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Towards semi-episodic learning for robot damage recovery

Konstantinos Chatzilygeroudi$?, Antoine Cully* and Jean-Baptiste Mouret>*

Abstract— The recently introduced Intelligent Trial and Er-
ror algorithm (IT&E) enables robots to creatively adapt to
damage in a matter of minutes by combining an off-line
evolutionary algorithm and an on-line learning algorithm based
on Bayesian Optimization. We extend the IT&E algorithm to
allow for robots to learn to compensate for damages while
executing their task(s). This leads to a semi-episodic leming
scheme that increases the robot's life-time autonomy and
adaptivity. Preliminary experiments on a toy simulation and
a 6-legged robot locomotion task show promising results.
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|I. INTRODUCTION W coal

Recent research on autonomous systems and robotics has (b)

achieved important progress in increasing the autonomy ﬁg. 1: Episodic vs Semi-episodic learning for robot dam-
robots, which makes it possible to operate robots for lorg p%ge recovery.C(aEpisodic Learning: The robot learns in

riods Off time in :ealll—v(\;orlddscenl?rl?s. tNevt(ajrtheI(_ess, as"“‘f:)btepisodes how to get to a single target starting from the same
move from controfied and well-structured environments 1. siate. [(b)Semi-episodic Learning The robot learns

more complex [1] and more_natgral ones [21' they must bfﬁe outcome of its atomic behaviors while executing the.task
able to react to unforeseen situations; in particular, tieye

to face the inevitable fact that they will be damaged [3], [4]
Current methods for robot damage recovery can be divided

into two categories: (1) diagnosis-based approaches i, aBayesian Optimization [11], to find a compensatory behavior

(2) learning methods — mostly Reinforcement Learnin% . . : : :
(RL) techniques [6], [7], [8]- Most of the techniques in the n |mport§nt |deq Is that the behavior-performance map 1S
P Ll created using a simulated intact robot, but the algorithm is

first category require to antic_ipate the situat.ions that th%ble to find a working behavior on the damaged real robot
robot may have to face; an issue can be diagnosed O ¥cause some behaviors from the map perform similarly on

i th? right sensors are pre;ent in the ”ght place_. .The Re intact and the damaged robot (typically, the behaviors
requirements make diagnosis-based techniques difficult at do not rely on the broken part). The most recent results

use in complex robotics systems/scenarios — typically the%’howed that IT&E can allow various types of robots (a 6-

are only used in the lowest levels of control. Nevertheles§ .
o egged robot and an 8-DOF manipulator) to compensate for
the state-of-the-art RL approaches are also difficult to usé : T _
) . . many different types of injuries in a matter of minutes [8],
for damage recovery because they require many |terat|o[k<2]
to converge. For example, many RL approaches requite™
tens if not hundreds or thousands of iterations to learn Although the IT&E approach is promising, its main lim-
problems with low-dimensional state spaces and fairlydpeni itation is the pure episodic approach it has adopted: for
dynamics, like the mountain car [9]. The data efficiency oeach trial (episode), the robot has to begin in the same
RL approaches is a critical aspect that limits their apgitice  Starting state (Figutie_lLa). This is limiting because |leagra
in real-world robotics scenarios [10]. compensatory behavior has to be achieved in two steps, first
A promising approach is thintelligent Trial and Error learn a compensatory behavior, and then_use it to complete
algorithm (IT&E), a recently introduced algorithm [8]. The the task. On the contrary, a wounded animal, for example,
intuition behind IT&E is that, before the mission, an offidi  can perform trial and error “episodes” to learn how to walk

and computationally expensive evolutionary algorithmisan again, while going back to its nest for protection.

used to create a behavior—performance map that predipts _thqn this paper, we extend the IT&E algorithm by (1) using
performance of thousands of different behaviors. While in generic rewardof the outcome of each atomic behavior

mission, this map, guides a fast and on-line search, based §ihe robot in the adaptation part, and by (2) adding a

vGorresponding authorjean—bapt iste .mouret@inria. £z specialized reward selection layénat selects a specialized
B - 1 . u 1 la. . . o
Unria, Villers-les-Nancy, F-54600, France reward function at each episode. These additions allow for
ZCNRS, Loria, UMR 7503, Vandceuvre-les-Nancy, F-54500n&ea a semi-episodic learning scheme that improves the robot's
“Université de Lorraine, Loria, UMR 7503, Vandceuvreéancy, F-54500, France | : P :
ong-term autonomy by allowing to recover while attempting
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Imperial College London, UK to achieve its task(s) (Figutellb).
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Il. BACKGROUND MAP-Elites is an evolutionanyllumination algorithm:
instead of searching for a single, best solution, like opti-
. o . . mization algorithms, MAP-Elites searches for the highest-
Bayesian Optimization (BO) is a well-established strategyerforming individual for each point in a user-defined space
for finding the extrema of functions that are expensive tqpis yser-defined space is often called tehavior space
evaluate [11], [13]. It is applicable in cases where one dogsscause the dimensions of variatidrehavior descriptois
not have a closed-form expression for the objective fU'"'CtiOusuaIIy measure behavioral characteristics.
(the function is a “black-box”), but where one can obtain | |T&E, the authors made a slight modification to the
observations (possibly noisy) of this function. One of thg|assical BO scheme. Their BO variation, callddp-Based
distinctive features of BO is that it constructs a probabidi o Algorithm (M-BOA), models the difference between a
model for the objective function and then exploits this modeneanfunction and the actual performance, instead of directly

to make decisions about which point to evaluate next, whilg,odeling the objective functior(-) is themeanfunction):
taking into account the uncertainty.

