quantitative Results: Figure 5 represents the F1
measure as computed with STM and with the baseline DT.

0.65

0.6

0.7

0.75

0.8

0.85

Pr
ed

ic
tio

n 
Pe

rfo
rm

an
ce

 [F
1 

sc
or

e]

Prediction time horizon [sec]

0.60.30.15 0.45

Baseline  

STM  

Fig. 5. Positive contribution of the Spatial Transformer to the network’s
ability to correctly predict the future occupancy of the scene in a 0.6 sec
time horizon. The baseline DT does surprisingly well which we attribute
to the benign test set where the vehicle mostly evolves at constant velocity
down straight roads.

The baseline DT is identical to STM with the exception
that no egomotion is taken into account. In other words, no
additional mask is applied to the cost computation and back-
propagation, and hidden states are not forward transformed
into the next sensor frame.

With no egomotion information, one might expect the
F1 measure for the baseline to be very poor. Surprisingly
however, it does very well as illustrated in Figure 5. We
suggest two explanations for this. Firstly, we posit that this is
due to the dataset being relatively benign in terms of vehicle
motion patterns. As most of the driving occurs down straight
roads and at relatively constant velocity (∼ 20 mph) the
baseline may have learned a constant velocity model that
could be used to correct the hidden state update. Secondly,
the F1 measure here may be less informative, as the dataset
is dominated by static objects such as walls and buildings.
As such, a large fraction of the F1 score can be attained
by learning the vehicle’s motion and merely capturing static
scenes. Nonetheless, the STM offers a clear improvement
over the baseline DT in all future frames.

1) Qualitative Results: To qualitatively evaluate the
model, we show a selection of sequences where the model
does well, and where it does more poorly. As the dataset does
not contain as many occlusions and for as long as the static
set due to the setting of a vehicle driving through an urban
environment, we look at the ability of the network to predict
what happens in occlusion by maintaining the blacking out
of the input every 5 frames at test time.

Figure 6 shows a compelling example of STM accurately
tracking both dynamic and static objects through occlusion.
In particular, the model accurately predicts the position of
two static objects of different sizes when future frames are
blacked out, and is also able to maintain the tracks when
both objects are fully occluded.

Figure 7 illustrates how STM accurately predicts the tracks
of both a moving vehicle (red circle) and two occluded
pedestrians (orange rectangle) whereas the baseline model
fails. For the latter, the predicted track of the vehicle grad-
ually shifts from the ground truth until complete failure in
frame 5 (false negative area), and it fails to separate and



In
pu

t

 static 

1 sec

0.5 sec Sequence  

 dynamic 

O
ut

pu
t

In
pu

t
O

ut
pu

t
(continued)

0.25 sec 

visible space

occluded space

true positive

false positive

false negative

t

t

Fig. 6. Left to Right, Top to Bottom: Example sequence (1 second) of dynamic and static object tracking through occlusion by the STM. The output of
the network is evaluated against the visible ground truth. We highlight several objects of interest that are correctly tracked through complete occlusion.

ST
M

Ba
se

lin
e

0.3 sec 0.6 sec tSequence  

O
ut

pu
t

O
ut

pu
t

In
pu

t

Fig. 7. Left to Right: Output sequence (0.6 seconds) of dynamic and static object tracking through occlusion as predicted by the Spatial Transformer
Model (Top) and the Baseline Model (Bottom). We show the colour-coded comparison to the visible ground truth, with false negatives in red, false positives
in blue, and true positives in green. Where the Spatial Transformer network consistently accurately tracks two pedestrians (orange rectangle) occluded by
a moving vehicle (red), the Baseline model fails to capture the dynamics of both the vehicle and the pedestrians. This is particularly visible on the last
frame, with most of the area around the actual location of these objects showing false negative occupancy prediction for the Baseline model.

track the pedestrians through occlusion by the vehicle.

