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Notes on geometry of locomotion of 3-link
body

Sudin Kadam

We analyse the geometry of locomotion of 3-link mechanism inspired from
the Purcell’s swimmer at low Reynolds number, the simplest possible swim-
mer conceptualized in [1]. The literature has extensively analyzed the prob-
lem of plananr locomotion of the Purcell’s swimmer [2], [3], [4], [5]. [6]
analyzes its locomotion problem in geometric framework, again for the pla-
nar case. The condition of being at low Reynold’s number and slenderness
of the links in mechanism leads us to a purely kinematic form of equations.
Literature does not indicate any conditions of low Reynold’s number theory
for slender bodies which entail restriction to only planar locomotion. We
extend the work to a more general, more challenging and more interesting
generic 3 dimensional locomotion problem.

1 Configuration Space

The original form of Purcell’s swimmer shown in fig. [1| has three links always
in a common plane, the outer links were actuated through a hinge joint with
the central link whose axes were perpendicular to the plane of mechanism

We replace two hinge joints by ball joints allowing out-of-plane shape
of the mechanism. This mechanism shall manoeuvre in Special Euclidean
group (SE3). The translational position of the central (base) link denotes
the position of its center of mass and is an element of R?, and its rotational
position is an element of SO(3). The outer 2 links being axisymmetric slender
bodies, the rotation about the length direction of the body is immaterial,
hence its orientation is an element of 2-sphere S?. Hence the configuration
space is given by -

Q = R*x SO(3) x §* x §? (1)



Figure 1: Purcell’s planar swimmer [6]

We represent the orientation of the outer links with respect to the base
link through shape variables. The configuration space follows trivial principal
fiber bundle topology [7], with the position and orientation of the center link
being the group variable (g) which are the fibers over the shape space S* x S*,
formed by the orientation of the 2 limbs.

2 Coordinate frames and transformations

Fig [2] shows an arbitrary position of the system along with 3 coordinate
frames corresponding to each link, with their origin at the center of mass of
the respective link. The reference configuration is the one in which shape vari-
ables are zero, i.e. all the 3 coordinate frames are aligned to each other. The
orientation of the outer links is parametrized using usual latitude-longitude
parametrization of S?. The orientation of the outer link in any arbitrary
position can be achieved by successive rotations, first along base link’s z-axis
by 1, followed by the rotation about the y-axis of the link being rotated by
6. The usual rotation matrices for rotation about each of z and y axes are
as follows-

cosf 0 —sinf cos¢p —sing 0
R,)=| 0 1 0 , R.(¢)=|[sing cos¢p O
sinfd 0 cos6 0 0 1
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Figure 2: Basic Configuration

Orientation of any of the outer links can be represented with respect to
the base link orientation using composite rotation as follows

cosfcos¢p —sinfcos¢p —sing
Ry (p)R.(8) = sin 6 cos 0 (2)
—singcosg singsinf cos ¢

01, 1,04, po define the coordinates of the shape space. We can write the
kinematics of the i’th link in terms of the velocity of the base link and the
joint velocities 61, ¢, 62, do. Velocity of ’th link in its own body frame is an
element of Lie algebra, which is isomorphic to R™. In our case the this is
se(3), which is represented as a generalized velocity vector, an element of R®

T
as éz = ['Uxa Uy, Uz, Wy, Wy, Wz}

3 Fluid forces

At very low Reynolds numbers, viscous drag forces dominate the fluid dy-
namics of swimming and any inertial effects are immediately damped out.
This effect has two consequences [6]. First, the drag forces on the swimmer
are linear functions of the body and shape velocities. Second, the net drag



forces and moments on an isolated system interacting with the surround-
ing fluid go to zero: if the swimmer were to move with any velocity other
than that dictated by force equilibrium, the large viscous forces would al-
most instantaneously remove this excess velocity, returning the system to
the equilibrium velocity.

We model three-link swimmer with links as slender members leading to
fluid forces according to Cox theory [8]. We regard the flows around each link
as independent, according to resistive force theory [9]. The drag forces and
moments on the ith link are based on a principle of lateral drag coefficients
being larger than those in the longitudinal direction, with a maximum ratio
of 2 : 1 in the limit of an infinitesimally thin member. The moment around
the center of the link is found by taking the lateral drag forces as linearly
distributed along the link according to its rotational velocity. Thus, with &
as the differential viscous drag constant and 2L as the length of each link,
forces and moments on the i’th link are as follows,

L
1
7 2
L
Fiy = / k& ydl = 2k&, L )
—L
L
L
" 2
M; = / [07 fi,ew fi,ez}Tdel = 5[0, gww fi,ez]TkL?’ (6)
—L

Thus the total force on each link can be written as the linear combination
of its body velocities -

(kL 0 0 0 0 0 iz

0 2kL 0 0 0 0 Eiy

0o 0 2L 0 0 0 iz
Fi = 0 0 0 0 0 0 i, (™)

0 0 0 0 2kL* 0 &io,

0 0 0 0 0 Z2kL3| \&,.