Th_ere are two major choices that must be made \{vhen per- mi(x) = P(x) + kT K~ (D1 — P(x124))
forming BO. First, one must select a prior over functiong tha o ) o
will express assumptions about the function being optichize !N the original work, theneanfunction was the prediction
Second, one must choose an acquisition functige,D:.;), of the_' performance in the map generated from MAP-Elites.
which is used to construct a utility function from the modet?lgorithm Il shows the pseudo-code for M-BOA.
posterior, allowing us to determine the next point to evedua - .
Many models could be used for the BO prior, but Gaussigh'90rithm 1 M-BOA (Map-Based BO Algorithm)
Process (GP) priors are the most common choice [11]. A GPL: procedure M-BOA
is an extension of the multivariate Gaussian distribution t 2: Va € map :

A. Bayesian Optimization with Gaussian Processes

an infinite-dimension stochastic process for which anysinit 3: p(f(z)|lz) = N(P(z), k(z, z))
combination of dimensions will be a Gaussian distribution4: ~ While stopping criteria not medio
[11]. A GP is a distribution over functions, completely 5: Ti41 = argmargu(x|D1,) > Next test point
specified by its mean functiom(-) and covariance function, 6: Yi1 = per formance(execute behavior (z¢11))
k(- -): 7 Di.t11 = {D1ts (o1, Y1)}

8: Update GP

f(@) ~ GP(m(z), k(x,z'))

AssumingDy., = {(x1, f(x1)), - , (xs, f(x4))} is a set [1l. APPROACH
of observations and? the sampling noise, the GP is A. Generic Reward

noise

computed as follows: In the original IT&E paper, the GP modeled the perfor-

) mance of each atomic behavior given a task. In this paper,
p(f(x)|D1t, x) = N(my(z), o (z)) we suggest learning a mapping from the atomic behaviors to
the resulting relative outcomes. We call iGeneric Reward

where: — kTK-1D (GR) of the outcome of each atomic behavior of the robot.
me(®) = Lt We use one GP for each dimension of the GR.
o2 (z) = k(z,z) — kT Kk For exgmple, imagine we have a _robot moving in 2_D
space using an 1D continuous atomic behavior (direction
k(x1,z1) -+ k(x1, ) to move0.1-step). A GR could be the relative position of
K — . . . 402 T the robot after executing a behaviofz, y). Thus, we need
' ' ' e 2 GPs:GP,.(0),GP,(0). If we query the GPs at the point
k(ze,x1) - k(ze, xt) )

6o, then we get a positiory; = (GP,(0y), GPy(0y)), as
k— [k:(m, z) -kl mtﬂ the prediction. In that way, we can now compasfeecialized
rewardsfor different locomotion tasks, like the distance to
We usedUpper Confidence BounCB) as the acquisi- different target points.

tion function. We refer the reader ®rochu et al.[11] for a Put differently, the GR is a description of the outcome of

more detailed explanation. each atomic behavior of the robot that it is generic-enough
to be independent from one task to another, but specific-

B. Intelligent Trial & Error Algorithm enough so that the performance of the outcome of one atomic

IT&E proposed a novel approach for robot damage rePehavior given a task can be computed.
covery that consists of a 2-step process. An off-line evolu- The changes foM-BOAto work are:
tionary algorithm MAP-Elites [14][8], that generates many . define aRewardfunction that takes the GPs’ prediction
thousands of potential good behaviors is followed by a trial  as input and returns the expected task performance;
and error on-line adaptation part, based on BGROA), in « define anAggregatorfunction @fun) that takes as input
order to find a compensatory behavior. the execution of an atomic behavior and returns the GR.



B. Specialized Reward Selection Layer distance between the next target and the prediction of the

We, also, augment the proposed algorithm, by adding GPs and for the reward selection layer an A* path planner.
layer responsible for selecting tfiewardfunction, defined ~ To evaluate our technique we used the following two
above. We call iSpecialized Reward Selection Lay®SL). ~ control experiments:

Since we are modeling a GR of the outcome of each behavior. learn the model of the robot (using GPs) via random
of the robot and not the actual performance (given a task), we babbling and then use it to complete the task;

can change th®ewardfunction as often as needed. This is « solve the problem with the classic IT&E approach: we
true, because only the acquisition function needs an actual first learn with IT&E how to walk in 4 major directions
reward to select a new test point. We suggest updating or (up, down, right, left) and then use these behaviors to
selecting theRewardfunction at each iteration of M-BOA. reach the target.