VI. CONCLUSION

In this paper, we have proposed an approach to perform
object tracking for a mobile robot travelling in crowded
urban environments, building on the previously proposed
DeepTracking framework ([1], [2]). Crucially, unlike clas-
sical techniques which employ a multi-stage pipeline, this
approach is learned end-to-end with limited architectural
choices. By employing a Spatial Transformer module, the

model is able to exploit noisy estimates of visual egomotion
as a proxy for true vehicle motion. Experimental results
demonstrate that our method performs favourably to Deep-
Tracking in terms of accurately predicting future states, and
show that the model can capture the location and motion of
cars, pedestrians, cyclists, and buses, even when in complete
occlusion.

Future work will look to estimate ego-motion, explore
modalities such as radar, and extend the approach to 3D.



ACKNOWLEDGEMENT

The authors would like to gratefully acknowledge support
of this work by the UK Engineering and Physical Sciences
Research Council (EPSRC) Doctoral Training Programme
(DTP) and Programme Grant DFR-01420, as well as the
Advanced Research Computing services at the University of
Oxford for providing access to their computing cluster.

REFERENCES

[1] P. Ondrúška and I. Posner, “Deep tracking: Seeing beyond seeing
using recurrent neural networks,” in The Thirtieth AAAI Conference on
Artificial Intelligence (AAAI), Phoenix, Arizona USA, February 2016.

[2] P. Ondrúška, J. Dequaire, D. Z. Wang, and I. Posner, “End-to-end
tracking and semantic segmentation using recurrent neural networks,”
arXiv preprint arXiv:1604.05091, 2016.

[3] T.-D. Vu, O. Aycard, and N. Appenrodt, “Online Localization and
Mapping with Moving Object Tracking in Dynamic Outdoor Environ-
ments,” in Intelligent Vehicles Symposium, 2007 IEEE, June 2007, pp.
190–195.

[4] D. Z. Wang, I. Posner, and P. Newman, “Model-free detection and
tracking of dynamic objects with 2d lidar,” The International Journal
of Robotics Research, vol. 34, no. 7, pp. 1039–1063, 2015.

[5] A. Petrovskaya and S. Thrun, “Model based vehicle detection and
tracking for autonomous urban driving,” Autonomous Robots, vol. 26,
no. 2, pp. 123–139, 2009.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[7] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recognition,”
Audio, Speech, and Language Processing, IEEE Transactions on,
vol. 20, no. 1, pp. 30–42, 2012.

[8] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text recog-
nition with convolutional neural networks,” in Pattern Recognition
(ICPR), 2012 21st International Conference on. IEEE, 2012, pp.
3304–3308.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[10] S. Choi, K. Lee, and S. Oh, “Robust modeling and prediction in
dynamic environments using recurrent flow networks.”

[11] V. Patraucean, A. Handa, and R. Cipolla, “Spatio-temporal
video autoencoder with differentiable memory,” arXiv preprint
arXiv:1511.06309, 2015.

[12] W. Lotter, G. Kreiman, and D. Cox, “Deep predictive coding net-
works for video prediction and unsupervised learning,” arXiv preprint
arXiv:1605.08104, 2016.

[13] M. Jaderberg, K. Simonyan, A. Zisserman, et al., “Spatial transformer
networks,” in Advances in Neural Information Processing Systems,
2015, pp. 2017–2025.

[14] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” arXiv preprint arXiv:1511.07122, 2015.

[15] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c.
WOO, “Convolutional lstm network: A machine learning approach
for precipitation nowcasting,” in Advances in Neural Information
Processing Systems, 2015, pp. 802–810.

[16] M. Oquab, “Module for spatial transformer networks,” https://github.
com/qassemoquab/stnbhwd/.

https://github.com/qassemoquab/stnbhwd/
https://github.com/qassemoquab/stnbhwd/

	I Introduction
	II Related Work
	III Tracking Problem Formulation
	IV Technical Overview
	IV-A Deep Tracking from a Static Sensor
	IV-B Deep Tracking from a Moving Vehicle
	IV-C Training

	V Experimental Results
	V-A Static Vehicle
	V-A.1 Quantitative results
	V-A.2 Qualitative results

	V-B Moving vehicle
	V-B.1 Qualitative Results


	VI Conclusion
	References