Thus,

F, = A (8)



4 Construction of connection form

A mechanical system is kinematic [10] when the first derivative of its state
vector is linearly dependent on the control inputs, i.e. ¢ = A(q)u, where ¢
is a state vector, A(q) is a matrix and wu is the input vector. Purely kine-
matic systems is a type of kinematic system, that have as many independent
non-holonomic constraints as the dimension of the system’s fiber space. The
motion of such systems with a configuration ¢ = (g,r) € @ can be described
by the reconstruction equation, £ = A(g,r)r, where £ is the body representa-
tion of fiber velocity, A is a matrix that depends on the configuration ¢ and
we treat r as input vector.

In order to derive the force on each link, from eqn. we see that we
need to find the body velocity of each link in terms of body velocity of the
base link and the shape velocities, which is done through appropriate frame
transformations as below for link 1 -

Vg
Uy
Uy
& = [RyO)R(6) R(O)R.0)] |
Wy
Wz
6, sin 01 L Wy L+ Lcos¢cost
ol X |0 + [wy| X L cos ¢sint
n 0, cos ¢y 0 W, Lsing
91 si‘n ¢1
'qsl
0, cos ¢q
Vg
[ L+ Lcosgeosd] ™ | [ 0 LT ] | vy
R,(O)R.(0) Lcos¢sind — L cos ¢50 U
_ Lsin ¢ 0 0 We
sin ¢ 0 Wy
O3x3 R,(O)R,(6) —L cos ¢10 Wz
i cos¢p 0] || ¢
¢



Similar expression can be derived for the second link leading us to the
following form of the velocity of each of links 0,1 and 2 -

éi,m
?y €o S
o = 6”; , & =By Ql , & = Do 92 9)
Euo, P ”
Eio.

Combination of 2 effects mentioned before due to low Reynold’s number
results in the equations of motion taking on the form of a kinematic recon-
struction equation. In the following section we show that the 3-link swimmer
is a purely kinematic system and derive the reconstruction equation in co-
ordinates. From fluid force equations [7| we see that the force on each link is
a linear combination of the velocity of the link in its own frame. Hence the
force on each of the 3 links is -

€o €o
Fy = A&, Py = ABi | 01 |, Fy = ABy | 6, (10)
P1 b1

The summation of all the forces gives us the resultant force acting on the
system. But we note that eqn gives us the force with respect to the frame
of the same link. Hence before summing us we transform the forces to the
frame associated with base link.

F - F0+T1F1+T2F2 (11)

Where the transformation matrices corresponding to outer links are -

[ RZ(G)Ry(gb)X | 0
_ L + Lcos¢cosf 12)
' L cos ¢psin 6 R.(O)R,(0) | R,(0)R.(0)
L sin ¢



[ R.(0)R,(¢) | 0
. L+ Lcos¢cosf
2 Lcos ¢psiné R,($)R.(0) | R,(¢)R.(6)
Lsin ¢
The purpose is to write the equation in the form of a reconstruction

equation. We can split these equation by writing matrices in terms of their
block format.

€o o
F = A+ TiAB, | 6, | + ToAB, | 6,
1 o
€o €o
= AéO + [[TlABl]GXG [TIABl]6><2] 9.1 + [[TQAB2}6><6 [T2A82]6X2] 9‘2
o P2

Consequence of being at low Reynolds number is that the net forces and
moments on an isolated system should be zero, which leads to following
equation -

6

¢1) ++[T2ABs)ex6 0+ [12ABs]6x2 (92)

)
(14)
Finally we get a reconstruction equation in desired form as follows -

0 = A&+[T1AB1|6xeo+[11ADB1]6x2 (

€0 = wy wat (15)

. . . . . T . L.
where 7 = [01, o1, 02, (b2j| is the vector of shape velocities w; and wy
matrices are given as follows -

w1 = [A -+ [TlABl] + [TQAB2H6><6 and
W = HTIABI]GXQ [T2ABQ]6x2}6x4
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Pointers for next work related to connec-
tion vector field

[11], [12], [13] use the concept of connection vector field, which is the
vector field formed by the rows of the connection form. The inspection
of this vector field gives insights into the effect of shape velocities on
components of group velocities. The curvature of the connection vector
field facilitates in gait analysis.

The [14] does the controllability and geometric maneuverability for the
planar case.

[15] analyses optimality of shape change for generating desired global
motion using nonlinear optimization problem.
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