For instance, if we consider the previous mobile robot
example, at each iteration a planner algorithm chooses t' -
next best point to reach. This point can then be used k o
the RSL in order to update thRewardfunction so that it
outputs the Euclidean distance between the point selegted
the planner and the prediction of the GPs.

Toy Simulation
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C. Semi-Episodic Learning Algorithm

Using the two proposed additions, we can now have a nc
purely episodic version of the IT&E algorithm. We call it

ons
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Semi-Episodic Learning Algorithm (SELA). The pseudo- * N
code is shown in Algorithri]2. 20 Optimal
10
Algorithm 2 Semi-Episodic Learning Algorithm 0 : : :
IT&E Random Babbling SELA

1: procedure SELA

2: Before mission(in simulation with intact robot): Fig. 2: Toy Simulation Evaluation. Comparison between

3 Create Behavior-Performance Map using MAP-Eliteghe baseline approaches aS8&LA for the toy simulation.

4 while in mission do For both of the baseline approaches, we measure the number

5: if significant performance drojmen of iterations required to learn and the number of steps that

6: Adaptation-Step (UsSinGELA-ADAPT) they take to complete the task. We ran 50 replicates of each

7. procedure SELA-ADAPT approach.

8: V& € map :

9: p(f(z)|z) = N(P(x), k(x,x)) We ran 50 replicates of each approach for the scenario:
10: while stopping criteria not medo “Reach the target poin(2.0,2.0) starting from the origin

11 UpdateRewardfunction despite a0.5 radians angle offset in the range direction
12: i1 = argmazrgyu(Reward(GPs(x))|Di.t) 6 > 0”. To make the task a little more realistic we added
13: Yi+1 = afun(execute_behavior(xi41)) a small Gaussian noisg:(= 0,02 = 0.01) to the posi-

14: Dy.yt+1 = {D14, (®t+1, Ye+1)} tion observations. Figuld 2 shows the resulting perforraanc
15: Update GPs (number of atomic behaviors taken to reach the target) for

the different approaches. Our algorithm is able to reach the
target with almost the optimal number of steps (i.e. if we
IV. PRELIMINARY EXPERIMENTS perfectly knew the model), that is in much fewer steps than

A. Toy Simulation the other approaches.

As a toy example, we consider the mobile robot exampl
introduced previously. This mobile robot is a point (no
dimensions, no orientation) and can take a 0.1-long step As a more realistic example, we consider a simulated 6-
in any direction. We represent each atomic behavior by lagged (hexapod) robot moving in space with the same task
scalar valueg: the direction of the corresponding move. Thisas in the toy simulation. See Figdrel 1b for the scenario and
environment was inspired bigngel et al.[15]. The task of [8] for more details on the simulated hexapod. We evolved
the robot is to reach a target point despite some damage.different atomic behaviors using the MAP-Elites algorithm

Because the example is too simple, but also to show tiveith an 8D behavior descriptor (2 dimensions for space
effectiveness of our method without relying on simulatediiversity + 6 dimensions for walking diversity), inspireg b
data, we did not generate any behavior-performance map. \[#6], [12]. The number of atomic behaviors evolved were
used the exact model of the intact robot as the mean functicepproximatelyl million. We used this behavior-performance
Also, for the GR, we used thér,y) relative end position map as the mean function. All the other parameters were the
of each behavior, for th&Reward function the Euclidean same as in the toy simulation experiment.

g. 6-Legged Simulated Robot locomotion task



To evaluate our technique we used similar control exper- Future work includes performing more experiments with
iments as in the toy simulation experiment: the real robot as well as experiments with different robots.
« IT&E variant #1: we learn the outcome of the atomicln addition, BO can be replaced by other techniques that
behaviors (using GPs) via selecting the most uncertaffale better. What is more, we used a naexgard selection
behavior forN = 15 iterations. This can be consideredlayer, but more efficient/sophisticated methods can be used.
as a uniform sampling of the behavior space. We the¥We are currently investigating in this direction. Additadly,
use what we learned to reach the target. theoretical guarantees and analysis should be invedtigate
o IT&E variant #2: we first learn with IT&E how to walk detail. Overall, this work is a first step towards semi-egiso
in 4 major directions (forward, backward, turn cw, turnand life-long learning for robot damage recovery.

ccw) and then use these behaviors to reach the target. APPENDIX
For all experiments the following parameters were used:
6-legged Robot Simulation Error threshold for reaching goal: ¢4, = 0.1
60 .
A. BO with GPs
— Acquistion function: UCB with oo = 0.05

% Kernel: Exponential kernel withr = 0.1

GP noise:o2 ;. = 0.001
40 Max iterations: N = 10 (Toy), N = 15 (Hexapod)

— B. Learning with random babbling

Error threshold: €041 = 0.01
Max iterations: N = 15

30

Iterations

20
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